共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, we investigated if monolayer expansion of adult human articular chondrocytes (AHAC) on specific substrates regulates cell phenotype and post-expansion multilineage differentiation ability. AHAC isolated from cartilage biopsies of five donors were expanded on plastic dishes (PL), on dishes coated with collagen type II (COL), or on slides coated with a ceramic material (Osteologic, OS). The phenotype of expanded chondrocytes was assessed by flow cytometry and real-time RT-PCR. Cells were then cultured in previously established conditions promoting differentiation toward the chondrogenic or osteogenic lineage. AHAC differentiation was assessed histologically, biochemically, and by real-time RT-PCR. As compared to PL-expanded AHAC, those expanded on COL did not exhibit major phenotypic changes, whereas OS-expanded cells expressed (i) higher bone sialoprotein (BSP) (22.6-fold) and lower collagen type II (9.3-fold) mRNA levels, and (ii) lower CD26, CD90 and CD140 surface protein levels (1.4-11.1-fold). Following chondrogenic differentiation, COL-expanded AHAC expressed higher mRNA levels of collagen type II (2.3-fold) and formed tissues with higher glycosaminoglycan (GAG) contents (1.7-fold), whereas OS-expanded cells expressed 16.5-fold lower collagen type II and generated pellets with 2.0-fold lower GAG contents. Following osteogenic differentiation, OS-expanded cells expressed higher levels of BSP (3.9-fold) and collagen type I (2.8-fold) mRNA. In summary, AHAC expansion on COL or OS modulated the de-differentiated cell phenotype and improved the cell differentiation capacity respectively toward the chondrogenic or osteogenic lineage. Phenotypic changes induced by AHAC expansion on specific substrates may mimic pathophysiological events occurring at different stages of osteoarthritis and may be relevant for the engineering of osteochondral tissues. 相似文献
2.
《Cytotherapy》2014,16(4):440-453
Background aimsHyaline articular cartilage is a highly specialized tissue that offers a low-friction and wear-resistant interface for weight-bearing surface articulation in diarthrodial joints, but it lacks vascularity. It displays an inherent inability to heal when injured in a skeletally mature individual. Joint-preserving treatment procedures such as mosaicplasty, débridement, perichondrium transplantation and autologous chondrocyte implantation have shown variable results, and the average long-term result is sub-standard. Because of these limitations of the treatment methods and lack of intrinsic repair capacity of mature cartilage tissue, an alternative treatment approach is needed, and synovial mesenchymal stromal cells (SMSCs) represent an attractive therapeutic alternative because of their ex vivo proliferation capacity, multipotency and ability to undergo chondrogenesis.MethodsSMSCs were isolated from tissues obtained by arthroscopy using two types of biopsies. Ex vivo cell expansion was accomplished under static and dynamic culture followed by characterization of cells according to the International Society for Cellular Therapy guidelines. Kinetic growth models and metabolite analysis were used for understanding the growth profile of these cells.ResultsFor the first time, SMSCs were expanded in stirred bioreactors and achieved higher cell density in a shorter period of time compared with static culture or with other mesenchymal stromal cell sources.ConclusionsIn this study we were able to achieve (8.8 ± 0.2) × 105 cells within <2 weeks in dynamic culture under complete xeno-free conditions. Our results also provided evidence that after dynamic culture these cells had an up-regulation of chondrogenic genes, which can be a potential factor for articular cartilage regeneration in clinical settings. 相似文献
3.
Expression of exogenous or endogenous green fluorescent protein in adipose tissue-derived stromal cells during chondrogenic differentiation 总被引:4,自引:0,他引:4
Lin Y Tian W Chen X Yan Z Li Z Qiao J Liu L Tang W Zheng X 《Molecular and cellular biochemistry》2005,277(1-2):181-190
Pluripotent stem cells within the adipose stromal compartment, termed adipose-derived stromal cells (ASCs), have the potential to differentiate into a variety of cell lineages both in vitro and in vivo. Imaging with expression of exogenous or endogenous green fluorescent protein (GFP) reporters facilitates the detailed research on ASCs’ physiological behavior during differentiation in vivo. This study was aimed to confirm whether ASCs expressing GFP still could be induced to chondrogenesis, and to compare the expression of exogenous or endogenous GFP in ASCs during chondrogenic differentiation. ASCs were harvested from inguinal fat pads of normal nude mice or GFP transgenic mice. Monolayer cultures of ASCs from normal mice were passaged three times and then infected with replication-incompetent adenoviral vectors carrying GFP genes. Allowed to recover for 5 days, Ad/GFP infected ASCs were transferred to chondrogenic medium as well as the ASCs from transgenic mice cultured in vitro over the same passages. The level of GFP in transgenic ASCs maintained stable till 3 months after chondrogenic induction. Whereas, high level of GFP expression in Ad/GFP infected ASCs could last for only 8 weeks and then declined stepwise. Important cartilaginous molecules such as SOX9, collagen type I, collagen type II, aggrecan, collagen type X were assessed using immunocytochemistry, RT-PCR, and Western Blot. The results indicated that no matter the GFP was exogenous or endogenous, it did not influence the chondrogenic potential of ASCs in comparison with the normal controls. Moreover, chondrogenic lineages from ASCs also underwent phenotypic modulation called dedifferentiation as a result of long-term culture in monolayers similar to normal chondrocytes. 相似文献
4.
Mayer-Wagner S Passberger A Sievers B Aigner J Summer B Schiergens TS Jansson V Müller PE 《Bioelectromagnetics》2011,32(4):283-290
Electromagnetic fields (EMF) have been shown to exert beneficial effects on cartilage tissue. Nowadays, differentiated human mesenchymal stem cells (hMSCs) are discussed as an alternative approach for cartilage repair. Therefore, the aim of this study was to examine the impact of EMF on hMSCs during chondrogenic differentiation. HMSCs at cell passages five and six were differentiated in pellet cultures in vitro under the addition of human fibroblast growth factor 2 (FGF‐2) and human transforming growth factor‐β3 (TGF‐β3). Cultures were exposed to homogeneous sinusoidal extremely low‐frequency magnetic fields (5 mT) produced by a solenoid or were kept in a control system. After 3 weeks of culture, chondrogenesis was assessed by toluidine blue and safranin‐O staining, immunohistochemistry, quantitative real‐time polymerase chain reaction (PCR) for cartilage‐specific proteins, and a DMMB dye‐binding assay for glycosaminoglycans. Under EMF, hMSCs showed a significant increase in collagen type II expression at passage 6. Aggrecan and SOX9 expression did not change significantly after EMF exposure. Collagen type X expression decreased under electromagnetic stimulation. Pellet cultures at passage 5 that had been treated with EMF provided a higher glycosaminoglycan (GAG)/DNA content than cultures that had not been exposed to EMF. Chondrogenic differentiation of hMSCs may be improved by EMF regarding collagen type II expression and GAG content of cultures. EMF might be a way to stimulate and maintain chondrogenesis of hMSCs and, therefore, provide a new step in regenerative medicine regarding tissue engineering of cartilage. Bioelectromagnetics 32:283–290, 2011. © 2010 Wiley‐Liss, Inc. 相似文献
5.
Goessler UR Bugert P Bieback K Stern-Straeter J Bran G Sadick H Hörmann K Riedel F 《Journal of cellular and molecular medicine》2009,13(6):1175-1184
The use of adult mesenchymal stem cells (MSC) in cartilage tissue engineering has been implemented in the field of regenerative medicine and offers new perspectives in the generation of transplants for reconstructive surgery. The extracellular matrix (ECM) plays a key role in modulating function and phenotype of the embedded cells and contains the integrins as adhesion receptors mediating cell-cell and cell-matrix interactions. In our study, characteristic changes in integrin expression during the course of chondrogenic differentiation of MSC from bone marrow and foetal cord blood were compared. MSC were isolated from bone marrow biopsies and cord blood. During cell culture, chondrogenic differentiation was performed. The expression of integrins and their signalling components were analysed with microarray and immunohistochemistry in freshly isolated MSC and after chondrogenic differentiation. The fibronectin-receptor (integrin a5b1) was expressed by undifferentiated MSC, expression rose during chondrogenic differentiation in both types of MSC. The components of the vitronectin/osteopontin-receptors (avb5) were not expressed by freshly isolated MSC, expression rose with ongoing differentiation. Receptors for collagens (a1b1, a2b1, a3b1) were weakly expressed by undifferentiated MSC and were activated during differentiation. As intracellular signalling components integrin linked kinase (ILK) and CD47 showed increasing expression with ongoing differentiation. For all integrins, no significant differences could be found in the two types of MSC. Integrin-mediated signalling seems to play an important role in the generation and maintenance of the chondrocytic phenotype during chondrogenic differentiation. Especially the receptors for fibronectin, vitronectin, osteopontin and collagens might be involved in the generation of the ECM. Intracellularly, their signals might be transduced by ILK and CD47. To fully harness the potential of these cells, future studies should be directed to ascertain their cellular and molecular characteristics for optimal identification, isolation and expansion. 相似文献
6.
Bosnakovski D Mizuno M Kim G Takagi S Okumura M Fujinaga T 《Biotechnology and bioengineering》2006,93(6):1152-1163
Bone marrow mesenchymal stem cells (MSCs) are candidate cells for cartilage tissue engineering. This is due to their ability to undergo chondrogenic differentiation after extensive expansion in vitro and stimulation with various biomaterials in three-dimensional (3-D) systems. Collagen type II is one of the major components of the hyaline cartilage and plays a key role in maintaining chondrocyte function. This study aimed at analyzing the MSC chondrogenic response during culture in different types of extracellular matrix (ECM) with a focus on the influence of collagen type II on MSC chondrogenesis. Bovine MSCs were cultured in monolayer as well as in alginate and collagen type I and II hydrogels, in both serum free medium and medium supplemented with transforming growth factor (TGF) beta1. Chondrogenic differentiation was detected after 3 days of culture in 3-D hydrogels, by examining the presence of glycosaminoglycan and newly synthesized collagen type II in the ECM. Differentiation was most prominent in cells cultured in collagen type II hydrogel, and it increased in a time-dependent manner. The expression levels of the of chondrocyte specific genes: sox9, collagen type II, aggrecan, and COMP were measured by quantitative \"Real Time\" RT-PCR, and genes distribution in the hydrogel beads were localized by in situ hybridization. All genes were upregulated by the presence of collagen, particularly type II, in the ECM. Additionally, the chondrogenic influence of TGF beta1 on MSCs cultured in collagen-incorporated ECM was analyzed. TGF beta1 and dexamethasone treatment in the presence of collagen type II provided more favorable conditions for expression of the chondrogenic phenotype. In this study, we demonstrated that collagen type II alone has the potential to induce and maintain MSC chondrogenesis, and prior interaction with TGF beta1 to enhance the differentiation. 相似文献
7.
Bojiang Shen Aiqun Wei Shane Whittaker Lisa A. Williams Helen Tao David D.F. Ma Ashish D. Diwan 《Journal of cellular biochemistry》2010,109(2):406-416
This study addresses the role of bone morphogenetic protein‐7 (BMP‐7) in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. BM MSCs were expanded and differentiated in the presence or absence of BMP‐7 in monolayer and three‐dimensional cultures. After 3 days of stimulation, BMP‐7 significantly inhibited MSC growth in expansion cultures. When supplemented in commonly used induction media for 7–21 days, BMP‐7 facilitated both chondrogenic and osteogenic differentiation of MSCs. This was evident by specific gene and protein expression analyses using real‐time PCR, Western blot, histological, and immunohistochemical staining. BMP‐7 supplementation appeared to enhance upregulation of lineage‐specific markers, such as type II and type IX collagens (COL2A1, COL9A1) in chondrogenic and secreted phosphoprotein 1 (SPP1), osteocalcin (BGLAP), and osterix (SP7) in osteogenic differentiation. BMP‐7 in the presence of TGF‐β3 induced superior chondrocytic proteoglycan accumulation, type II collagen, and SOX9 protein expression in alginate and pellet cultures compared to either factor alone. BMP‐7 increased alkaline phosphatase activity and dose‐dependently accelerated calcium mineralization of osteogenic differentiated MSCs. The potential of BMP‐7 to promote adipogenesis of MSCs was restricted under osteogenic conditions, despite upregulation of adipocyte gene expression. These data suggest that BMP‐7 is not a singular lineage determinant, rather it promotes both chondrogenic and osteogenic differentiation of MSCs by co‐ordinating with initial lineage‐specific signals to accelerate cell fate determination. BMP‐7 may be a useful enhancer of in vitro differentiation of BM MSCs for cell‐based tissue repair. J. Cell. Biochem. 109: 406–416, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
8.
Aiguo Xie Yinbo Peng Zuochao Yao Lin Lu Tao Ni 《Journal of cellular and molecular medicine》2021,25(9):4204-4215
This study aimed to investigate the ability of CD146+ subset of ADSCs to repair cartilage defects. In this study, we prepared CD146+ liposome magnetic beads (CD146+LMB) to isolate CD146+ADSCs. The cells were induced for chondrogenic differentiation and verified by cartilage-specific mRNA and protein expression. Then a mouse model of cartilage defect was constructed and treated by filling the induced cartilage cells into the damaged joint, to evaluate the function of such cells in the cartilage microenvironment. Our results demonstrated that the CD146+LMBs we prepared were uniform, small and highly stable, and cell experiments showed that the CD146+LMB has low cytotoxicity to the ADSCs. ADSCs isolated with CD146+LMB were all CD146+, CD105+, CD166+ and CD73+. After chondrogenic induction, the cells showed significantly increased expression of cartilage markers Sox9, collagen Ⅱ and aggrecan at protein level and significantly increased Sox9, collagen Ⅱ and aggrecan at mRNA level, and the protein expression and mRNA expression of CD146+ADSCs group were higher than those of ADSCs group. The CD146+ADSCs group showed superior tissue repair ability than the ADSCs group and blank control group in the animal experiment, as judged by gross observation, histological observation and histological scoring. The above results proved that CD146+LMB can successfully isolate the CD146+ADSCs, and after chondrogenic induction, these cells successfully promoted repair of articular cartilage defects, which may be a new direction of tissue engineering. 相似文献
9.
Danyang Yue Mengxue Zhang Juan Lu Jin Zhou Yuying Bai Jun Pan 《Journal of cellular physiology》2019,234(9):16312-16319
We have previously demonstrated that the rate of fluid shear stress (ΔSS) can manipulate the fate of mesenchymal stem cells (MSCs) to osteogenic or chondrogenic cells. However, whether ΔSS is comparable to other two means of induction medium and substrate stiffness that have been proven to be potent in differentiation control is unknown. In this study, we subjected MSCs to 1–7 days of osteogenic or chondrogenic chemical induction, or 1–4 days of 37 or 86 kPa of substrate stiffness induction, followed by 20 min of Fast ΔSS (0–0′) or Slow ΔSS (0–2′), which is a laminar FSS that linearly increased from 0 to 10 dyn/cm 2 in 0 (Fast) or 2 min (Slow) and maintained at 10 dyn/cm 2 for a total of 20 min. We found that 20 min of ΔSS could compete with 5 days' chemical and 2 days' substrate stiffness inductions. Our study confirmed that ΔSS is a powerful tool to control the differentiation of MSCs, which stressed the possible application in MSCs linage specification. 相似文献
10.
Wang Tang Hongyi Zhang Donghua Liu Feng Jiao 《Journal of cellular and molecular medicine》2022,26(1):202
This study explored the role played by combined ICA and bone mesenchymal stem cells (BMSCs) in repairing rabbit knee cartilage defects. Firstly, rabbit BMSCs were isolated and used to construct an in vitro cellular model of oxygen‐glucose deprivation/reoxygenation (OGD/R). Subsequently, ICA processing, Alcian blue staining, immunofluorescence and Western blot studies were performed to evaluate the ability of BMSCs to display signs of chondrogenic differentiation. Furthermore, a rabbit knee cartilage injury model was established in vivo. International Cartilage Repair Society (ICRS) macroscopic evaluations, H&E, Alcian blue and EdU staining, as well as immunohistochemistry, were analysed cartilage repair and pathological condition of the knee cartilage tissue. Our in vitro results showed that ICA promoted the chondrogenic differentiation of BMSCs, as well as aggrecan (AGR), bone morphogenetic protein 2 (BMP2) and COL2A1 protein expression in BMSCs. In vivo experiments showed that rabbits in the BMSCs or ICA treatment group had higher ICRS scores and displayed a better restoration of cartilage‐like tissue and chondrocyte expression on the surface of their cartilage defects. In conclusion, ICA or BMSCs alone could repair rabbit knee cartilage damage, and combined treatment with ICA and BMSCs showed a better ability to repair rabbit knee cartilage damage. 相似文献
11.
《Cytotherapy》2014,16(7):893-905
Background aimsCord blood (CB) and amniotic fluid (AF) could represent new and attractive mesenchymal stromal cell (MSC) sources, but their potential therapeutic applications are still limited by lack of standardized protocols for isolation and differentiation. In particular, chondrogenic differentiation has never been deeply investigated.MethodsMSCs were obtained from CB and AF samples collected during cesarean sections at term and compared for their biological and differentiation properties, with particular interest in cartilage differentiation, in which quantitative real-time polymerase chain reaction and immunohistochemical analyses were performed to evaluate the expression of type 2 collagen, type 10 collagen, SRY-box9 and aggrecan.ResultsWe were able to isolate MSCs from 12 of 30 (40%) and 5 of 20 (25%) CB and AF units, respectively. Fluorescence in situ hybridization analysis indicated the fetal origin of isolated MSC strains. Both populations expressed mesenchymal but not endothelial and hematopoietic markers, even though we observed a lower expression of human leukocyte antigen (HLA) I in CB-MSCs. No differences in proliferation rate and cell cycle analysis could be detected. After osteogenic induction, both populations showed matrix mineralization and typical marker expression. Under chondrogenic conditions, pellets derived from CB-MSCs, in contrast with AF-MSCs pellets, were significantly larger, showed cartilage-like morphology and resulted positive for chondrocyte-associated markers, such as type 2 collagen, type 10 collagen, SRY-box9 and aggrecan.ConclusionsOur results show that CB-MSCs and AF-MSCs collected at term differ from each other in their biological and differentiation properties. In particular, only CB-MSCs showed a clear chondrogenic potential and thus could represent an ideal candidate for cartilage-tissue engineering. 相似文献
12.
Yu-Shik Hwang Anne E. Bishop Julia M. Polak Athanasios Mantalaris 《Biotechnology and Bioprocess Engineering》2007,12(6):696-706
Current approaches have focused on deriving ESCs differentiation into chondrocytes from a cell source of spontaneously formed
intact mesoderm in EB formation, resulting in limited yield. Our study aimed at upregulating chondrogenic differentiation
of murine ESCs by enhancing mesoderm formation. Specifically, culture of mESCs with conditioned medium from a human hepatocarcinoma
cell line resulted in a cell population with a gene expression pattern similar to that of primitive streak/nascent mesoderm,
including up-regulation of brachyury, goosecoid, nodal, and cripto. From this cell population, reducing the embryoid body
formation time resulted in enhancement of chondrogenic differentiation as evidenced by larger Alcian blue-stained cartilage
nodules, higher production of sulfated glycosaminoglycan matrix, the presence of well-organised type II collagen and type
II collagen, aggrecan and sox-9 gene expression. In conclusion, we present here a new approach to the generation of chondrocytes
from mESCs that enhances yields and, thus, could have widespread applications in cartilage tissue engineering. 相似文献
13.
Jacqueline T. Hecht Dina Montufar-Solis Glen Decker Jack Lawler Karla Daniels P. Jackie Duke 《Matrix biology》1998,17(8-9)
Cartilage oligomeric matrix protein (COMP) is a large extracellular glycoprotein that is found in the territorial matrix surrounding chondrocytes. Two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (EDM1) are caused by mutations in the calcium binding domains of COMP. In this study, we identified two PSACH mutations and assessed the effect of these mutations on redifferentiated chondrocyte structure and function. We confirmed, in vitro, that COMP is retained in enormous cisternae of the rough endoplasmic reticulum (rER) and relatively absent in the PSACH matrix. The rER accumulation may compromise chondrocyte function, leading to chondrocyte death. Moreover, while COMP appears to be deficient in the PSACH matrix, the matrix appeared to be normal but the over-all quantity was reduced. These results suggest that the abnormality in linear growth in PSACH may result from decreased chondrocyte numbers which would also affect the amount of matrix produced. 相似文献
14.
15.
Elsler S Schetting S Schmitt G Kohn D Madry H Cucchiarini M 《The journal of gene medicine》2012,14(7):501-511
16.
17.
目的:研究软骨寡聚基质蛋白(cartilage oligomeric matrix protein,COMP)过表达对BMP-2诱导骨髓间充质干细胞成骨及成软骨分化的影响。方法:BMP-2诱导骨髓间充质干细胞分化,通过脂质体转染含人COMP基因的质粒使骨髓间充质干细胞过表达COMP,采用实时定量PCR和Western blotting分析COMP基因过表达、成骨相关基因Ⅰ型胶原、RUNX2、骨钙蛋白以及成软骨相关基因Ⅱ型胶原、SOX9、蛋白聚糖、X型胶原的表达变化;通过茜素红染色观察成骨终末阶段矿化结节的生成情况,阿利新蓝染色观察细胞基质蛋白多糖的合成情况。结果:质粒转染后骨髓间充质干细胞COMP基因蛋白和mRNA表达水平显著提高(P<0.05)。COMP基因过表达后,成骨标记基因RUNX2、Ⅰ型胶原(Col1a1)mRNA水平均显著低于对照组(P<0.05),RUNX2、骨钙蛋白(Osteocalcin)蛋白表达水平明显低于对照组(P<0.05),而成软骨标记基因SOX9、蛋白聚糖(Aggrecan)mRNA水平均显著高于对照组(P<0.05),SOX9、Ⅱ型胶原(Col2a1)蛋白表达均明显多于对照组(P<0.05)。细胞成骨茜素红染色弱于对照组,而阿利新蓝染色强于对照组。过表达组细胞X型胶原(Col10a1)基因表达显著低于对照组(P<0.05),结论:骨髓间充质干细胞COMP基因过表达可抑制BMP-2诱导其成骨分化,促进骨髓间充质干细胞成软骨分化,并抑制软骨细胞的成熟肥大,为软骨组织工程研究提供新的方向。 相似文献
18.
The synthesis of cartilage collagen by rabbit and human chondrocytes in primary cell culture 总被引:2,自引:0,他引:2
Fred H. Schindler Marsha A. Ose Michael Solursh 《In vitro cellular & developmental biology. Plant》1976,12(1):44-47
Summary This report describes a method for preparing primary cell cultures of differentiated rabbit sternal and human vertebral cartilage
cells. These cell cultures were shown to synthesize primarily α1 chains, which is taken to mean that at least 82% of the collagen
produced is cartilage specific collagen (type II).
This work was supported in part by grant HD-05505 from NIH. 相似文献
19.
20.
Availability of human chondrocytes is a major limiting factor regarding drug discovery projects and tissue replacement therapies. As an alternative human mesenchymal stem cells (hMSCs) from bone marrow are taken into consideration as they can differentiate along the chondrogenic lineage. However, it remains to be shown whether they could form a valid model for primary chondrocytes with regards to inflammatory mediator production, like nitric oxide (NO) and prostanoids. We therefore investigated the production of NO and prostanoids in hMSCs over the course of chondrogenic differentiation and in response to IL-1beta using primary OA chondrocytes as reference. Chondrogenic differentiation was monitored over 28 days using collagen I, collagen II, and collagen X expression levels. Expression levels of inducible nitric oxide synthase (iNOS), levels of NO, and prostanoids were assessed using PCR, Griess assay, and GC/MS/MS, respectively. The hMSCs collagen expression profile during course of differentiation was consistent with a chondrocytic phenotype. Contrary to undifferentiated cells, differentiated hMSCs expressed iNOS and produced NO following stimulation with IL-1beta. Moreover, this induction of iNOS expression was corticosteroid insensitive. The spectrum of prostanoid production in differentiated hMSCs showed similarities to that of OA chondrocytes, with PGE2 as predominant product. We provide the first detailed characterization of NO and prostanoid production in hMSCs in the course of chondrogenic differentiation. Our results suggest that differentiated hMSCs form a valid model for chondrocytes concerning inflammatory mediator production. Furthermore, we propose that IL-1beta stimulation, leading to corticosteroid-insensitive NO synthesis, can be used as a sensitive marker of chondrogenesis. 相似文献