首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CCC, uniconazol, ancymidol, prohexadione-calcium (BX-112), and CGA 163′935, which represent three groups of gibberellin (GA) biosynthesis inhibitors, were applied as a soil drench to Sorghum bicolor cultivars 58M (phyB-1, phytochrome B-deficient mutant) and 90M (phyB-2, equivalent phenotypically to wild type, PHYB, except for small differences in flowering dates). The inhibitors that block steps before GA12 (CCC, uniconazol, and ancymidol) lowered the concentrations of all endogenous early-C13α-hydroxylation pathway GAs found in sorghum: GA12, GA53, GA44, GA19, GA20, GA1, and GA8. In contrast, the inhibitors that block the conversion of GA20→ GA1, (CGA 163′935 and BX-112) drastically reduced GA1 and GA8 levels, but they either did not change or caused accumulation of intermediates from GA12 to GA20. Combinations of pre-GA12 inhibitors and GA3 plus GA1 strongly reduced GAs other than GA1 and GA3. Each of these compounds inhibited shoot growth in both cultivars and delayed floral initiation in 90M. Floral initiation of 58M was also delayed by CCC, uniconazol, and ancymidol but not by CGA 163`935 and BX-112. This separation of shoot elongation from floral initiation in sorghum is novel. Both inhibition of shoot growth and delayed floral initiation were almost completely relieved by a mixture of GA3 and GA1 in both 58M and 90M. This observation, plus the much lower levels of endogenous GA3 than of GA1 observed in these experiments, implies that GA1 is the major endogenous GA active in shoot elongation. CGA 163′935 and BX-112 also failed to promote tillering in 58M, whereas inhibitors active before GA12 did so. The possibility that the GA20→ GA1 inhibitors fail to block flowering and promote tillering in 58M because biosynthetic intermediates between GA12 and GA20 accumulate and/or because 58M is altered in GA metabolism in this same region of the biosynthetic pathway is discussed. Received April 7, 1998; accepted July 31, 1998  相似文献   

2.
Effects of Auxin Transport Inhibitors on Gibberellins in Pea   总被引:5,自引:0,他引:5  
The effects of the auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA), 9-hydroxyfluorene-9-carboxylic acid (HFCA), and 1-N-naphthylphthalamic acid (NPA) on gibberellins (GAs) in the garden pea (Pisum sativum L.) were studied. Application of these compounds to elongating internodes of intact wild type plants reduced markedly the endogenous level of the bioactive gibberellin A1 (GA1) below the application site. Indole-3-acetic acid (IAA) levels were also reduced, as was internode elongation. The auxin transport inhibitors did not affect the level of endogenous GA1 above the application site markedly, nor that of GA1 precursors above or below it. When plants were treated with [13C,3H]GA20, TIBA reduced dramatically the level of [13C,3H]GA1 recovered below the TIBA application site. The internodes treated with auxin transport inhibitors appeared to be still in the phase where endogenous GA1 affects elongation, as indicated by the strong response to applied GA1 by internodes of a GA1-deficient line at the same stage of expansion. On the basis of the present results it is suggested that caution be exercised when attributing the developmental effects of auxin transport inhibitors to changes in IAA level alone. Received April 13, 1998; accepted April 14, 1998  相似文献   

3.
Stem elongation in Fuchsia × hybrida was influenced by cultivation at different day and night temperatures or in different light qualities. Internode elongation of plants grown at a day (25°C) to night (15°C) temperature difference (DIF+10) in white light was almost twofold that of plants grown at the opposite temperature regime (DIF−10). Orange light resulted in a threefold stimulation of internode elongation compared with white light DIF−10. Surprisingly, internode elongation in orange light was similar for plants grown at DIF−10 and DIF+10. Flower development was accelerated at DIF−10 compared with DIF+10 in both white and orange light. To examine whether the effects of DIF and light quality on shoot elongation were related to changes in gibberellin metabolism or plant sensitivity to gibberellins (GAs), the stem elongation responses of paclobutrazol-treated plants to applied gibberellins were determined. In the absence of applied gibberellins paclobutrazol (>0.32 μmol plant−1) strongly retarded shoot elongation. This inhibition was nullified by the application of about 10–32 nmol of GA1, GA4, GA9, GA15, GA19, GA20, GA24, or GA44. The results are discussed in relation to possible effects of DIF and light quality on endogenous gibberellin levels and gibberellin sensitivity of fuchsia and their effects on stem elongation. Received October 4, 1997; accepted December 17, 1997  相似文献   

4.
The Effect of Gibberellins on Flowering in Roses   总被引:1,自引:0,他引:1  
The gibberellins A1, A3, A5, A8, A19, A20, and A29 were identified in vegetative shoot tips of Rosa canina by comparing their mass spectra and Kovats retention indices with those of standards. Most wild roses have a short flowering season of 2–4 weeks in spring, whereas most modern cultivars flower recurrently. `Félicité et Perpétue' is a short-season hybrid from a cross between a wild rose and a recurrent-flowering rose, whereas its sport, `Little White Pet,' flowers recurrently. The concentrations of gibberellins (GAs) were measured in shoot apices of both cultivars. In March (before floral initiation in spring) the concentrations of GA1 and GA3 were respectively threefold and twofold higher in `Félicité et Perpétue' than in `Little White Pet.' In April (after floral initiation) the concentrations of both gibberellins were substantially greater than in March, and concentrations of GA1 and GA3 were, respectively, 17-fold and 12-fold greater in `Félicité et Perpétue' than in `Little White Pet.' It is postulated that, in `Félicité et Perpétue,' floral initiation occurs when concentrations of GAs are low and is inhibited when concentrations of GAs are high, whereas in `Little White Pet' concentrations of GAs remain at permissive levels throughout the growing season. Applications of GA1 and GA3 to axillary shoots in March inhibited floral development in `Félicité et Perpétue' but not in `Little White Pet.' This suggests that the combined concentration of exogenous and endogenous gibberellins might have been raised to inhibitory levels in the former but not in the latter cultivar. Received January 10, 1999; accepted June 16, 1999  相似文献   

5.
In young plants of Salix pentandra, a temperate zone deciduous woody species, elongation growth ceases and a terminal bud is formed at day lengths shorter than a critical length. This is the first step in dormancy development, making survival under harsh winter conditions possible. Early studies strongly indicate that gibberellin is involved in the photoperiodic control of bud set and bud break. GA1 action was studied by application under short days to plants where cessation of shoot elongation had occurred, followed by subsequent anatomic investigations of shoot tips. Under short days the frequency of cell division decreased rapidly along with the earlier observed decrease in GA1 levels. Application of GA1 to short-day–induced terminal buds rapidly stimulated cell division in apices several days before visible shoot elongation in response to this treatment was observed. One day after GA1 application a fourfold increase in cell division frequency in apices was observed, increasing to a maximum of sevenfold 2 days after application. Long-day treatment leading to induction of bud break after about 4–6 days was followed by slowly increasing frequency of cell divisions. In earlier studies of this species, short days and gibberellins had no effect on cell elongation. These data show that increased GA1 content, by application or long-day treatment, results in increased frequency of mitosis. This strongly indicates that GA1 affects stem elongation in connection with bud set and bud break primarily by affecting cell divisions in subapical tissues. Received February 26, 1999; accepted October 8, 1999  相似文献   

6.
The effects of jasmonic acid (JA) on elongation growth of coleoptile segments from etiolated maize (Zea mays L.) were investigated in the presence and absence of auxin. When supplied alone, at physiological concentrations (10−9, 10−8, and 10−5 m), JA (or methyl-JA) inhibited growth. JA at a similar range of concentrations also inhibited auxin-induced elongation growth. To determine whether this effect on growth depended on endogenous abscisic acid (ABA), we grew maize coleoptiles in the presence of norflurazon (an inhibitor of carotenoid biosynthesis) that results in reduced endogenous ABA levels. Growth of etiolated coleoptile segments from these plants was inhibited by JA (or methyl-JA) in both the absence and presence of auxin. Previously, we have observed a correlation between elongation growth and cytosolic pH (pHi), in which auxin lowers pHi, and growth inhibitors such as ABA raise pHi. We examined the effect of low concentrations of methyl-JA on pHi with dual emission dye, carboxy seminaphthorhodafluor-1, and confocal microscopy. To confirm these studies, we also used in vivo 31P NMR spectrometry to ascertain the changes in pHi after addition of jasmonate to maize coleoptiles. Coleoptiles grown in either the absence or presence of norflurazon responded to methyl-JA or JA by increases in pHi of approximately 0.2 pH unit. This response occurs over a period of 15–20 min and appears to be independent of endogenous ABA. This alkalization induced by JA is likely to form a permissive environment for JA signal transduction pathway(s). Received February 5, 1999; accepted August 25, 1999  相似文献   

7.
Plant growth retardants were evaluated for their ability to reduce the growth rate of sweetpotato (Ipomoea batatas (L.) Lam.) in vitro. Nodal sections of cv. Jewel were cultured for 30 days on medium containing NDA, ancymidol, phosfon, TIBA, difenzoquat, chlormequat, ACC, mepiquat chloride, or daminozide at 0, 10−4, 10−5, 10−6, 10−7, or 10−8 m. Difenzoquat, NDA, phosfon, and TIBA, at 10−4 m, were lethal to axillary bud explants. A low concentration (10−8 m) of chlorflurenol or NDA stimulated shoot elongation. The effective concentration range for most growth retardants was 10−5 to 10−6 m. Small (2- to 4-mm diameter) storage root-like swellings were observed on roots in cultures containing TIBA or ancymidol. The growth-inhibiting effects of ancymidol and NDA were transitory and did not persist through a 180-day culture period. Shoots cultured on medium containing 10−5 m phosfon, TIBA, or difenzoquat were significantly shorter than control plants after a 180-day culture period. Culture on medium containing TIBA, NDA, ancymidol, or ACC resulted in abnormal leaf and stem development. Plants derived from nodal explants cultured on medium containing either phosfon or chlormequat were near normal in appearance but with some plants exhibiting interveinal chlorosis and reduced root system development. Received May 9, 1997; accepted August 14, 1997  相似文献   

8.
Modification of the structure of abscisic acid (ABA) has been reported to result in modification of its physiologic activity. In this study we tested the effect of removing methyl groups from the ring and of chirality of ABA on activity in microspore-derived embryos of oilseed rape (Brassica napus L.). The natural (+)-ABA molecule induced growth inhibition and an increase in the amount of erucic acid accumulated in the oil at medium concentrations less than 1 μm. (−)-ABA showed similar effects. Removing the 7′-methyl group resulted in a dramatic decrease in activity: (+)-7′-demethyl-ABA retained some activity as a growth inhibitor; a 10–100 μm concentration of this compound was needed for a response, and (−)-7′-demethyl-ABA was almost completely inactive. Similar effects were observed with regard to elongase activity, which catalyzes erucic acid biosynthesis from oleic acid. Removal of the 8′- and 9′-methyl groups resulted in a more complex response. These compounds all showed intermediate activity; for growth inhibition, the presence of the 9′-methyl was the more important determinant, whereas chirality dominated the response on erucic acid accumulation, with the (+)-enantiomers being more active. Received July 25, 1997; accepted October 31, 1997  相似文献   

9.
2-Aminoindan-2-phosphonic acid (AIP) retarded the growth of duckweed, Spirodela punctata, and increased its dry mass. The accumulation of starch was observed at all concentrations of AIP at 8 days after treatment. The increase in starch was inversely proportional to the growth. The retarded growth of Spirodela by AIP was not limited only by excessive starch accumulation. Received December 8, 1997; accepted June 2, 1998  相似文献   

10.
The response of wild oat to imazamethabenz varies with the growth stage, but the role of tillers in this regard is unclear. Removal of tillers at the three-leaf stage before spraying with imazamethabenz did not significantly affect the total shoot fresh weight measured 3 weeks later. The leaf area and dry weight of intact plants at the three-leaf stage were 17–21% greater than for plants with coleoptilar and first leaf main shoot tillers (T0 and T1) removed. The greater leaf area may have increased herbicide interception per plant. Similar fresh weight reductions in main shoot, total tillers, and total shoots were found whether imazamethabenz was applied to the plant at the two-leaf without tillers or the three-leaf with two tillers stage. Imazamethabenz applied only to the main shoot reduced total shoot dry weight more than an equivalent amount of imazamethabenz applied only to tiller T1 or applied over the whole shoot. Imazamethabenz had the least inhibitory effect on whole plant growth when applied only to T1. When 14C-herbicide was applied to the first main shoot leaf of plants at the three-leaf stage with two tillers, the 14C translocated 38% to roots, 33% to the main shoot, and nearly 30% to all tillers. When 14C-herbicide was applied to the first leaf of T1 then the 14C translocated 50% to T1, 25% to the main shoot, 20% to roots, and 5% to all other tillers. The translocation pattern and fresh weight values suggested that the presence of early tillers during herbicide application neither increased nor decreased imazamethabenz efficacy in wild oat. Received June 4, 1997; accepted June 5, 1997  相似文献   

11.
Soaking summer squash (Cucurbita pepo cv. Eskandarany) seeds in continuously aerated solutions of 0.25, 0.50, and 1.00 ppm Co2+ for 48 h before sowing strongly increased plant growth, femaleness, and fruit yield compared with those of water- (control) or 0.5 mm AOA (aminooxyacetic acid)-soaked seeds. Following the same pattern, plants of Co2+-soaked seeds produced significantly higher ethylene levels as early as the seedling stage (14 days after seed sowing) up to the onset of flower initiation (OFI) stage (30 days after seed sowing), with more pronounced levels of all measured parameters for plants of 1.00 ppm Co2+-soaked seeds. Plants of AOA-soaked seeds, however, behaved in a pattern similar to those of control in all measured parameters. The only exception was the significant ethylene inhibition noticed only at the plant seedling stage with AOA-seed soaking, which indicated the short term of AOA inhibition to ethylene when applied as early as the seed germination stage. When AOA was applied foliarly before and at the OFI stage, the increased plant femaleness obtained with Co2+ seed soaking was arrested. It is indicated, therefore, that summer squash plant femaleness is more responsive to plant ethylene-modulated levels before or at the OFI stage than earlier stages. Furthermore, all seed soaking treatments had no effect on plant leaf number or plant and fruit Co2+ content, which strongly indicated that the positive impact of Co2+ on summer squash plant growth and femaleness was mainly the result of the so-called ``low Co2+ level-induced ethylene.' The percentage of fruit yield increase reached about 26, 40, and 56% over the control by 0.25, 0.50, and 1.00 ppm Co2+ seed soaking, respectively, whereas AOA seed soaking resulted in only a 4.5% yield reduction. To ensure the permanent positive impact of Co2+ on ethylene production as well as the short period of AOA inhibition, seeds were resoaked in water or AOA for 8 h after being soaked in 1.00 ppm Co2+ solution for 40 h. The results obtained emphasized the previous findings because AOA inhibition was restricted on ethylene production only at the seedling stage. Meanwhile, all Co2+ positive effects were obtained 2 weeks later, even with AOA seed resoaking. These data strongly suggested that the positive impact of Co2+ on ethylene production is more permanent than the negative impact of AOA. Hence its application, in low concentrations, as early as the seed germination stage, strongly increased summer squash plant growth, femaleness, and fruit yield by increasing the plant ethylene level. Received July 21, 1997; accepted November 10, 1997  相似文献   

12.
In alstroemeria (Alstroemeria hybrida), leaf senescence is retarded effectively by the application of gibberellins (GAs). To study the role of endogenous GAs in leaf senescence, the GA content was analyzed by combined gas chromatography and mass spectrometry. Five 13-hydroxy GAs (GA19, GA20, GA1, GA8, and GA29) and three non-13-hydroxy GAs (GA9 and GA4) were identified in leaf extracts by comparing Kováts retention indices (KRIs) and full scan mass sprectra with those of reference GAs. In addition, GA15, GA44, GA24, and GA34 were tentatively identified by comparing selected ion monitoring results and KRIs with those of reference GAs. A number of GAs were detected in conjugated form as well. Concentrations of GAs in alstroemeria changed with the development of leaves. The proportion of biologically active GA1 and GA4 decreased with progressive senescence and the fraction of conjugated GAs increased. Received May 26, 1997; accepted August 12, 1997  相似文献   

13.
The round-leafed mutant cotton line L-501 developed fasciation of the upper stem when field grown in Central Asia. Fasciation co-segregated with the mutant gene for round leaves In. l Fasciation developed at the flowering stage, but removal of floral buds did not prevent fasciation. Fasciation in L-501 could be inhibited by the gibberellin (GA) biosynthesis inhibitor chlorocholine chloride or by fusicoccin. GA3 application in the field induced fasciation in the mutant's parental line L-463, which has five-lobed leaves and does not normally develop fasciation. Fasciation did not develop in either line, even after GA3 treatment, in UK glasshouse conditions. Received June 17, 1998; accepted January 25, 1999  相似文献   

14.
The physiologic effect of gibberellins (GA) in seed development is poorly understood. We examined the effect of gibberellic acid (GA3) on growth, protein secretion, and starch accumulation in cultured maize (Zea mays L.) endosperm suspension cells. GA3 (5 and 30 μm) increased the fresh weight, dry weight, and protein content of the cultured cells, but the effect of GA3 at 50 μm was not significantly different. However, the protein content in the culture medium was increased by these three concentrations of GA3. The effect of GA3 on the amount of cellular structural polysaccharides was not significant, but GA3 had a dramatic effect on the starch content. At 5 μm, GA3 caused an increase in the starch content, but at 50 μm the starch accumulation was reduced. Chlorocholine chloride (CCC), an inhibitor of GA biosynthesis, significantly increased the starch content and decreased the structural polysaccharide content of the cultured cells. The effects of CCC at 500 μm on the starch and polysaccharide content were partially reversed by 5 μm GA3 applied exogenously. Based on these results we suggest that GA does not favor starch accumulation in the cell cultures and that the addition of lower concentrations of GA3 in the medium may provide an improved balance among the endogenous GA in the cultured cells. Received October 31, 1995; accepted March 25, 1997  相似文献   

15.
The banana (Musa spp. AAA) micropropagation shows a high incidence of off-types, among whose variegated plants are very common. Endogenous levels of growth regulators and pigment content were measured in normal and variegated leaves of the micropropagated banana plants growing in a greenhouse. Growth regulators were separated by high pressure liquid chromatography and submitted to enzyme-linked immunosorbent assay for quantification. Pigment content was measured using the colorimetric method. Green leaves contained 1.9 and 10 times more cytokinins compared with green and yellow sectors of variegated leaves, respectively. The levels of indoleacetic acid in normal leaves were significantly higher than those found in green and yellow sectors of variegated leaves; however, the levels of abscisic acid were lower in normal leaves. The lower content of chlorophylls in variegated leaves coincided with decreased endogenous levels of cytokinins, which indicated that variegation in banana leaves may be associated with alterations in the metabolism of this growth regulator. Received December 3, 1997; accepted February 2, 1998  相似文献   

16.
The application of gibberellins (GA) reduces the difference in stem elongation observed under a low day (DT) and high night temperature (NT) combination (negative DIF) compared with the opposite regime, a high DT/low NT (positive DIF). The aim of this work was to investigate possible thermoperiodic effects on GA metabolism and tissue sensitivity to GA by comparing the response to exogenously applied GA (in particular, GA1 and GA3) in pea plants (Pisum sativum cv. Torsdag) grown under contrasting DIF. Control plants not treated with growth inhibitors or additional GA were 38% shorter under negative (DT/NT 13/21°C) than positive DIF (DT/NT 21/13°C) because of shorter internodes. Additional GA1 or GA3 decreased the difference between positive and negative DIF. In pea plants dwarfed with paclobutrazol, which inhibits GA biosynthesis at an early step, the response to GA1 was reduced more strongly by negative compared with positive DIF than the response to GA3. The induced stem elongation by GA19 and GA20 did not deviate significantly from the response to GA1. Plants treated with prohexadione-calcium, an inhibitor of both the production and the inactivation of GA1, grew equally tall under the two temperature regimes in response to both GA1 and GA3. We hypothesize that the reduced response to GA1 compared with GA3 in paclobutrazol-treated plants grown under negative DIF is caused by a higher rate of 2β-hydroxylation of GA1 into GA8 under negative than positive DIF. This contributes to lower levels of GA1 and consequently shorter stems and internodes in pea plants grown under negative than positive DIF. Differences in tissue sensitivity to GA alone cannot account for this specific thermoperiodic effect on stem elongation. Received May 28, 1998; accepted May 29, 1998  相似文献   

17.
Endogenous levels of cytokinin and abscisic acid (ABA) were determined in ovules of normal cotton (TM-1) and four fiber differentiation mutants (n2, Ligon lintless, H10, and Xu142) before and after flowering by enzyme-linked immunosorbent assays. The fluctuation patterns of ABA levels in ovules of normal cotton and mutants were similar. At the fiber elongation stage, ABA content was low, and from 1 day after flowering, the ABA content decreased steadily. On the other hand, the peaks of isopentenyladenine and isopentenyladenosine in ovules of TM-1 were observed 1 day before flowering. The level of cytokinins decreased after flowering in TM-1, whereas in the mutants it increased steadily. These results indicate that endogenous ABA is probably not the main inhibitor for fiber elongation and that endogenous cytokinins likely play a dual role in fiber development. Before flowering, cytokinins function as one of the stimuli for the initiation of fibers, but after flowering, cytokinins inhibit fiber growth. Received February 18, 1997; accepted June 11, 1997  相似文献   

18.
The effects of thermo- and photoperiodicity on elongation growth and on endogenous level of gibberellins (GAs) in Begonia x hiemalis during various phases of the day-night cycle have been studied. Plant tissue was harvested during the day and night cycle after temperature and photoperiodic treatments and analyzed for endogenous GAs using combined gas chromatography and mass spectrometry. Elongation growth increased when the difference between day and night temperature (DIF = DT − NT) increased from a negative value (−9.0 and −4.5°C) to zero and with increasing photoperiod from 8 to 16 h. When applied to the youngest apical leaf, gibberellins A1, A4, and A9 increased the elongation of internodes and petioles. GA4 had a stronger effect on elongation growth than GA1 and GA9. In relative values, the effect of these GAs decreased when DIF increased from −9 to 0°C. The time of applying the GAs during a day and night cycle had no effect on the growth responses. In general, endogenous levels of GA19 and GA20 were higher under negative DIF compared with zero DIF. The level of endogenous GA1 in short day (SD)-grown plants was higher under zero DIF than under negative DIF, but this relationship did not appear in long day (LD)-grown plants. The main effects of photoperiod seem to be a higher level of GA19 and GA1 at SD compared with LD, whereas GA20 and GA9 show the opposite response to photoperiod. No significant differences in endogenous level of GA1, GA9, GA19, and GA20 were found for various time points during the diurnal day and night cycle. Endogenous GA20 was higher in petiole and leaf compared with stem, whereas there were no differences of GA1, GA9, and GA19 between plant parts. No clear relationship was found between elongation of internodes and petioles and levels of endogenous GAs. Received December 26 1996; accepted July 1, 1997  相似文献   

19.
In the present work the effect of several bis(guanylhydrazones) on the growth of Helianthus tuberosus tuber explants was studied. Different aliphatic congeners of glyoxal bis(guanylhydrazone) were tested. Most of the compounds displayed an inhibitory effect on growth, and a correlation between the structure of the molecule and the inhibitory activity was observed. Experiments carried out with glyoxal bis(guanylhydrazone) and its congeners methyl-, ethylmethyl-, and methylpropylglyoxal bis(guanylhydrazones) show that as the total number of side chain carbon atoms in the molecule increases, the inhibitory potency also increases. A depletion of spermidine levels was also found in the explants treated with ethylmethylglyoxal bis(guanylhydrazone), which turned out to be one of the most potent growth inhibitors. The addition of spermidine caused a significant reversion of the antiproliferative action of glyoxal bis(guanylhydrazone). The effect of these compounds on spermidine uptake in protoplasts isolated from carrot phloem parenchyma was also investigated. Only a slight competition was found when antagonists were present at concentrations 20 times higher than the polyamine, thus suggesting that bis(guanylhydrazones) do not share, at least at low concentrations, the polyamine transport system in plant cells. Received January 10, 1997; accepted January 22, 1999  相似文献   

20.
Skotodormant seeds of Lactuca sativa Grand Rapids imbibed in darkness for 10 days (10-day DS) germinated poorly upon terminal treatment with red light (R) or gibberellin A3 (GA3). Soluble sugars in the imbibition solutions influenced the depth of skotodormancy. Ten-day DS seeds, imbibed in 50–500 mm sucrose or 100–500 mm glucose and given terminal GA3 germinated completely and germinated about 80% when imbibed in 100 mm galactose, mannose, lactose, or maltose. In contrast, terminal R applied to 10-day DS seeds caused only 20–50% germination. If given R at day 0 and imbibed for 10 days in darkness in 500 mm sucrose or glucose, seeds washed free of exogenous glucose or sucrose then germinated about 50% in darkness in water. These seeds responded to terminal R or GA3 with complete germination. When seeds were given FR at day 0, germination responses following terminal R or GA3 were significantly lower when the duration of DS was increased from 7–10 day DS to 15 days. In 10-day DS seeds given initial FR and imbibed in either solutions of 50 or 100 mm sucrose and KNO3, either terminal R or GA3 treatment gave complete or near complete germination. It is concluded that seed exposure to certain soluble sugars and/or nitrate during a 10-day DS protected certain substrates and thereby extended the sensitivity of the seeds to terminal R or GA3 treatment. The study provides substantial evidence for nonhormonal factors associated with light and GA action in the control of seed skotodormancy. Received October 30, 1996; accepted April 22, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号