首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A simple protocol for DNA isolation from dry roots ofBerberis lycium is described. Four-year-old dry roots are used, and the isolated DNA is suitable for analysis by means of restriction enzyme digestion and random amplification of polymorphic DNA (RAPD). The method involves a modified CTAB procedure using 1% PVP to remove polysaccharides and purification using low-melting-temperature agarose. DNA is amplified by means of PCR using 10-mer random primers from Operon Biotechnologies, Inc. (USA), and DNA samples are digested withTaq I,Hind III andEcoR I and examined on agarose gels. The RAPD reaction is performed according to the 1990 protocol by Williams et al.  相似文献   

2.
DNA isolation protocol for seaweeds   总被引:2,自引:0,他引:2  
We report a DNA isolation protocol for red seaweeds. Recovering DNA of high quality and quantity is a prerequisite for ensuring suitable applications, such as polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) analysis, and sequencing. Isolation of DNA from seaweeds has proven difficult because of coprecipitation of polysaccharides. Our process minimizes this contamination, which is mostly due to the highly hydrocolloidal content of algal cell walls. This protocol, using 2 steps, is based on a preliminary enzymatic digestion of cell wall with specific enzymes (Novozymes) followed by centrifugation, allowing isolation of DNA on the pellet. This provides a higher yield of DNA, in the range of 40 μg (Palmaria palmata) and 18 μg (Gracilaria verrucosa) from 50 mg of fresh frozen pellet.  相似文献   

3.
Agrobacterium-mediated genetic transformation is a method of choice for the development of transgenic plants. The presence of latentAgrobacterium that multiplies in the plant tissue in spite of antibiotic application confounds the results obtained by polymerase chain reaction (PCR) analysis of putative transgenic plants. The presence ofAgrobacterium can be confirmed by amplification of eitherAgrobacterium chromosomal genes or genes present out of transfer DNA (T-DNA) in the binary vector. However, the transgenic nature ofAgrobacterium-contaminated transgenic plants cannot be confirmed by PCR. Here we report a simple protocol for PCR analysis ofAgrobacterium-contaminated transgenic plants. This protocol is based on denaturation and renaturation of DNA. The contaminating plasmid vector becomes double-stranded after renaturation and is cut by a restriction enzyme having site(s) within the PCR amplicon. As a result, amplification by PCR is not possible. The genomic DNA with a few copies of the transgene remains single-stranded and unaffected by the restriction enzyme, leading to amplification by PCR. This protocol has been successfully tested with 4 different binary vectors and 3Agrobacterium tumefaciens strains: EHA105, LBA4404, and GV3101.  相似文献   

4.
The current surveillance protocol for Karnal bunt of wheat in most countries, including the USA, European Union (EU), and Australia, involves the tentative identification of the spores based on morphology followed by a molecular analysis. Germination of spores is required for confirmation which incurs a delay of about two weeks, which is highly unsatisfactory in a quarantine situation. A two-step PCR protocol using FRET probes for the direct detection and identification of Tilletia indica from a very few number of spores (≤10) is presented. The protocol involves amplification of the ITS1 DNA segment in the highly repeated rDNA unit from any Tilletia species, followed by FRET analysis to detect and unequivocably distinguish T. indica and the closely related T. walkeri. This rapid, highly sensitive, fluorescent molecular tool is species-specific, and could supersede the conventional microscopic diagnosis used in a quarantine surveillance protocol for Karnal bunt which is often confounded by overlapping morphological characters of closely related species.  相似文献   

5.
A scale-flexible and cost-efective protocol for plasmid preparation is described to cover miniprep and midiprep scale work in a microcentriguge format for analysis of recombinant clones. this protocol relies on a modified alkaline lysis of Escherichia coli cells and subsequent purification of plasmid DNA with no organic extraction and alcohol precipitation. It can process up to 20 mL of E. coli cells carrying 3–10 kbp plasmid vectors in <10 min. Flexprep delivers sufficient yield and purity of plasmid DNA for routine applications including restriction enzyme digestion and fluorescent automated sequencing.  相似文献   

6.
Hyperthermophilic archaea, specificallyPyrococcus spp., are the target of current efforts in developing heterologous expression systems. However, the published plasmid purification and plasmid screening protocols are long and tedious. We describe a fast, simple protocol for plasmid purification fromPyrococcus spp. developed while extracting the plasmid pGT5 fromPyrococcus abyssi cells. The protocol is modified from the procedures for commercial plasmid minipreps and is completed in about 20 min. The DNA is easily digested by restriction enzymes and can be used in sequencing reactions without additional purification.  相似文献   

7.
This article describes a set of protocols—for retrofitting, transformation and purification—that together enable the delivery of full-sized YAC-DNA to plant cells. To be able to equip YACs of interest with plant selectable markers, we have constructed a retrofitting vector that carriesnptII anduidA. Furthermore, we established a transformation protocol for plant protoplasts that is sufficiently efficient to support transfer of high-molecular-weight DNA. In this protocol lipofection is combined with PEG-mediated direct gene transfer. Large amounts of purified DNA are necessary for lipofection. To obtain sufficient quantities of concentrated, purified YAC-DNA, we used an optimized two-step, gel-purification method. Transient expression of a YAC-bornuidA demonstrates that both retrofitting vector and transformation protocol are effective.  相似文献   

8.
Seven DNA extraction protocols were used to obtain DNA from herbarium specimens ofJuncus andLuzula (Juncaceae) of various ages. DNA of historical samples is difficult to extract, and the extracts are seldom of good quality. The quality of DNA obtained was estimated by using a spectrophotometer to measure the A260/280 absorbance ratio. The total DNA yield was measured by a fluorometer. The results indicate the success of using both mixer mill grinding and a DNeasy Plant Kit. Another extraction protocol (grinding with mortar and pestle, using liquid nitrogen) yielded DNA from many samples. Modified CTAB extraction, with a lengthy precipitation, usually provided good amounts of DNA. Other protocols did not give satisfactory results.  相似文献   

9.
Protocols are presented for preparing DNA from a genomic library in λ phage and for synthesizing genomic fragments using PCR with nested vector- and gene-specific primers and linker-primers. Library DNA, isolated fromE. coli liquid lysates by a simple protocol, is used as template in PCR following a commercial protocol. The method produces library DNA sufficient for several hundred PCRs, incorporates nested primers to reduce nonspecific product formation, and enables the synthesis of linker-containing DNA fragments containing selected restriction sites to simplify subsequent cloning. The isolation of 5′ upstream sequences of three different arabidopsis genes by this methodod is described.  相似文献   

10.
We report a straightforward protocol for isolating plastid DNA from an enriched rhodoplast fraction of the red algaGracilaria tenuistipitata. Plastids were purified using differential centrifugation and 2-step sucrose density gradients. We found that 10% polyethylene glycol 4000 was essential for maintaining plastid integrity prior to lysis. Plastid DNA isolated directly from the purified rhodoplasts was sufficiently pure for restriction endonuclease fragment analyses. Database comparisons of sequences generated randomly from a shotgun genomic library indicated that plastid DNA was 89% pure following ultracentrifugation in isopycnic cesium chloride equilibrium gradients. The protocol yields 30–50 μg of plastid DNA per 100 g of fresh algal tissue.  相似文献   

11.
Extracting DNA from a variety of algae is rather difficult because of high levels of polysaccharides, tannins, and phenolics as these interfere with DNA isolation and downstream applications. High-quality plastid DNA (ptDNA) purification is particularly difficult because of its small proportion in total genomic DNA. This report describes an improved protocol for ptDNA purification that efficiently produces high-quality ptDNA from sporophytes of Laminaria japonica and several other algae. This improved protocol simplifies procedures for ptDNA purification and improves yield to 150–200 μg of ptDNA per 100 g of frozen algal tissue. Polymerase chain reaction (PCR) amplification of conserved sequences has been used to verify purity of the ptDNA product.  相似文献   

12.
A protocol is described for rapid DNA isolation from Malvaceae plant species and different tissues of Bixaceae that contain large amounts of polysaccharides, polyphenols, and pigments that interfere with DNA extractions. The method is a modification of Dellaporta et al. The current protocol is simple, and no phenolchloroform extraction, ethanol, or isopropranol precipitation is required. The method is based in the incubation of soluble DNA with silica, mix in batch during the extraction. The procedure can be completed in 2 h and many samples can be processed at the same time. DNA of excellent quality was recovered and used for polymerase chain reaction (PCR) amplification, restriction enzyme digestion, and Southern blot analysis. The method was used with healthy Bixa orellana and virus-infected Malvaceae plants.  相似文献   

13.
Preparing high-quality DNA from moss (Physcomitrella patens)   总被引:1,自引:0,他引:1  
Physcomitrella patens, a moss, is the only land plant that performs high rates of homologous recombination, making it a valuable tool for functional genomics. Unfortunately, commercially available plant DNA preparation kits are ineffective withPhyscomitrella. Furthermore, labor-intensive CTAB preparations produce low yields, and the DNA is degraded and contaminated. We present a protocol that is faster and doubles the DNA yield obtained from standard procedures. The high-quality DNA prepared is suitable for PCR reactions and Southern blot analysis.  相似文献   

14.
Amplification of thebar gene usingTaq DNA polymerase in PCR is often not successful, possibly due tobar's high GC content. We describe a PCR protocol in which reliable amplification at a sensitivity of one gene copy per genome (in this study, barley) present in the reaction was achieved using a novel pair of primers and Expandtm High Fidelity DNA polymerase mix (Boehringer Mannheim). This method should allow for rapid screening of plants putatively transformed withbar.  相似文献   

15.
A technique has been developed to efficiently extract purified, restrictable genomic DNA from spores of different arbuscular mycorrhizal fungi in order to begin detailed investigations of the genome of the Glomales. The protocol yielded variable amounts of DNA depending on the fungal species; for Scutellospora castanea and Gigaspora rosea it reached values of 1.5–2 ng/spore. EcoRI digests of DNA from S. castanea were cloned into pUC18 and about 1000 recombinant DNA clones were obtained. Of those screened, 50 contained inserts of 500–7000 bp. Selected inserts detected DNA sequences from S. castanea spores or roots infected by this fungus, but not from nonmycorrhizal roots. This is the first report of a partial genomic library from an arbuscular mycorrhizal fungus.  相似文献   

16.
Summary Paenibacillus larvae causes American foulbrood (AFB), a severe disease that affects the brood of honey bee Apis mellifera. AFB is worldwide distributed and causes great economic losses to beekeepers, but in many cases early diagnosis could help in its prevention and control. The aim of the present work was to design a reliable protocol for DNA extraction of P. larvae spores from naturally contaminated honey and adult bees. A novel method that includes a step of spore-decoating followed by an enzymatic spore disruption and DNA purification was developed. Also a freeze-thaw cycle protocol was tested and the results were compared. The DNA extracted was used as template for specific bacterial detection by amplification of a 16S rDNA fragment. Both methods allowed the direct detection by polymerase chain reaction (PCR) of P. larvae spores present in naturally contaminated material. The spore-decoating strategy was the most successful method for DNA extraction from spores, allowing specific and remarkably sensitive PCR detection of spores in all honey and bees tested samples. On the other hand freeze-thawing was only effective for detection of spores recovered from bees, and extensive damage to DNA affected detection by PCR. This work provides new strategies for spore DNA extraction and detection by PCR with high sensitivity, and brings an alternative tool for P. larvae detection in natural samples.  相似文献   

17.
We have developed an optimized RAPD analysis approach using the unusually heat-stable KlenTaq1 DNA polymerase. This enzyme is used in conjunction with a genomic DNA isolation method that includes a modified CTAB DNA isolation protocol, ethanol re-precipitation of resuspended nucleic acids from 2M NaCl, and Chelex 100 treatment. When needed, additional gel purification and isolation of high molecular weight DNA for use as a template in RAPD analysis is shown to remove amplification product ambiguity from within isolates of the same line as well as from between lines. This optimized RAPD analysis was used to define polymorphisms in lines of flax nearly isogenic for rust resistance at theL locus. It should also be useful for any plant species.  相似文献   

18.
A DNA extraction procedure that does not require hazardous materials, such as CTAB, phenols, or liquid nitrogen, was optimized forAnthurium andreanum, a plant rich in polysaccharides and polyphenolics. Three DNA isolation techniques were tested. The modified Rowhani protocol (1983), with slight modifications, was found to yield up to milligrams of DNA suitable for RAPD from spathe and leaf tissues. High-quality DNA was obtained readily from spathe tissues, while a spermine precipitation step was found to be essential when DNA was extracted from the leaf tissues.  相似文献   

19.
Natural genetic transformation of Pseudomonas stutzeri by sand-adsorbed DNA   总被引:11,自引:0,他引:11  
In a soil/sediment model system we have shown recently that a gram-positive bacterium with natural competence (Bacillus subtilis) can take up transforming DNA adsorbed to sand minerals. Here we examined whether also a naturally transformable soil bacterium of the gramnegative pseudomonad (Pseudomonas stutzeri) can be transformed by mineral-associated DNA. for these studies the transformation protocol of this species was further improved and characterized. The peak of competence during growth of P. stutzeri was determined to occur at the beginning of the stationary phase. The competence state was conserved during shock freezing and thawing of cells in 10% glycerol. Kinetic experiments showed that transformant formation after addition of DNA to competent cells proceeded for more than 2 h with DNA adsorption to cells being the rate limiting step. By means of the defined protocol P. stutzeri was shown to be transformed by sand-adsorbed DNA. Transformation by adsorbed or dissolved DNA occurred between 16° and 44°C. Efficiency and DNaseI-sensitivity of transformation by DNA adsorbed to sand or in liquid were comparable. It is concluded that uptake of particle-bound DNA by P. stutzeri in soil is possible. This finding adds evidence to the view that transformation occurs in natural environments where DNA is assumed to be significantly associated with mineral/particulate material and thereby is protected against enzymatic degradation.  相似文献   

20.
Isolation of high-quality DNA from rosaceous species is particularly difficult because of their high levels of polyphenols, polysaccharides, and other compounds. The yields and quality of genomic DNA are considerably affected when the common protocol for DNA isolation is applied to the chestnut rose (Rosa roxburghii Tratt). A simple, rapid, and efficient protocol for the extraction of DNA from the chestnut rose is described. The modified hexadecyltrimethylammonium bromide (CTAB) procedure, which uses phenol-absent extraction to enhance the yield, involves a washing step before extraction for the removal of organic molecules and excessive water; the use of high concentrations of polyvinylpyrrolidone (2% [w/v]), CTAB (3% [w/v]), and β-mercaptoethanol (3% [v/v]) in the high-salt-concentration extraction buffer to remove polyphenols and polysaccharides; and the combined use of potassium acetate and chloroform to remove proteins and polysaccharides. Finally, DNA is precipitated with an equal volume of isopropanol and 0.1 vol of sodium acetate. This protocol results in high yields of DNA. The average yield of DNA ranged from 980–1800 μg/g of fresh weight of leaves. Downstream results indicate that DNA quality is sufficient for restriction fragment length polymorphism (RFLP) and polymerase chain reaction (PCR) analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号