首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ventroabdominal flexor muscles of the crustacean Atya lanipes, which are normally completely inexcitable, generate trains of overshooting calcium action potentials after exposure to the sulfhydryl reagents known as alpha, beta-unsaturated carbonyl compounds. The chemically induced action potentials are abolished by protein reagents specific for guanidino and amino groups. Attempts to induce excitability by the use of agents that block potassium conductance were without success. It is proposed that calcium channels are made functional by the covalent modification of a calcium protochannel, via the interaction between the introduced carbonyl group and existing arginine residues.  相似文献   

2.
The mechanism by which nitrite inhibits outgrowing spores of Bacillus cereus T was examined by using techniques developed earlier for nitrite analogs. The morphological stage of inhibition, cooperativity effects, effect of pH on inhibition, kinetics of protection against iodoacetate incorporation into membrane sulfhydryl groups, and protection against the bacteriocidal effect of carboxymethylation by iodoacetate indicate that nitrite acts as a membrane-directed sulfhydryl agent. The mechanism by which nitrite modifies the chemical reactivity of the sulfhydryl group could be either direct covalent modification or inactivation through communication with another modified membrane component. Profiles of pH effects suggest that the active agent is the protonated form of nitrite. The nitrite concentrations which modify membrane sulfhydryl activity coincide with those which have a bacteriostatic effect. These results are consistent with membrane sulfhydryl modification as a component of the mechanism of nitrite-induced bacteriostasis in this aerobic sporeformer.  相似文献   

3.
The mechanism by which nitrite inhibits outgrowing spores of Bacillus cereus T was examined by using techniques developed earlier for nitrite analogs. The morphological stage of inhibition, cooperativity effects, effect of pH on inhibition, kinetics of protection against iodoacetate incorporation into membrane sulfhydryl groups, and protection against the bacteriocidal effect of carboxymethylation by iodoacetate indicate that nitrite acts as a membrane-directed sulfhydryl agent. The mechanism by which nitrite modifies the chemical reactivity of the sulfhydryl group could be either direct covalent modification or inactivation through communication with another modified membrane component. Profiles of pH effects suggest that the active agent is the protonated form of nitrite. The nitrite concentrations which modify membrane sulfhydryl activity coincide with those which have a bacteriostatic effect. These results are consistent with membrane sulfhydryl modification as a component of the mechanism of nitrite-induced bacteriostasis in this aerobic sporeformer.  相似文献   

4.
Both thiol groups of native human pancreatic lipase can react with the new hydrophobic sulfhydryl reagent 5-dodecyldithio-2-nitrobenzoic acid (Dod-S-NbS) in the absence of a denaturing agent. Here we describe for the first time the covalent and stoichiometric modification of the inaccessible SHII group of native pancreatic lipase, using a 16-fold molar excess of this hydrophobic sulfhydryl reagent. A direct correlation was found to exist between the covalent modification of this SHII group and the loss of lipase activity. The question has not yet been answered, however, as to how Dod-S-NbS reaches the SHII-containing residue, whereas classical hydrophilic sulfhydryl reagents are unable to do so. This difference in reactivity may be attributable to the hydrophobic character of Dod-S-NbS and its potential capacity to form aggregates inducing a conformational change in the lipase molecule.  相似文献   

5.
Methoxycarbonyl-CoA disulfide has been used as an active-site-directed inhibitor of carnitine acetyltransferase. Stoichiometric addition of methoxycarbonyl-CoA disulfide to carnitine acetyltransferase showed the modification of one sulfhydryl group with concomitant loss of about 80% enzyme activity. The rate of modification of this sulfhydryl group is an order of magnitude faster than that of the remaining sulfhydryl groups in the enzyme. Methoxycarbonyl-CoA disulfide inactivation is biphasic: k1 = 1.09 × 102m?1s?1, k2 = 1.1 × 101m?1s?1. This modification, Enz-SS-CoA is covalent; it can be reversed with either dithioerythritol or thiocholine. Acetyl-carnitine and acetyl-CoA protected the enzyme against methoxycarbonyl-CoA disulfide inactivation; however, carnitine did not. These results indicate the presence of a sulfhydryl group in carnitine acetyltransferase at the site of acetyl group transfer. Titration of carnitine acetyltransferase with nonspecific sulfhydryl reagents, DTNB, and ?-nitrophenoxycarbonyl methyl disulfide, revealed that four sulfhydryl groups were preferentially modified by these reagents. The results also show that seven other sulfhydryl groups are available for modification.  相似文献   

6.
Aspartase (L-aspartate ammonia-lyase, EC 4.3.1.1) of Escherichia coli W contains 38 half-cystine residues per tetrameric enzyme molecule. Two sulfhydryl groups were modified with N-ethylmaleimide or 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) per subunit, while 8.3 sulfhydryl groups were titrated with p-mercuribenzoic acid. In the presence of 4 M guanidine - HCl, 8.6 sulfhydryl groups reacted with DTNB per subunit. Aspartase was inactivated by various sulfhydryl reagents following pseudo-first-order kinetics. Upon modification of one sulfhydryl group per subunit with N-Ethylmaleimide, 85% of the original activity was lost; a complete inactivation was attained concomitant with the modification of two sulfhydryl groups. These results indicate that one or two sulfhydryl groups are essential for enzyme activity. L-Aspartate and DL-erythro-beta-hydroxyaspartate markedly protected the enzyme against N-ethylmaleimide-inactivation. Only the compounds having an amino group at the alpha-position exhibited protection, indicating that the amino group of the substrate contributes to the protection of sulfhydryl groups of the enzyme. Examination of enzymatic properties after N-ethylmaleimide modification revealed that 5-fold increase in the Km value for L-aspartate and a shift of the optimum pH for the activity towards acidic pH were brought about by the modification, while neither dissociation into subunits nor aggregation occurred. These results indicate that the influence of the sulfhydryl group modification is restricted to the active site or its vicinity of the enzyme.  相似文献   

7.
13C-Labeled and unlabeled iodoacetanilides have been synthesized for covalent modification of the sulfhydryl groups of cysteine residues in proteins or peptides. A combination of these reagents, coupled with mass spectrometry, is a powerful tool for quantitative analysis of peptides and hence proteins.  相似文献   

8.
Nitrosothiols with the general structure RSN==O were studied as a model system of bacteriostatic action toward outgrowing bacterial spores. With a Taft plot analysis, the influence of the structure of the R group on the inhibitory effectiveness of a series of nitrosothiols showed that effectiveness as an inhibitor of Bacillus cereus T outgrowth correlated with the electron withdrawal of R, but that size, shape, charge, hydrophobicity, and transportability had little influence. This was interpreted to mean that nitrosothiols do not traverse the membrane to act. The Taft plot together with competition data between nitrosothiol and iodoacetate indicated that the mode of nitrosothiol action is the covalent modification of a sulfhydryl group, probably to form RSN(OH)--SX, where --SX is derived from a sensitive spore sulfhydryl group. Cooperativity effects indicated that outgrowth inhibition is accompanied by a conformational change occurring upon sulfhydryl group modification, which is communicated among at least three to five subunits. Uptake of label during spore germination indicated that most of the sulfhydryl groups which can be modified are associated with the inhibitory event. These data suggest that this sulfhydryl group may be sufficiently unique that inhibitors designed to interfere specifically with it could have value as bacteriostatic agents.  相似文献   

9.
The reagent dimethylmaleic anhydride does not cause a stable modification of thiol compounds under the conditions used for modification of protein amino groups, in contrast to maleic and monomethylmaleic anhydrides, which produce an irreversible modification of sulfhydryl groups. This behavior and the low reactivity toward hydroxyamino acid residues, shown in a previous work, make dimethylmaleic anhydride a specific reagent for protein amino groups.  相似文献   

10.
1. The number of exposed sulfhydryl groups in cattle rod photoreceptor membranes has been determined in suspension and after solubilization in various detergents both before and after illumination.2. In suspensions, two sulfhydryl groups are modified per mole of rhodopsin, both by Ellman's reagent 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide, while no extra SH groups are uncovered upon illumination. Neither reagent affects the spectral integrity of rhodopsin at 500 nm and the recombination capacity is retained upon modification of both rhodopsin and opsin.3. However, in detergents (digitonin, Triton X-100 and cetyltrimethylammonium bromide (CTAB)) 2–3 additional sulfhydryl groups appear upon illumination, in agreement with earlier reports.4. A total number of six sulfhydryl groups and two disulfide bridges are found in rod photoreceptor membranes, expressed per mole of rhodopsin.5. DTNB reacts somewhat faster with membrane suspensions after than before illumination. The less reactive sulfhydryl modifying agents O-methylisourea and methyl-p-nitrobenzene sulfonate show a similar behavior.6. It is concluded that illumination of rhodopsin in vivo will not uncover additional SH groups, although the reactivity of one exposed SH group may increase somewhat. These findings also exclude a role of SH groups in the covalent binding of the chromophore.  相似文献   

11.
The nitric oxide molecule (NO) is involved in many important physiological processes and seems to be stabilized by reduced thiol species, such as S-nitrosoglutathione (GSNO). GSNO binds strongly to glutathione transferases, a major superfamily of detoxifying enzymes. We have determined the crystal structure of GSNO bound to dimeric human glutathione transferase P1-1 (hGSTP1-1) at 1.4 A resolution. The GSNO ligand binds in the active site with the nitrosyl moiety involved in multiple interactions with the protein. Isothermal titration calorimetry and differential scanning calorimetry (DSC) have been used to characterize the interaction of GSNO with the enzyme. The binding of GSNO to wild-type hGSTP1-1 induces a negative cooperativity with a kinetic process concomitant to the binding process occurring at more physiological temperatures. GSNO inhibits wild-type enzyme competitively at lower temperatures but covalently at higher temperatures, presumably by S-nitrosylation of a sulfhydryl group. The C47S mutation removes the covalent modification potential of the enzyme by GSNO. These results are consistent with a model in which the flexible helix alpha2 of hGST P1-1 must move sufficiently to allow chemical modification of Cys47. In contrast to wild-type enzyme, the C47S mutation induces a positive cooperativity toward GSNO binding. The DSC results show that the thermal stability of the mutant is slightly higher than wild type, consistent with helix alpha2 forming new interactions with the other subunit. All these results suggest that Cys47 plays a key role in intersubunit cooperativity and that under certain pathological conditions S-nitrosylation of Cys47 by GSNO is a likely physiological scenario.  相似文献   

12.
13.
The properties and functions of the sulfhydryl groups of transducin were examined by 5,5' -dithiobis-(2-nitrobenzoic acid) titration and N-ethylmaleimide modification. The T beta gamma subunit of transducin contained a total of six free sulfhydryl groups and two were reactive under native conditions. Both reactive sulfhydryl groups were located in the beta polypeptide. The functions of transducin were not affected by the modification of these two sulfhydryl groups. The T alpha subunit of transducin contained three accessible sulfhydryl groups under both native and denaturing conditions. When 1.3 sulfhydryl groups were covalently modified by N-ethylmaleimide, the GTPase activity, the guanosine 5' -(beta, gamma-imido)triphosphate (Gpp(NH)p) uptake, and the rhodopsin-binding property of transducin were inhibited. The binding of Gpp(NH)p to T alpha blocked two of the three sulfhydryl groups from chemical modification and increased the reactivity of the remaining one. Modification of this specific sulfhydryl group of T alpha -Gpp(NH)p inhibited the exchange of the bound Gpp(NH)p for GTP. However, the modified T alpha-Gpp(NH)p was able to activate cGMP phosphodiesterase in solution and on positively charged liposomes. These findings demonstrated that a conformational change of T alpha occurs upon the binding of Gpp(NH)p and a specific sulfhydryl group of T alpha plays an important role in the activation of transducin in retinal rod outer segments.  相似文献   

14.
The cytotoxicity of catechols has been ascribed to covalent binding of the omicron-quinone oxidation products to proteins through sulfhydryl groups. The nature of the covalent binding was studied with dopaquinone formed on tyrosinase oxidation of 3,4-dihydroxyphenylalanine (DOPA). After acid hydrolysis of the reaction products, cysteinyldopas liberated (protein-bound cysteinyldopas) were determined by HPLC with electrochemical detection. When 0.1 mM DOPA was oxidized in the presence of 0.2 mM bovine serum albumin, alcohol dehydrogenase or isocitrate dehydrogenase, protein-bound cysteinyldopas were formed in yields of 5.4, 44, or 33%, respectively. The covalent binding was almost completely inhibited by 1 mM cysteine or 1 mM ascorbic acid, but 10 mM lysine had no effect. These results unambiguously demonstrate that dopaquinone can bind with proteins mostly through sulfhydryl groups.  相似文献   

15.
16.
Covalent modification of sulfhydryl groups which become sensitive toward sulfhydryl agents during germination of Bacillus cereus spores exerts a profound bacteriostatic effect, resulting in outgrowth inhibition. The modified spore components are membrane species of 13,000, 28,000, and 29,000 daltons. Detergent disruption of the membrane inactivated the sulfhydryl groups. A highly sigmoid inhibition curve (n = 11.8) with diamide suggested the participation of closely neighboring sulfhydryl groups. Substate and substrate analogs of the lactose and dicarboxylic acid permeases protected the sulfhydryl groups against modification. Nisin, a 34-residue peptide antibiotic, inhibited spore outgrowth and sulfhydryl modification at a concentration of about 0.1 microM. Since these sulfhydryl groups have been implicated as involved with the bacteriostatic action of nitrite, substances directed toward them may be a useful new class of bacteriostatic agents and antibiotics.  相似文献   

17.
Chemical modification and electron spin resonance spectroscopy (ESR) spin-labelling techniques have been employed to investigate the local environment of the essential sulfhydryl groups of chicken liver fructose-1,6-bisphosphatase. The results demonstrate the presence of two distinct classes of sulfhydryl groups in this enzyme. The first class react preferentially with iodoacetate and its spin-labelled derivative, and this results in an increase in catalytic activity, while the second class react preferentially with N-ethylmaleimide and its spin-labelled derivative, and this leads to a decrease in catalytic activity. The ESR spectral data strongly suggest that the first class of sulfhydryl groups are located in a deep cleft of the enzyme molecule, while the second class of sulfhydryl groups are located in a shallow crevice. The environment of the second class of the sulfhydryl groups appears to undergo a significant change after the modification of the first class of sulfhydryl groups by iodoacetate.  相似文献   

18.
This study characterizes the structural and functional significance of sulfhydryl residues in human plasma heparin cofactor II (HCII). For quantification of sulfhydryl groups, the extinction coefficient of HCII was redetermined and found to be 0.593 ml mg-1 cm-1 using second-derivative spectroscopy and multicomponent analysis assuming 4, 10, and 2 residues of tryptophan, tyrosine, and tyrosine-O-sulfate per mole of protein, respectively. The results show that tyrosine-O-sulfate residues in HCII and in cholecystokinin peptide fragments (as model compounds) do not significantly contribute to the absorbance spectrum from 280 to 300 nm. A total of three sulfhydryl groups per mole of HCII was detected by Ellman's reagent titration, with or without treatment with dithioerythritol, indicating the absence of intramolecular disulfide bonds. Incubation of HCII with 0.1-10 mM dithioerythritol did not diminish its heparin-enhanced thrombin inhibition activity. Treatment with various sulfhydryl-specific reagents, including p-mercuribenzoate, HgCl2, and N-substituted maleimide derivatives, inactivated HCII. Titration with Ellman's reagent after these reactions identified the modification site as a cysteinyl residue(s). However, complete methanethio derivatization of the sulfhydryl groups of HCII using methyl methanethiosulfonate did not alter heparin-catalyzed thrombin inhibition. These results indicate that the sulfhydryl groups of HCII are not essential for thrombin inhibition. HCII differs from antithrombin III, which contains an essential disulfide bond for heparin-dependent thrombin inhibition (Longas, M. O., et al. (1980) J. Biol. Chem. 255, 3436). Furthermore, within the "serpin" (serine proteinase inhibitor) superfamily, HCII resembles chicken ovalbumin in occurrence of sulfhydryl residues and reactivity with various sulfhydryl group-directed compounds.  相似文献   

19.
When human diploid fibroblasts IMR-90 are cultured in routinely used medium (Eagle's basal medium supplemented with 10% fetal calf serum), sulfhydryl compounds appear in the medium. The major component of these sulfhydryl compounds is cysteine, and it is shown that a part of medium cystine is converted into cysteine by the cells. It is also shown that the sulfhydryl groups of serum albumin, which are masked and barely detectable before the culture, are restored. Probably cysteine formed by the cells reacts with serum albumin to give rise to the protein sulfhydryl groups via sulfhydryl–disulfide exchange reactions. Total sulfhydryl concentrations in the medium are maintained in a considerable level throughout the culture, and a possible physiological function of these sulfhydryl groups is discussed.  相似文献   

20.
meso-α,?-Diaminopimelate D-dehydrogenase was inhibited by sulfhydryl reagents such as p-chloromercuribenzoate and HgCl2. Two sulfhydryl groups were titrated per molecule in the presence and absence of 6 M guanidine hydrochloride: the enzyme contained one sulfhydryl group per subunit. Modification of the sulfhydryl groups with p-chloromercuribenzoate, 5,5'-dithiobis(2-nitrobenzoic acid), 4,4'-dithiopyridine, N-ethylmaleimide, and iodoacetic acid was accompanied by a loss of enzyme activity. However, modification of sulfhydryl groups of the enzyme with cyanide did not affect the activity. Thus, the introduction of bulky or charged substituents to sulfhydryl groups decreased the catalytic activity of the enzyme, but modification of the groups with the small and uncharged group, a cyano group, did not. The sulfhydryl groups did not play an essential role in catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号