共查询到20条相似文献,搜索用时 15 毫秒
1.
Jason D. Fridley 《Global Change Biology》2015,21(11):4165-4176
Genetic diversity may play an important role in allowing individual species to resist climate change, by permitting evolutionary responses. Our understanding of the potential for such responses to climate change remains limited, and very few experimental tests have been carried out within intact ecosystems. Here, we use amplified fragment length polymorphism (AFLP) data to assess genetic divergence and test for signatures of evolutionary change driven by long‐term simulated climate change applied to natural grassland at Buxton Climate Change Impacts Laboratory (BCCIL). Experimental climate treatments were applied to grassland plots for 15 years using a replicated and spatially blocked design and included warming, drought and precipitation treatments. We detected significant genetic differentiation between climate change treatments and control plots in two coexisting perennial plant study species (Festuca ovina and Plantago lanceolata). Outlier analyses revealed a consistent signature of selection associated with experimental climate treatments at individual AFLP loci in P. lanceolata, but not in F. ovina. Average background differentiation at putatively neutral AFLP loci was close to zero, and genomewide genetic structure was associated neither with species abundance changes (demography) nor with plant community‐level responses to long‐term climate treatments. Our results demonstrate genetic divergence in response to a suite of climatic environments in reproductively mature populations of two perennial plant species and are consistent with an evolutionary response to climatic selection in P. lanceolata. These genetic changes have occurred in parallel with impacts on plant community structure and may have contributed to the persistence of individual species through 15 years of simulated climate change at BCCIL. 相似文献
2.
Colour pattern has served as an important phenotype in understanding the process of natural selection, particularly in brightly coloured and variable species like butterflies. However, different selective forces operate on aspects of colour pattern, for example by favouring warning colours in eyespots or alternatively favoring investment in thermoregulatory properties of melanin. Additionally, genetic drift influences colour phenotypes, especially in populations undergoing population size change. Here, we investigated the relative roles of genetic drift and ecological selection in generating the phenotypic diversity of the butterfly Parnassius clodius. Genome‐wide patterns of single nucleotide polymorphism data show that P. clodius forms three population clusters, which experienced a period of population expansion following the last glacial maximum and have since remained relatively stable in size. After correcting for relatedness, morphological variation is best explained by climatic predictor variables, suggesting ecological selection generates trait variability. Solar radiation and precipitation are both negatively correlated with increasing total melanin in both sexes, supporting a thermoregulatory function of melanin. Similarly, wing size traits are significantly larger in warmer habitats for both sexes, supporting a Converse Bergmann Rule pattern. Bright red coloration is negatively correlated with temperature seasonality and solar radiation in males, and weakly associated with insectivorous avian predators in univariate models, providing mixed evidence that selection is linked to warning coloration and predator avoidance. Together, these results suggest that elements of butterfly wing phenotypes respond independently to different sources of selection and that thermoregulation is an important driver of phenotypic differentiation in Parnassian butterflies. 相似文献
3.
Jason M. Jackson Meaghan L. Pimsler Kennan J. Oyen James P. Strange Michael E. Dillon Jeffrey D. Lozier 《Molecular ecology》2020,29(5):920-939
Understanding evolutionary responses to variation in temperature and precipitation across species ranges is of fundamental interest given ongoing climate change. The importance of temperature and precipitation for multiple aspects of bumble bee (Bombus) biology, combined with large geographic ranges that expose populations to diverse environmental pressures, make these insects well‐suited for studying local adaptation. Here, we analyzed genome‐wide sequence data from two widespread bumble bees, Bombus vosnesenskii and Bombus vancouverensis, using multiple environmental association analysis methods to investigate climate adaptation across latitude and altitude. The strongest signatures of selection were observed in B. vancouverensis, but despite unique responses between species for most loci, we detected several shared responses. Genes relating to neural and neuromuscular function and ion transport were especially evident with respect to temperature variables, while genes relating to cuticle formation, tracheal and respiratory system development, and homeostasis were associated with precipitation variables. Our data thus suggest that adaptive responses for tolerating abiotic variation are likely to be complex, but that several parallels among species can emerge even for these complex traits and landscapes. Results provide the framework for future work into mechanisms of thermal and desiccation tolerance in bumble bees and a set of genomic targets that might be monitored for future conservation efforts. 相似文献
4.
In many cases, understanding species’ responses to climate change requires understanding variation among individuals in response to such change. For species with strong symbiotic relationships, such as many coral reef species, genetic variation in symbiont responses to temperature may affect the response to increased ocean temperatures. To assess variation among symbiont genotypes, we examined the population dynamics and physiological responses of genotypes of Breviolum antillogorgium in response to increased temperature. We found broad temperature tolerance across genotypes, with all genotypes showing positive growth at 26, 30, and 32°C. Genotypes differed in the magnitude of the response of growth rate and carrying capacity to increasing temperature, suggesting that natural selection could favor different genotypes at different temperatures. However, the historical temperature at which genotypes were reared (26 or 30°C) was not a good predictor of contemporary temperature response. We found increased photosynthetic rates and decreased respiration rates with increasing contemporary temperature, and differences in physiology among genotypes, but found no significant differences in the response of these traits to temperature among genotypes. In species with such broad thermal tolerance, selection experiments on symbionts outside of the host may not yield results sufficient for evolutionary rescue from climate change. 相似文献
5.
F. BERNINGER 《Functional ecology》1997,11(1):33-42
1. A simple canopy model was developed for Scots Pine ( Pinus sylvestris L.) and applied to a transect of six meteorological stations in Europe. The model accounts for possible genetic adaptation of phenology of photosynthesis to the local climate and to decreases of gas exchange owing to drought.
2. Simulations accounting for adaptation of phenology to the local climate differed up to 20% from simulations using the same phenology parameter values for all locations.
3. A temperature increase of 3°C and a doubling of the CO2 concentration, while adjusting the photosynthesis parameters to give approximately the observed changed photosynthesis of +30%, also increased the length of the growing season by 23–42%. Combination of increases in the rate of photosynthesis and the length of the growing season resulted in increases of yearly Gross Primary Productivity (GPP) from 72 to 101%. Increases in transpiration were smaller.
4. A decrease of the precipitation by 25% reduced this increase to 54–64%.
5. The relative magnitude of the simulated increases in GPP was similar for locations representing boreal, temperate and mediterranean climates. 相似文献
2. Simulations accounting for adaptation of phenology to the local climate differed up to 20% from simulations using the same phenology parameter values for all locations.
3. A temperature increase of 3°C and a doubling of the CO
4. A decrease of the precipitation by 25% reduced this increase to 54–64%.
5. The relative magnitude of the simulated increases in GPP was similar for locations representing boreal, temperate and mediterranean climates. 相似文献
6.
Extreme climatic events can substantially affect organismal performance and Darwinian fitness. In April 2011, a strong heat wave struck extensive geographical areas of the world, including Western Europe. At that time, we happened to resume and extend a long-term time series of seasonal genetic data in the widespread fly Drosophila subobscura, which provided a unique opportunity to quantify the intensity of the genetic perturbation caused by the heat wave. We show that the spring 2011 genetic constitution of the populations transiently shifted to summer-like frequencies, and that the magnitude of the genetic anomaly quantitatively matched the temperature anomaly. The results provide compelling evidence that direct effects of rising temperature are driving adaptive evolutionary shifts, and also suggest a strong genetic resilience in this species. 相似文献
7.
8.
Nathalie Isabelle Chardon Samuel Pironon Megan Lynn Peterson Daniel Forest Doak 《Ecography》2020,43(1):60-74
The most common approach to predicting how species ranges and ecological functions will shift with climate change is to construct correlative species distribution models (SDMs). These models use a species’ climatic distribution to determine currently suitable areas for the species and project its potential distribution under future climate scenarios. A core, rarely tested, assumption of SDMs is that all populations will respond equivalently to climate. Few studies have examined this assumption, and those that have rarely dissect the reasons for intraspecific differences. Focusing on the arctic-alpine cushion plant Silene acaulis, we compared predictive accuracy from SDMs constructed using the species’ full global distribution with composite predictions from separate SDMs constructed using subpopulations defined either by genetic or habitat differences. This is one of the first studies to compare multiple ways of constructing intraspecific-level SDMs with a species-level SDM. We also examine the contested relationship between relative probability of occurrence and species performance or ecological function, testing if SDM output can predict individual performance (plant size) and biotic interactions (facilitation). We found that both genetic- and habitat-informed SDMs are considerably more accurate than a species-level SDM, and that the genetic model substantially differs from and outperforms the habitat model. While SDMs have been used to infer population performance and possibly even biotic interactions, in our system these relationships were extremely weak. Our results indicate that individual subpopulations may respond differently to climate, although we discuss and explore several alternative explanations for the superior performance of intraspecific-level SDMs. We emphasize the need to carefully examine how to best define intraspecific-level SDMs as well as how potential genetic, environmental, or sampling variation within species ranges can critically affect SDM predictions. We urge caution in inferring population performance or biotic interactions from SDM predictions, as these often-assumed relationships are not supported in our study. 相似文献
9.
Leakey AD Lau JA 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2012,367(1588):613-629
Variation in atmospheric [CO(2)] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO(2)] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO(2)] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO(2)] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO(2)]. Evolutionary responses to elevated [CO(2)] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO(2)] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO(2)]. This lack of evidence for strong evolutionary effects of elevated [CO(2)] is surprising, given the large effects of elevated [CO(2)] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO(2)] and (ii) benefit maximally from future, greater [CO(2)]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C(4) photosynthesis into C(3) leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration of plant responses to varying [CO(2)]. 相似文献
10.
11.
Sarthak P. Malusare Giacomo Zilio Emanuel A. Fronhofer 《Journal of evolutionary biology》2023,36(1):15-28
Temperatures are increasing due to global changes, putting biodiversity at risk. Organisms are faced with a limited set of options to cope with this situation: adapt, disperse or die. We here focus on the first possibility, more specifically, on evolutionary adaptations to temperature. Ectotherms are usually characterized by a hump-shaped relationship between fitness and temperature, a non-linear reaction norm that is referred to as thermal performance curve (TPC). To understand and predict impacts of global change, we need to know whether and how such TPCs evolve. Therefore, we performed a systematic literature search and a statistical meta-analysis focusing on experimental evolution and artificial selection studies. This focus allows us to directly quantify relative fitness responses to temperature selection by calculating fitness differences between TPCs from ancestral and derived populations after thermal selection. Out of 7561 publications screened, we found 47 studies corresponding to our search criteria representing taxa across the tree of life, from bacteria, to plants and vertebrates. We show that, independently of species identity, the studies we found report a positive response to temperature selection. Considering entire TPC shapes, adaptation to higher temperatures traded off with fitness at lower temperatures, leading to niche shifts. Effects were generally stronger in unicellular organisms. By contrast, we do not find statistical support for the often discussed “Hotter is better” hypothesis. While our meta-analysis provides evidence for adaptive potential of TPCs across organisms, it also highlights that more experimental work is needed, especially for under-represented taxa, such as plants and non-model systems. 相似文献
12.
Intraspecific variation plays a critical role in extant and future forest responses to climate change. Forest tree species with wide climatic niches rely on the intraspecific variation resulting from genetic adaptation and phenotypic plasticity to accommodate spatial and temporal climate variability. A centuries-old legacy of forest ecological genetics and provenance trials has provided a strong foundation upon which to continue building on this knowledge, which is critical to maintain climate-adapted forests. Our overall objective is to understand forest trees intraspecific responses to climate across species and biomes, while our specific objectives are to describe ecological genetics models used to build our foundational knowledge, summarize modeling approaches that have expanded the traditional toolset, and extensively review the literature from 1994 to 2021 to highlight the main contributions of this legacy and the new analyzes of provenance trials. We reviewed 103 studies comprising at least three common gardens, which covered 58 forest tree species, 28 of them with range-wide studies. Although studies using provenance trial data cover mostly commercially important forest tree species from temperate and boreal biomes, this synthesis provides a global overview of forest tree species adaptation to climate. We found that evidence for genetic adaptation to local climate is commonly present in the species studied (79%), being more common in conifers (87.5%) than in broadleaf species (67%). In 57% of the species, clines in fitness-related traits were associated with temperature variables, in 14% of the species with precipitation, and in 25% of the species with both. Evidence of adaptation lags was found in 50% of the species with range-wide studies. We conclude that ecological genetics models and analysis of provenance trial data provide excellent insights on intraspecific genetic variation, whereas the role and limits of phenotypic plasticity, which will likely determine the fate of extant forests, is vastly understudied. 相似文献
13.
Elucidation of the diversification process of organisms is one of the important tasks of biology. From the viewpoint of species diversity, insects are the most successful group among the diverse organisms on earth and evolutionary adaptation is one of the important factors driving this pattern. Evolutionary adaptation is one of the important factors in the diversification of insects. One of the representative examples of environmental adaptation in insects is the shortening and loss of wings in subalpine and alpine zones. In this study, we focused on the Japanese scorpionfly, Panorpodes paradoxus. In this species, individuals that inhabit mountainous regions and subalpine zones have long wings (the “general type”), and individuals that inhabit higher altitudinal ranges have short wings (the “alpine type”). We collected samples of all Japanese Panorpodes species and one Korean Panorpodes species, and conducted molecular phylogenetic analyses of the mtDNA COI (610 bp), COII (688 bp), and 16S rRNA (888 bp) and nuDNA EF1‐α (658 bp) and 28S rRNA (524 bp) regions in order to reveal the evolutionary history of the alpine type of P. paradoxus. As a result of molecular phylogenetic analyses, it was revealed that the alpine type of P. paradoxus was polyphyletic, and had evolved to become the alpine type at least twice independently at separate mountain locations. In addition, the result of divergence time estimation suggested that the alpine type is an “ecomorph”, having recently adapted to low temperature habitats following mountain uplift within the Japanese Archipelago and subsequent glacial‐interglacial cycles. 相似文献
14.
The exploration of evolutionary biology and biological adaptation can inform society's adaptation to climate change, particularly the mechanisms that bring about adaptability, such as phenotypic plasticity, epigenetics, and horizontal gene transfer. Learning from unplanned autonomous biological adaptation may be considered undesirable and incompatible with human endeavor. However, it is argued that there is no need for agency, and planned adaptation is not necessarily preferable over autonomous adaptation. What matters is the efficacy of adaptive mechanisms and their capacity to increase societal resilience to current and future impacts. In addition, there is great scope for industrial ecology (IE) to contribute approaches to climate change adaptation that generate system models and baseline data to inform decision making. The problem of “uncertainty” was chosen as an example of a challenge that is shared by biological systems, IE, and climate change adaptation to show how biological adaptation might contribute solutions. Finally, the Coastal Climate Adaptation Decision Support tool was used to demonstrate how IE and biological adaptation approaches may be mainstreamed in climate change adaptation planning and practice. In conclusion, there is close conceptual alignment between evolutionary biology and IE. The integration of biological adaptation thinking can enrich IE, add new perspectives to climate change adaptation science, and support IE's engagement with climate change adaptation. There should be no major obstacles regarding the collaboration of industrial ecologists with the climate change adaptation community, but mainstreaming of biological adaptation solutions depends greatly on successful knowledge transfer and the engagement of open‐minded and informed adaptation stakeholders. 相似文献
15.
Ainsworth EA Beier C Calfapietra C Ceulemans R Durand-Tardif M Farquhar GD Godbold DL Hendrey GR Hickler T Kaduk J Karnosky DF Kimball BA Körner C Koornneef M Lafarge T Leakey AD Lewin KF Long SP Manderscheid R McNeil DL Mies TA Miglietta F Morgan JA Nagy J Norby RJ Norton RM Percy KE Rogers A Soussana JF Stitt M Weigel HJ White JW 《Plant, cell & environment》2008,31(9):1317-1324
A rising global population and demand for protein-rich diets are increasing pressure to maximize agricultural productivity. Rising atmospheric [CO2 ] is altering global temperature and precipitation patterns, which challenges agricultural productivity. While rising [CO2 ] provides a unique opportunity to increase the productivity of C3 crops, average yield stimulation observed to date is well below potential gains. Thus, there is room for improving productivity. However, only a fraction of available germplasm of crops has been tested for CO2 responsiveness. Yield is a complex phenotypic trait determined by the interactions of a genotype with the environment. Selection of promising genotypes and characterization of response mechanisms will only be effective if crop improvement and systems biology approaches are closely linked to production environments, that is, on the farm within major growing regions. Free air CO2 enrichment (FACE) experiments can provide the platform upon which to conduct genetic screening and elucidate the inheritance and mechanisms that underlie genotypic differences in productivity under elevated [CO2 ]. We propose a new generation of large-scale, low-cost per unit area FACE experiments to identify the most CO2 -responsive genotypes and provide starting lines for future breeding programmes. This is necessary if we are to realize the potential for yield gains in the future. 相似文献
16.
Climate change: the science and the policy 总被引:4,自引:3,他引:4
DAVID KING 《Journal of Applied Ecology》2005,42(5):779-783
17.
Huertas IE Rouco M López-Rodas V Costas E 《Proceedings. Biological sciences / The Royal Society》2011,278(1724):3534-3543
Although the consequences of global warming in aquatic ecosystems are only beginning to be revealed, a key to forecasting the impact on aquatic communities is an understanding of individual species' vulnerability to increased temperature. Despite their microscopic size, phytoplankton support about half of the global primary production, drive essential biogeochemical cycles and represent the basis of the aquatic food web. At present, it is known that phytoplankton are important targets and, consequently, harbingers of climate change in aquatic systems. Therefore, investigating the capacity of phytoplankton to adapt to the predicted warming has become a relevant issue. However, considering the polyphyletic complexity of the phytoplankton community, different responses to increased temperature are expected. We experimentally tested the effects of warming on 12 species of phytoplankton isolated from a variety of environments by using a mechanistic approach able to assess evolutionary adaptation (the so-called ratchet technique). We found different degrees of tolerance to temperature rises and an interspecific capacity for genetic adaptation. The thermal resistance level reached by each species is discussed in relation to their respective original habitats. Our study additionally provides evidence on the most resistant phytoplankton groups in a future warming scenario. 相似文献
18.
Hanne De Kort Katrien Vandepitte Hans Henrik Bruun Déborah Closset‐Kopp Olivier Honnay Joachim Mergeay 《Molecular ecology》2014,23(19):4709-4721
The adaptive potential of tree species to cope with climate change has important ecological and economic implications. Many temperate tree species experience a wide range of environmental conditions, suggesting high adaptability to new environmental conditions. We investigated adaptation to regional climate in the drought‐sensitive tree species Alnus glutinosa (Black alder), using a complementary approach that integrates genomic, phenotypic and landscape data. A total of 24 European populations were studied in a common garden and through landscape genomic approaches. Genotyping‐by‐sequencing was used to identify SNPs across the genome, resulting in 1990 SNPs. Although a relatively low percentage of putative adaptive SNPs was detected (2.86% outlier SNPs), we observed clear associations among outlier allele frequencies, temperature and plant traits. In line with the typical drought avoiding nature of A. glutinosa, leaf size varied according to a temperature gradient and significant associations with multiple outlier loci were observed, corroborating the ecological relevance of the observed outlier SNPs. Moreover, the lack of isolation by distance, the very low genetic differentiation among populations and the high intrapopulation genetic variation all support the notion that high gene exchange combined with strong environmental selection promotes adaptation to environmental cues. 相似文献
19.
Poleward range expansions are widespread responses to recent climate change and are crucial for the future persistence of many species. However, evolutionary change in traits such as colonization history and habitat preference may also be necessary to track environmental change across a fragmented landscape. Understanding the likelihood and speed of such adaptive change is important in determining the rate of species extinction with ongoing climate change. We conducted an amplified fragment length polymorphism (AFLP)‐based genome scan across the recently expanded UK range of the Brown Argus butterfly, Aricia agestis, and used outlier‐based (DFDIST and BayeScan) and association‐based (Isolation‐By‐Adaptation) statistical approaches to identify signatures of evolutionary change associated with range expansion and habitat use. We present evidence for (i) limited effects of range expansion on population genetic structure and (ii) strong signatures of selection at approximately 5% AFLP loci associated with both the poleward range expansion of A. agestis and differences in habitat use across long‐established and recently colonized sites. Patterns of allele frequency variation at these candidate loci suggest that adaptation to new habitats at the range margin has involved selection on genetic variation in habitat use found across the long‐established part of the range. Our results suggest that evolutionary change is likely to affect species’ responses to climate change and that genetic variation in ecological traits across species’ distributions should be maximized to facilitate range shifts across a fragmented landscape, particularly in species that show strong associations with particular habitats. 相似文献
20.
Nina L. Dennington;Marissa K. Grossman;Fhallon Ware-Gilmore;Janet L. Teeple;Leah R. Johnson;Marta S. Shocket;Elizabeth A. McGraw;Matthew B. Thomas; 《Global Change Biology》2024,30(1):e17041
Most models exploring the effects of climate change on mosquito-borne disease ignore thermal adaptation. However, if local adaptation leads to changes in mosquito thermal responses, “one size fits all” models could fail to capture current variation between populations and future adaptive responses to changes in temperature. Here, we assess phenotypic adaptation to temperature in Aedes aegypti, the primary vector of dengue, Zika, and chikungunya viruses. First, to explore whether there is any difference in existing thermal response of mosquitoes between populations, we used a thermal knockdown assay to examine five populations of Ae. aegypti collected from climatically diverse locations in Mexico, together with a long-standing laboratory strain. We identified significant phenotypic variation in thermal tolerance between populations. Next, to explore whether such variation can be generated by differences in temperature, we conducted an experimental passage study by establishing six replicate lines from a single field-derived population of Ae. aegypti from Mexico, maintaining half at 27°C and the other half at 31°C. After 10 generations, we found a significant difference in mosquito performance, with the lines maintained under elevated temperatures showing greater thermal tolerance. Moreover, these differences in thermal tolerance translated to shifts in the thermal performance curves for multiple life-history traits, leading to differences in overall fitness. Together, these novel findings provide compelling evidence that Ae. aegypti populations can and do differ in thermal response, suggesting that simplified thermal performance models might be insufficient for predicting the effects of climate on vector-borne disease transmission. 相似文献