首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Reaction of tetranitromethane with sulfhydryl groups in proteins   总被引:3,自引:0,他引:3  
  相似文献   

3.
4.
5.
The number of sulfhydryl groups in the Escherichia coli ribosome has been measured by titration with 5,5′-dithiobis(2-nitrobenzoic acid). Under denaturing conditions, there are 38.8 ± 1.0 titratable thiols per 70 S ribosome and 22.8 ± 0.3 and 12.9 ± 0.3 titratable thiols per 50 S and 30 S subunits, respectively. Three categories of thiol groups can be distinguished in the native 70 S ribosome, a “fast reacting” class of about 3 residues, a “slow reacting” class of about 10 residues and a “buried” class including about 26 residues. The addition of polyuridylic acid to reaction mixtures protects a fast-reacting thiol in the 30 S subunit belonging to protein S1.The addition of urea to ribosome solutions makes the buried residues titratable. Denaturation occurs as a sharp transition at a urea concentration between 4 and 4.5 m. Urea does not fully dissociate the ribosome into RNA and protein. Instead, in the case of the 30 S subunit, a slowly sedimenting particle forms in the presence of urea, containing roughly 65% of the normal amount of protein.  相似文献   

6.
Electron paramagnetic resonance was used to characterize the first use of a thiol-specific spin label in membranes. Procedures for use of the spin-label, 1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl (methanethiosulfonate MTS) covalently attached to membrane proteins in human erythrocyte membranes are reported. The major findings are: (1) MTS was found to be thiol-specific in membranes as it is for soluble proteins; (2) MTS labels ghost proteins in as few as 30 min at room temperature, providing a distinct advantage when sensitive or fragile membranes are to be used; (3) the distribution of the spin label suggests that the major cytoskeletal protein, spectrin, and the major transmembrane protein (Band 3) incorporate the highest percentage of spin label. This procedure expands the tools with which the researcher can investigate the physical state of membrane proteins and its alteration upon interaction of membrane perturbants or in pathological conditions.  相似文献   

7.
8.
The mechanism of interaction between S-nitrosoglutathione (GSNO) and hemoglobin is a crucial component of hypotheses concerning the role played by S-nitrosohemoglobin in vivo. We previously demonstrated (Patel, R. P., Hogg, N., Spencer, N. Y., Kalyanaraman, B., Matalon, S., and Darley-Usmar, V. M. (1999) J. Biol. Chem. 274, 15487-15492) that transnitrosation between oxygenated hemoglobin and GSNO is a slow, reversible process, and that the reaction between GSNO and deoxygenated hemoglobin (deoxyHb) did not conform to second order reversible kinetics. In this study we have reinvestigated this reaction and show that GSNO reacts with deoxyHb to form glutathione, nitric oxide, and ferric hemoglobin. Nitric oxide formed from this reaction is immediately autocaptured to form nitrosylated hemoglobin. GSNO reduction by deoxyHb is essentially irreversible. The kinetics of this reaction depended upon the conformation of the protein, with more rapid kinetics occurring in the high oxygen affinity state (i.e. modification of the Cysbeta-93) than in the low oxygen affinity state (i.e. treatment with inositol hexaphosphate). A more rapid reaction occurred when deoxymyoglobin was used, further supporting the observation that the kinetics of reduction are directly proportional to oxygen affinity. This observation provides a mechanism for how deoxygenation of hemoglobin/myoglobin could facilitate nitric oxide release from S-nitrosothiols and represents a potential physiological mechanism of S-nitrosothiol metabolism.  相似文献   

9.
10.
p-Nitrophenoxycarbonyl methyl disulfide has been synthesized for use as a quantitating agent for methanethiolation of protein sulfhydryl groups. This reagent reacts specifically and quantitatively with cysteine residues of proteins to yield an unsymmetrical disulfide containing a CH3S group and concomitantly releases the chromophore, p-nitrophenol. Titration of the sulfhydryl groups of glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) with this reagent has been studied. Incorporation of CH3S as measured by the release of p-nitrophenol paralleled the loss of sulfhydryl group dependent activity of the enzyme. The enzyme was found inactive on modification of four of the eight sulfhydryl groups present in the enzyme. Stability of p-nitrophenoxycarbonyl methyl disulfide has also been studied in different buffer systems. The rate of decomposition of the p-nitrophenyl ester due to hydrolysis was found negligible below a pH of 8.0 compared to its rate of reaction with free sulfhydryl groups.  相似文献   

11.
Tissue sulfhydryl groups   总被引:551,自引:0,他引:551  
  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
A gel filtration method employing 14C-chloromercuribenzoic acid is described for the quantitative determination of sulfhydryl groups in microgram quantities of protein. The method has been applied to several native proteins, hemoglobin, monoamine oxidase, and yeast cytochrome c. In all cases values in close agreement with known literature values were obtained. Horse heart cytochrome c and lysozyme, which have no sulfhydryl groups, did not bind the mercurial reagent. Modifications of the method are described for determining the sulfhydryl content of denatured proteins in the presence of sodium lauryl sulfate. The precision of the method was found to be compatible with known methods for determining the sulfhydryl composition of proteins.  相似文献   

20.
A method for identifying cysteine-containing peptides in proteins is presented using 2-bromoacetamido-4-nitrophenol (BNP) to introduce an easily detectable probe. The formation of a covalent bond between the protein sulfhydryl group and the acetamido moiety of BNP introduces a chromophore with an absorbance maximum at 410 nm. The modified protein can then be cleaved with appropriate proteases and the resulting peptides separated by chromatographic methods. Monitoring the effluent at a single wavelength (405 nm) provides a rapid and simple method of detecting and isolating only those peptides which contain cysteine residue(s). The nitrophenol derivative is stable under conditions required for protease cleavage. The reagent is therefore useful for locating cysteine-containing peptides in protein digests and can be used to explore the accessibility of different cysteines under a variety of conditions. The ease of modification, specificity of reaction, product stability, and simple detection of modified peptides make BNP ideal for investigation of cysteine residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号