首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A study was undertaken to compare the performance of five different molecular methods (available in four different laboratories) for the identification of Cryptosporidium parvum and Cryptosporidium hominis and the detection of genetic variation within each of these species. The same panel of oocyst DNA samples derived from faeces (n=54; coded blindly) was sent for analysis by: (i) DNA sequence analysis of a fragment of the HSP70 gene; (ii) DNA sequence analysis and the ssrRNA gene in laboratory 1; (iii) single-strand conformation polymorphism analysis of part of the ssrRNA; (iv) SSCP analysis of the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA region in laboratory 2; (v) 60 kDa glycoprotein (gp60) gene sequencing with prior species determination using PCR with restriction fragment length polymorphism analysis of the ssrRNA gene in laboratory 3; and (vi) multilocus genotyping at three microsatellite markers in laboratory 4. For detecting variation within C. parvum and C. hominis, SSCP analysis of ITS-2 was considered to have superior utility and determined 'subgenotypes' in samples containing DNA from both species. SSCP was also most cost effective in terms of time, cost and consumables. Sequence analysis of gp60 and microsatellite markers ML1, ML2 and 'gp15' provided good comparators for the SSCP of ITS-2. However, applicability of these methods to other Cryptosporidium species or genotypes and to environmental samples needs to be evaluated. This trial provided, for the first time, a direct comparison of multiple methods for the genetic characterisation of C. parvum and C. hominis samples. A protocol has been established for the international distribution of samples for the characterisation of Cryptosporidium. This can be applied in further evaluation of molecular methods by investigation of a larger number of unrelated samples to establish sensitivity, typability, reproducibility and discriminatory power based on internationally accepted methods for evaluation of microbial typing schemes.  相似文献   

2.
Cryptosporidium hominis and Cryptosporidium parvum isolates from children in Uganda were characterized by DNA sequence analysis of the GP60 gene. Eight alleles were identified, 4 C. hominis and 4 C. parvum, of which 3 represent new C. parvum families. The data show that it is highly likely that the route of transmission is anthroponotic.  相似文献   

3.
Cryptosporidium hominis, which has an anthroponotic transmission cycle and Cryptosporidium parvum, which is zoonotic, are the primary species of Cryptosporidium that infect humans. The present study identified the species/genotypes and subgenotypes of Cryptosporidium in 7 human and 15 cattle cases of sporadic cryptosporidiosis in rural western NSW during the period from November 2005 to January 2006. The species/genotype of isolates was determined by PCR sequence analysis of the 18S rRNA and C. parvum and C. hominis isolates were subgenotyped by sequence analysis of the GP60 gene. Fourteen of 15 cattle-derived isolates were identified as C. parvum and 1 as a C. bovis/C. parvum mixture. Of the human isolates, 4 were C. parvum and 3 were C. hominis. Two different subgenotypes were identified with the human C. hominis isolates and six different subgenotypes were identified within the C. parvum species from humans and cattle. All four of the C. parvum subtypes found in humans were also found in the cattle, indicating that zoonotic transmission may be an important contributor to sporadic human cases cryptosporidiosis in rural NSW.  相似文献   

4.
The Cryptosporidium spp. UV disinfection studies conducted to date have used Cryptosporidium parvum oocysts. However, Cryptosporidium hominis predominates in human cryptosporidiosis infections, so there is a critical need to assess the efficacy of UV disinfection of C. hominis. This study utilized cell culture-based methods to demonstrate that C. hominis oocysts displayed similar levels of infectivity and had the same sensitivity to UV light as C. parvum. Therefore, the water industry can be confident about extrapolating C. parvum UV disinfection data to C. hominis oocysts.  相似文献   

5.
ABSTRACT: The performance of 10 commonly used genotyping tools in the detection and differentiation of 7 human-pathogenic Cryptosporidium spp. ( C. hominis, C. parvum, C. meleagridis, C. felis, C. canis, C. muris and Cryptosporidium pig genotype I) was evaluated. All 3 SU rRNA gene-based tools could amplify the DNA of 7 Cryptosporidium spp. efficiently. However, the tools based on the antigens TRAP-C1, TRAP-C2 and COWP genes, the housekeeping genes HSP70 and DHFR, or a genomic sequence, failed to detect the DNA of C. felis, C. canis, Cryptosporidium pig genotype I, and C. metris. With the exception of 1 tool based on the TRAP-C2 gene, the PCR-RFLP or the PCR sequencing tools evaluated in this study could differentiate C. hominis, C. parvum and C. meleagridis from each other, and 2 SSU rRNA genebased tools could differentiate all 7 Cryptosporidium spp. Thus, a thorough understanding of the strength and weakness of each technique is needed when using molecular diagnostic tool in epidemiological investigations of human cryptosporidiosis.  相似文献   

6.
7.
This study reports the first genetic characterisation of Cryptosporidium isolates in Brazil using real-time polymerase chain reaction (RT-PCR). A total of 1,197 faecal specimens from children and 10 specimens from human immunodeficiency virus-infected patients were collected between 1999-2010 and screened using microscopy. Forty-eight Cryptosporidium oocyst-positive isolates were identified and analysed using a generic TaqMan assay targeting the 18S rRNA to detect Cryptosporidium species and two other TaqMan assays to identify Cryptosporidium hominis and Cryptosporidium parvum. The 18S rRNA assay detected Cryptosporidium species in all 48 of the stool specimens. The C. parvum TaqMan assay correctly identified five/48 stool samples, while 37/48 stool specimens were correctly amplified in the C. hominis TaqMan assay. The results obtained in this study support previous findings showing that C. hominis infections are more prevalent than C. parvum infections in Brazil and they demonstrate that the TaqMan RT-PCR procedure is a simple, fast and valuable tool for the detection and differentiation of Cryptosporidium species.  相似文献   

8.
Two species of Cryptosporidium are known to infect man; C. hominis which shows anthroponotic transmission between humans, and C. parvum which shows zoonotic transmission between animals or between animals and man. In this study, we focused on identifying genotypes of Cryptosporidium prevalent among inhabitants and domestic animals (cattle and goats), to elucidate transmittal routes in a known endemic area in Hwasun-gun, Jeollanam-do, Republic of Korea. The existence of Cryptosporidium oocysts was confirmed using a modified Ziehl-Neelsen stain. Human infections were found in 7 (25.9%) of 27 people examined. Cattle cryptosporidiosis cases constituted 7 (41.2%) of 17 examined, and goat cases 3 (42.9%) of 7 examined. Species characterizations were performed on the small subunit of the rRNA gene using both PCR-RFLP and sequence analysis. Most of the human isolates were mixtures of C. hominis and C. parvum genotypes and similar PCR-RFLP patterns were observed in cattle and goat isolates. However, sequence analyses identified only C. hominis in all isolates examined. The natural infection of cattle and goats with C. hominis is a new and unique finding in the present study. It is suggested that human cryptosporidiosis in the studied area is caused by mixtures of C. hominis and C. parvum oocysts originating from both inhabitants and domestic animals.  相似文献   

9.
Isolates of Cryptosporidium spp. from human and animal hosts in Iran were characterized on the basis of both the 18S rRNA gene and the Laxer locus. Three Cryptosporidium species, C. hominis, C. parvum, and C. meleagridis, were recognized, and zoonotically transmitted C. parvum was the predominant species found in humans.  相似文献   

10.
We developed and validated a PCR-based method for identifying Cryptosporidium species and/or genotypes present on oocyst-positive microscope slides. The method involves removing coverslips and oocysts from previously examined slides followed by DNA extraction. We tested four loci, the 18S rRNA gene (N18SDIAG and N18SXIAO), the Cryptosporidium oocyst wall protein (COWP) gene (STN-COWP), and the dihydrofolate reductase (dhfr) gene (by multiplex allele-specific PCR), for amplifying DNA from low densities of Cryptosporidium parvum oocysts experimentally seeded onto microscope slides. The N18SDIAG locus performed consistently better than the other three tested. Purified oocysts from humans infected with C. felis, C. hominis, and C. parvum and commercially purchased C. muris were used to determine the sensitivities of three loci (N18SDIAG, STN-COWP, and N18SXIAO) to detect low oocyst densities. The N18SDIAG primers provided the greatest number of positive results, followed by the N18SXIAO primers and then the STN-COWP primers. Some oocyst-positive slides failed to generate a PCR product at any of the loci tested, but the limit of sensitivity is not entirely based on oocyst number. Sixteen of 33 environmental water monitoring Cryptosporidium slides tested (oocyst numbers ranging from 1 to 130) contained mixed Cryptosporidium species. The species/genotypes most commonly found were C. muris or C. andersoni, C. hominis or C. parvum, and C. meleagridis or Cryptosporidium sp. cervine, ferret, and mouse genotypes. Oocysts on one slide contained Cryptosporidium muskrat genotype II DNA.  相似文献   

11.
Several species of Cryptosporidium have been associated with infection. Cryptosporidium parvum and Cryptosporidium hominis are the main agents of cryptosporidiosis in humans. Stool samples from 108 Cryptosporidium-infected patients were submitted to PCR-RFLP analysis for a 553-bp fragment of Cryptosporidium oocyst wall protein (COWP) gene and an 826-864 bp fragment of the small-subunit ribosomal RNA (SSU-rRNA) gene. Ninety-two patients were immunocompetent children and 16 were HIV-infected adults. C. hominis was detected in 69 patients (59 immunocompetent and 10 HIV-infected); C. parvum, in 34 patients (28 immunocompetent and 6 HIV-infected); and C. meleagridis and C. felis in one patient each (both immunocompetent children). Three samples yielded negative results. C. parvum was significantly more frequent in children from rural areas than in those of urban residence (p=0.010). As far as we know, this is the first surveillance study about the molecular characterization of Cryptosporidium in humans performed in Spain. The finding of zoonotic species infecting humans calls for further research on this subject.  相似文献   

12.
AIMS: To detect a wide range of Cryptosporidium species from human faeces by analysis of the Cryptosporidium oocyst wall protein gene by PCR. METHODS AND RESULTS: The nested-assay comprised an initial amplification using a conventional thermocycler followed by real time PCR using a LightCycler with SYBR Green I for the characterization of the amplicons. The technique uses four sets of primers composed of five to six oligonucleotides with one to six base differences corresponding to the inter-species sequence differences of the gene fragment. Restriction fragment length polymorphism analysis identified Cryptosporidium hominis and C. parvum. The assay was evaluated using DNA extracted from purified material and faecal specimens containing a range of potential pathogens (including Cryptosporidium). The assay was specific, sensitive, reproducible and rapid. CONCLUSIONS: This unique technique enables the rapid detection of a range of polymorphic COWP gene sequences directly from faeces using real time PCR. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates a novel approach to identification of Cryptosporidium species and the identification of C. hominis and C. parvum. The technique may be especially useful for the analysis of environmental samples which are likely to contain heterogeneous mixtures of Cryptosporidium species.  相似文献   

13.
Immunofluorescence-based assays have been developed to detect and quantitate Cryptosporidium parvum infection in cell culture. Here, we describe a method that tracks and quantifies the early phase of attachment and invasion of C. parvum sporozoites using a fluorescent dye. Newly excysted sporozoites were labeled with the amine-reactive fluorescein probe carboxyfluorescein diacetate succinimidyl esters (CFSE) using an optimized protocol. The initial invasion of cells by labeled parasites was detected with fluorescent or confocal microscopy. The infection of cells was quantified by flow cytometry. Comparative analysis of infection of cells with CFSE-labeled and unlabeled sporozoites showed that the infectivity of C. parvum was not affected by CFSE labeling. Quantitative analysis showed that C. parvum Iowa and MD isolates were considerably more invasive than Cryptosporidium hominis isolate TU502. Unlike immunofluorescent assays, CFSE labeling permitted the tracking of the initial invasion of C. parvum. Such an assay may be useful for studying the dynamics of host cell-parasite interaction and possibly for drug screening.  相似文献   

14.
ABSTRACT: Cryptosporidium parasites from a cross-sectional study conducted in two national hospitals in Lima, Peru were genetically characterized to deteimine the diversity of Cryptosporidium spp. in HIV-positive people. A total of 2,672 patients participated in this study and provided 13,937 specimens. Cryptosporidium oocysts were detected by microscopy in 354 (13.3%) of the patients. Analysis of 951 Cryptosporidium - positive specimens from 300 patients using a small subunit rRNA-based PCR-RFLP tool identified 6 genotypes; Cryptosporidium hominis was the species most frequently detected (67.5%), followed by C. meleagridis (12.6%) and C. parvum (11.3%). Cryptosporidium canis (4.0%), C. felis (3.3%), and Cryptosporidium pig genotype (0.5%) were also found. These findings indicate that C. hominis is the predominant species in Peruvian HIV-positive persons, and that zoonotic Cryptosporidium spp. account for about 30% of cryptosporidiosis in these patients.  相似文献   

15.
Cryptosporidium parasites are important waterborne pathogens of both humans and animals. The Cryptosporidium parvum and Cryptosporidium hominis genomes indicate that the only route to guanine nucleotides is via inosine 5'-monophosphate dehydrogenase (IMPDH). Thus the inhibition of the parasite IMPDH presents a potential strategy for treating Cryptosporidium infections. A selective benzimidazole-based inhibitor of C. parvum IMPDH (CpIMPDH) was previously identified in a high throughput screen. Here we report a structure-activity relationship study of benzimidazole-based compounds that resulted in potent and selective inhibitors of CpIMPDH. Several compounds display potent antiparasitic activity in vitro.  相似文献   

16.
A novel Cryptosporidium genotype was identified, among travellers with gastro-intestinal symptoms returning to Great Britain from the Indian subcontinent, for which we propose the name Cryptosporidium viatorum n. sp. The epidemiology of these cases was distinctly different from those with Cryptosporidium parvum and Cryptosporidium hominis. Of the 10 cases identified involving C. viatorum, most were in the first quarter of the year. One occurred in 2007, one in 2008, three in 2010 and five to end March 2011. The median age was 19 years but most were in the 20-29 years age group and seven were male. The symptoms included diarrhoea, abdominal pain, nausea, vomiting and fever. Compared with cases due to C. hominis and C. parvum, vomiting was reported less often, although the duration of gastro-intestinal symptoms was longer. The cases of C. viatorum were all travellers to the Indian subcontinent, whereas cases of C. hominis and C. parvum were more likely to have travelled elsewhere. Cryptosporidium viatorum isolates had indistinguishable sequences at each of the 70 kDa heat shock protein (HSP70), actin and ssrRNA loci which did not match any published previously and, although phylogenetically most similar to Cryptosporidium fayeri, they were distinct (<98% similarity) at the ssrRNA, HSP70 and actin genes. Morphologically, oocysts were typical of predominantly human-infecting species. Cryptosporidium viatorum n. sp. is proposed and work is warranted to investigate further the public health significance and occurrence elsewhere of this emerging parasite.  相似文献   

17.
To assess the genetic diversity in Cryptosporidium parvum, we have sequenced the small subunit (SSU) rRNA gene of seven Cryptosporidium spp., various isolates of C. parvum from eight hosts, and a Cryptosporidium isolate from a desert monitor. Phylogenetic analysis of the SSU rRNA sequences confirmed the multispecies nature of the genus Cryptosporidium, with at least four distinct species (C. parvum, C. baileyi, C. muris, and C. serpentis). Other species previously defined by biologic characteristics, including C. wrairi, C. meleagridis, and C. felis, and the desert monitor isolate, clustered together or within C. parvum. Extensive genetic diversities were present among C. parvum isolates from humans, calves, pigs, dogs, mice, ferrets, marsupials, and a monkey. In general, specific genotypes were associated with specific host species. A PCR-restriction fragment length polymorphism technique previously developed by us could differentiate most Cryptosporidium spp. and C. parvum genotypes, but sequence analysis of the PCR product was needed to differentiate C. wrairi and C. meleagridis from some of the C. parvum genotypes. These results indicate a need for revision in the taxonomy and assessment of the zoonotic potential of some animal C. parvum isolates.  相似文献   

18.
Little is known about the genetic characteristics, distribution, and transmission cycles of Cryptosporidium species that cause human disease in New Zealand. To address these questions, 423 fecal specimens containing Cryptosporidium oocysts and obtained from different regions were examined by the PCR-restriction fragment length polymorphism technique. Indeterminant results were resolved by DNA sequence analysis. Two regions supplied the majority of isolates: one rural and one urban. Overall, Cryptosporidium hominis accounted for 47% of the isolates, with the remaining 53% being the C. parvum bovine genotype. A difference, however, was observed between the Cryptosporidium species from rural and urban isolates, with C. hominis dominant in the urban region, whereas the C. parvum bovine genotype was prevalent in rural New Zealand. A shift in transmission cycles was detected between seasons, with an anthroponotic cycle in autumn and a zoonotic cycle in spring. A novel Cryptosporidium sp., which on DNA sequence analysis showed a close relationship with C. canis, was detected in two unrelated children from different regions, illustrating the genetic diversity within this genus.  相似文献   

19.
The use of molecular diagnostic tools in epidemiological investigations of Cryptosporidium, Giardia, and Enterocytozoon has provided new insights into their diversity and transmission pathways. In this study, 157 stool specimens from 2-month to 70-year-old patients were collected, a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) analysis of the small subunit (SSU) rRNA gene was used to detect and differentiate Cryptosporidium species, and DNA sequence analysis of the 60 kDa glycoprotein (gp60) gene was used to subtype Cryptosporidium hominis and Cryptosporidium parvum. Giardia duodenalis, and Enterocytozoon bieneusi in the specimens were detected using PCR and sequence analysis of the triosephosphate isomerase (tpi) gene and internal transcribed spacer (ITS), respectively. C. hominis and C. parvum were found in two (1.3%) and one (0.6%) specimen respectively, comprising of Ia and IIe (with 8 nucleotide substitutions) subtype families. The G. duodenalis A2 subtype was detected in five (3.2%) specimens, while four genotypes of E. bieneusi, namely A, type IV, D and WL7 were found in 10 (6.4%) specimens. Children aged two years or younger had the highest occurrence of Cryptosporidium (4.4%) and Enterocytozoon (13.0%) while children of 6 to 17 years had the highest Giardia infection rate (40.0%). No Cryptosporidium, Giardia, and Enterocytozoon were detected in patients older than 60 years. Enterocytozoon had high infection rates in both HIV-positive (3.3%) and HIV-negative (8.3%) patients. Results of the study suggest that anthroponotic transmission may be important in the transmission of Cryptosporidium spp. and G. duodenalis while zoonotic transmissions may also play a role in the transmission of E. bieneusi in humans in Kaduna State, Nigeria.  相似文献   

20.
The successful propagation of Cryptosporidium parvum in cell-free culture medium was recently reported. To investigate whether this phenomenon could be broadened to include other C. parvum isolates, as well as Cryptosporidium hominis, we attempted to propagate 3 isolates in cell-free medium under reported culture conditions. Cryptosporidium oocysts from C. parvum strains Moredun (MD) or IOWA or C. hominis strain TU502 were added to media containing coagulated newborn calf serum. The cultures were sampled at various times throughout a 45 (IOWA) or 78 (MD, TU502)-day period and were microscopically examined for various life stages of Cryptosporidium. Cell-free cultures harvested on days 45 and 68 postinoculation were tested for in vitro infectivity on Madrin-Darby bovine kidney cells. In vivo infectivity testing was performed using either infant or 2-wk-old immunosuppressed C57BL mice with cell-free cultures harvested on days 52 and 78. Fecal and gut samples collected from mice were examined by modified acid-fast staining. Data from wet mounts, electron microscopy, and in vitro and in vivo infectivity testing showed that the original oocysts did not complete their life cycle and produce new, viable, infectious oocysts in cell-free culture. Thus, we conclude that this is not a universal phenomenon or readily accomplished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号