首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pluripotent stem cells within the adipose stromal compartment, termed adipose-derived stromal cells (ASCs), have the potential to differentiate into a variety of cell lineages both in vitro and in vivo. Imaging with expression of exogenous or endogenous green fluorescent protein (GFP) reporters facilitates the detailed research on ASCs’ physiological behavior during differentiation in vivo. This study was aimed to confirm whether ASCs expressing GFP still could be induced to chondrogenesis, and to compare the expression of exogenous or endogenous GFP in ASCs during chondrogenic differentiation. ASCs were harvested from inguinal fat pads of normal nude mice or GFP transgenic mice. Monolayer cultures of ASCs from normal mice were passaged three times and then infected with replication-incompetent adenoviral vectors carrying GFP genes. Allowed to recover for 5 days, Ad/GFP infected ASCs were transferred to chondrogenic medium as well as the ASCs from transgenic mice cultured in vitro over the same passages. The level of GFP in transgenic ASCs maintained stable till 3 months after chondrogenic induction. Whereas, high level of GFP expression in Ad/GFP infected ASCs could last for only 8 weeks and then declined stepwise. Important cartilaginous molecules such as SOX9, collagen type I, collagen type II, aggrecan, collagen type X were assessed using immunocytochemistry, RT-PCR, and Western Blot. The results indicated that no matter the GFP was exogenous or endogenous, it did not influence the chondrogenic potential of ASCs in comparison with the normal controls. Moreover, chondrogenic lineages from ASCs also underwent phenotypic modulation called dedifferentiation as a result of long-term culture in monolayers similar to normal chondrocytes.  相似文献   

2.
The use of adult mesenchymal stem cells (MSC) in cartilage tissue engineering has been implemented in the field of regenerative medicine and offers new perspectives in the generation of transplants for reconstructive surgery. The extracellular matrix (ECM) plays a key role in modulating function and phenotype of the embedded cells and contains the integrins as adhesion receptors mediating cell-cell and cell-matrix interactions. In our study, characteristic changes in integrin expression during the course of chondrogenic differentiation of MSC from bone marrow and foetal cord blood were compared. MSC were isolated from bone marrow biopsies and cord blood. During cell culture, chondrogenic differentiation was performed. The expression of integrins and their signalling components were analysed with microarray and immunohistochemistry in freshly isolated MSC and after chondrogenic differentiation. The fibronectin-receptor (integrin a5b1) was expressed by undifferentiated MSC, expression rose during chondrogenic differentiation in both types of MSC. The components of the vitronectin/osteopontin-receptors (avb5) were not expressed by freshly isolated MSC, expression rose with ongoing differentiation. Receptors for collagens (a1b1, a2b1, a3b1) were weakly expressed by undifferentiated MSC and were activated during differentiation. As intracellular signalling components integrin linked kinase (ILK) and CD47 showed increasing expression with ongoing differentiation. For all integrins, no significant differences could be found in the two types of MSC. Integrin-mediated signalling seems to play an important role in the generation and maintenance of the chondrocytic phenotype during chondrogenic differentiation. Especially the receptors for fibronectin, vitronectin, osteopontin and collagens might be involved in the generation of the ECM. Intracellularly, their signals might be transduced by ILK and CD47. To fully harness the potential of these cells, future studies should be directed to ascertain their cellular and molecular characteristics for optimal identification, isolation and expansion.  相似文献   

3.
This study addresses the role of bone morphogenetic protein‐7 (BMP‐7) in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. BM MSCs were expanded and differentiated in the presence or absence of BMP‐7 in monolayer and three‐dimensional cultures. After 3 days of stimulation, BMP‐7 significantly inhibited MSC growth in expansion cultures. When supplemented in commonly used induction media for 7–21 days, BMP‐7 facilitated both chondrogenic and osteogenic differentiation of MSCs. This was evident by specific gene and protein expression analyses using real‐time PCR, Western blot, histological, and immunohistochemical staining. BMP‐7 supplementation appeared to enhance upregulation of lineage‐specific markers, such as type II and type IX collagens (COL2A1, COL9A1) in chondrogenic and secreted phosphoprotein 1 (SPP1), osteocalcin (BGLAP), and osterix (SP7) in osteogenic differentiation. BMP‐7 in the presence of TGF‐β3 induced superior chondrocytic proteoglycan accumulation, type II collagen, and SOX9 protein expression in alginate and pellet cultures compared to either factor alone. BMP‐7 increased alkaline phosphatase activity and dose‐dependently accelerated calcium mineralization of osteogenic differentiated MSCs. The potential of BMP‐7 to promote adipogenesis of MSCs was restricted under osteogenic conditions, despite upregulation of adipocyte gene expression. These data suggest that BMP‐7 is not a singular lineage determinant, rather it promotes both chondrogenic and osteogenic differentiation of MSCs by co‐ordinating with initial lineage‐specific signals to accelerate cell fate determination. BMP‐7 may be a useful enhancer of in vitro differentiation of BM MSCs for cell‐based tissue repair. J. Cell. Biochem. 109: 406–416, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
《Cytotherapy》2014,16(4):440-453
Background aimsHyaline articular cartilage is a highly specialized tissue that offers a low-friction and wear-resistant interface for weight-bearing surface articulation in diarthrodial joints, but it lacks vascularity. It displays an inherent inability to heal when injured in a skeletally mature individual. Joint-preserving treatment procedures such as mosaicplasty, débridement, perichondrium transplantation and autologous chondrocyte implantation have shown variable results, and the average long-term result is sub-standard. Because of these limitations of the treatment methods and lack of intrinsic repair capacity of mature cartilage tissue, an alternative treatment approach is needed, and synovial mesenchymal stromal cells (SMSCs) represent an attractive therapeutic alternative because of their ex vivo proliferation capacity, multipotency and ability to undergo chondrogenesis.MethodsSMSCs were isolated from tissues obtained by arthroscopy using two types of biopsies. Ex vivo cell expansion was accomplished under static and dynamic culture followed by characterization of cells according to the International Society for Cellular Therapy guidelines. Kinetic growth models and metabolite analysis were used for understanding the growth profile of these cells.ResultsFor the first time, SMSCs were expanded in stirred bioreactors and achieved higher cell density in a shorter period of time compared with static culture or with other mesenchymal stromal cell sources.ConclusionsIn this study we were able to achieve (8.8 ± 0.2) × 105 cells within <2 weeks in dynamic culture under complete xeno-free conditions. Our results also provided evidence that after dynamic culture these cells had an up-regulation of chondrogenic genes, which can be a potential factor for articular cartilage regeneration in clinical settings.  相似文献   

5.
Articular cartilage exhibits little intrinsic repair capacity, and new tissue engineering approaches are being developed to promote cartilage regeneration using cellular therapies. The goal of this study was to examine the chondrogenic potential of adipose tissue-derived stromal cells. Stromal cells were isolated from human subcutaneous adipose tissue obtained by liposuction and were expanded and grown in vitro with or without chondrogenic media in alginate culture. Adipose-derived stromal cells abundantly synthesized cartilage matrix molecules including collagen type II, VI, and chondroitin 4-sulfate. Alginate cell constructs grown in chondrogenic media for 2 weeks in vitro were then implanted subcutaneously in nude mice for 4 and 12 weeks. Immunohistochemical analysis of these samples showed significant production of cartilage matrix molecules. These findings document the ability of adipose tissue-derived stromal cells to produce characteristic cartilage matrix molecules in both in vitro and in vivo models, and suggest the potential of these cells in cartilage tissue engineering.  相似文献   

6.
Adipose tissue-derived stromal cells (ADSC) have previously been shown to possess stem cell properties such as transdifferentiation and self-renewal. Because future clinical applications are likely to use these adult stem cells in an autologous fashion, we wished to establish and characterize rat ADSC for pre-clinical tests. In the present study, we showed that rat ADSC expressed stem cell markers CD34 and STRO-1 at passage 1 but only STRO-1 at passage 3. These cells could also be induced to differentiate into adipocytes, smooth muscle cells, and neuron-like cells, the latter of which expressed neuronal markers S100, nestin, and NF70. Isobutylmethylxanthine (IBMX), indomethacin (INDO), and insulin were the active ingredients in a previously established neural induction medium (NIM); however, here we showed that IBMX alone was as effective as NIM in the induction of morphological changes as well as neuronal marker expression. Finally, we showed that vascular smooth muscle cells could also be induced by either NIM or IBMX to differentiate into neuron-like cells that expressed NF70.  相似文献   

7.
Electromagnetic fields (EMF) have been shown to exert beneficial effects on cartilage tissue. Nowadays, differentiated human mesenchymal stem cells (hMSCs) are discussed as an alternative approach for cartilage repair. Therefore, the aim of this study was to examine the impact of EMF on hMSCs during chondrogenic differentiation. HMSCs at cell passages five and six were differentiated in pellet cultures in vitro under the addition of human fibroblast growth factor 2 (FGF‐2) and human transforming growth factor‐β3 (TGF‐β3). Cultures were exposed to homogeneous sinusoidal extremely low‐frequency magnetic fields (5 mT) produced by a solenoid or were kept in a control system. After 3 weeks of culture, chondrogenesis was assessed by toluidine blue and safranin‐O staining, immunohistochemistry, quantitative real‐time polymerase chain reaction (PCR) for cartilage‐specific proteins, and a DMMB dye‐binding assay for glycosaminoglycans. Under EMF, hMSCs showed a significant increase in collagen type II expression at passage 6. Aggrecan and SOX9 expression did not change significantly after EMF exposure. Collagen type X expression decreased under electromagnetic stimulation. Pellet cultures at passage 5 that had been treated with EMF provided a higher glycosaminoglycan (GAG)/DNA content than cultures that had not been exposed to EMF. Chondrogenic differentiation of hMSCs may be improved by EMF regarding collagen type II expression and GAG content of cultures. EMF might be a way to stimulate and maintain chondrogenesis of hMSCs and, therefore, provide a new step in regenerative medicine regarding tissue engineering of cartilage. Bioelectromagnetics 32:283–290, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Adipose-derived stromal cells (ADSCs) are multipotent cells which, in the presence of appropriate stimuli, can differentiate into various lineages such as the osteogenic, adipogenic and chondrogenic. In this study, we investigated the effect of transforming growth factor beta 1 (TGF-β1) in comparison to hydrolyzed fish collagen in terms of the chondrogenic differentiation potential of ADSCs. ADSCs were isolated from subcutaneous fat of horses by liposuction. Chondrogenesis was investigated using a pellet culture system. The differentiation medium was either supplemented with TGF-β1 (5 ng/ml) or fish collagen (0.5 mg/ml) for a 3 week period. After the 3 weeks in vitro differentiation, RT-PCR and histological staining for proteoglycan synthesis and type II collagen were performed to evaluate the degree of chondrogenic differentiation and the formation of cartilaginous extracellular matrix (ECM). The differentiation of ADSCs induced by TGF-β1 showed a high expression of glycosaminoglycan (GAG). Histological analysis of cultures stimulated by hydrolyzed fish collagen demonstrated an even higher GAG expression than cultures stimulated under standard conditions by TGF-β1. The expression of cartilage-specific type II collagen and Sox9 was about the same in both stimulated cultures. In this study, chondrogenesis was as effectively induced by hydrolyzed fish collagen as it was successfully induced by TGF-β1. These findings demonstrated that hydrolyzed fish collagen alone has the potential to induce and maintain ADSCs-derived chondrogenesis. These results support the application of ADSCs in equine veterinary tissue engineering, especially for cartilage repair.  相似文献   

9.
《Cytotherapy》2014,16(7):893-905
Background aimsCord blood (CB) and amniotic fluid (AF) could represent new and attractive mesenchymal stromal cell (MSC) sources, but their potential therapeutic applications are still limited by lack of standardized protocols for isolation and differentiation. In particular, chondrogenic differentiation has never been deeply investigated.MethodsMSCs were obtained from CB and AF samples collected during cesarean sections at term and compared for their biological and differentiation properties, with particular interest in cartilage differentiation, in which quantitative real-time polymerase chain reaction and immunohistochemical analyses were performed to evaluate the expression of type 2 collagen, type 10 collagen, SRY-box9 and aggrecan.ResultsWe were able to isolate MSCs from 12 of 30 (40%) and 5 of 20 (25%) CB and AF units, respectively. Fluorescence in situ hybridization analysis indicated the fetal origin of isolated MSC strains. Both populations expressed mesenchymal but not endothelial and hematopoietic markers, even though we observed a lower expression of human leukocyte antigen (HLA) I in CB-MSCs. No differences in proliferation rate and cell cycle analysis could be detected. After osteogenic induction, both populations showed matrix mineralization and typical marker expression. Under chondrogenic conditions, pellets derived from CB-MSCs, in contrast with AF-MSCs pellets, were significantly larger, showed cartilage-like morphology and resulted positive for chondrocyte-associated markers, such as type 2 collagen, type 10 collagen, SRY-box9 and aggrecan.ConclusionsOur results show that CB-MSCs and AF-MSCs collected at term differ from each other in their biological and differentiation properties. In particular, only CB-MSCs showed a clear chondrogenic potential and thus could represent an ideal candidate for cartilage-tissue engineering.  相似文献   

10.
Availability of human chondrocytes is a major limiting factor regarding drug discovery projects and tissue replacement therapies. As an alternative human mesenchymal stem cells (hMSCs) from bone marrow are taken into consideration as they can differentiate along the chondrogenic lineage. However, it remains to be shown whether they could form a valid model for primary chondrocytes with regards to inflammatory mediator production, like nitric oxide (NO) and prostanoids. We therefore investigated the production of NO and prostanoids in hMSCs over the course of chondrogenic differentiation and in response to IL-1beta using primary OA chondrocytes as reference. Chondrogenic differentiation was monitored over 28 days using collagen I, collagen II, and collagen X expression levels. Expression levels of inducible nitric oxide synthase (iNOS), levels of NO, and prostanoids were assessed using PCR, Griess assay, and GC/MS/MS, respectively. The hMSCs collagen expression profile during course of differentiation was consistent with a chondrocytic phenotype. Contrary to undifferentiated cells, differentiated hMSCs expressed iNOS and produced NO following stimulation with IL-1beta. Moreover, this induction of iNOS expression was corticosteroid insensitive. The spectrum of prostanoid production in differentiated hMSCs showed similarities to that of OA chondrocytes, with PGE2 as predominant product. We provide the first detailed characterization of NO and prostanoid production in hMSCs in the course of chondrogenic differentiation. Our results suggest that differentiated hMSCs form a valid model for chondrocytes concerning inflammatory mediator production. Furthermore, we propose that IL-1beta stimulation, leading to corticosteroid-insensitive NO synthesis, can be used as a sensitive marker of chondrogenesis.  相似文献   

11.
Human adipose-derived stromal cells (hASCs) possess the potential for chondrogenic differentiation. Recent studies imply that this differentiation process may be enhanced by culturing the cells in low oxygen tension in combination with three-dimensional (3D) scaffolds. We report the evaluation of the chondrogenic potential of hASC pellets in 5 and 21 % O2 and as cell-scaffold constructs using a collagen I/III scaffold with chemical induction using TGF-β3. hASCs from four human donors were cultured both in a micromass pellet system and in 3D collagen I/III scaffolds in either 5 or 21 % O2. Chondrogenesis was evaluated by quantitative gene expression analysis of aggrecan, SOX9, collagen I, II and X and histological evaluation with H&E and toluidine blue staining. Induced pellets cultured in 5 % O2 showed increased peripheral cellularity and matrix deposition compared with 21 % O2. Induced pellets cultured in 5 % O2 had increased control-adjusted gene expression of aggrecan, SOX9 and collagen I and decreased collagen X compared with 21 % O2 cultures. Induced pellets had higher gene expression of aggrecan, SOX9, collagen I, II and X and increased ratios of collagen II/I and collagen II/X compared with controls. As for pellets, scaffold cultures showed cellularity and matrix deposition organized in a zonal manner as a function of the oxygen tension, with a cartilage-like morphology and matrix deposition peripherally in the 5 % O2 group and a more centrally located matrix in the 21 % O2 group. There were no differences in histology and gene expressions between pellet and scaffold cultures. Five percent O2 in combination with chondrogenic culture medium stimulated chondrogenic differentiation of hASCs in vitro. We observed similar patterns of differentiation and matrix disposition in pellet and scaffold cultures.  相似文献   

12.
目的:研究脂肪干细胞(ADSCs)向雪旺细胞的诱导分化,为神经组织工程提供新的种子细胞。方法:取SD大鼠项背处的皮下脂肪,分离出脂肪干细胞并培养传代,流式细胞仪检测细胞表面特异标记CD29,CD34,CD44,CD45,CD90,以评价干细胞的生物学特性;采用b-FGF和forskolin等诱导脂肪干细胞向雪旺细胞分化,光镜观察诱导后细胞形态的变化;免疫荧光染色鉴定雪旺细胞特异性标记物S100、P75和GFAP的表达;PCR检测诱导前后雪旺细胞特异性标记物S100、P75的表达。结果:分离培养的鼠脂肪干细胞CD29、CB90表达呈阳性,而CD34、CD44和CD45表达呈阴性,具有脂肪干细胞的生物学特性;脂肪干细胞经过胶质细胞生长因子的作用,光镜下发现诱导的细胞形态与雪旺细胞相似;免疫荧光染色S100、P75和GFAP阳性;RT-PCR结果显示诱导的雪旺细胞标记物S100和P75表达上调。结论:脂肪干细胞可诱导分化成雪旺细胞,其表型和分子特征与雪旺细胞相似,诱导分化的脂肪干细胞是一种理想的神经组织工程的种子细胞。  相似文献   

13.
14.
This study explored the role played by combined ICA and bone mesenchymal stem cells (BMSCs) in repairing rabbit knee cartilage defects. Firstly, rabbit BMSCs were isolated and used to construct an in vitro cellular model of oxygen‐glucose deprivation/reoxygenation (OGD/R). Subsequently, ICA processing, Alcian blue staining, immunofluorescence and Western blot studies were performed to evaluate the ability of BMSCs to display signs of chondrogenic differentiation. Furthermore, a rabbit knee cartilage injury model was established in vivo. International Cartilage Repair Society (ICRS) macroscopic evaluations, H&E, Alcian blue and EdU staining, as well as immunohistochemistry, were analysed cartilage repair and pathological condition of the knee cartilage tissue. Our in vitro results showed that ICA promoted the chondrogenic differentiation of BMSCs, as well as aggrecan (AGR), bone morphogenetic protein 2 (BMP2) and COL2A1 protein expression in BMSCs. In vivo experiments showed that rabbits in the BMSCs or ICA treatment group had higher ICRS scores and displayed a better restoration of cartilage‐like tissue and chondrocyte expression on the surface of their cartilage defects. In conclusion, ICA or BMSCs alone could repair rabbit knee cartilage damage, and combined treatment with ICA and BMSCs showed a better ability to repair rabbit knee cartilage damage.  相似文献   

15.
16.
17.
Recent studies have shown that liposuction aspirates from rat, rabbit, mouse, and human sources contain pluripotent adipose tissue-derived stromal cells (ASCs) that can differentiate into various mesodermal cell types, including osteoblasts, myoblasts, chondroblasts, and preadipocytes. To develop a research model for autologous bone tissue engineering, we isolated ASCs from human liposuction aspirates (hASCs) and induced their osteogenic differentiation in three-dimensional poly(dl-lactic-co-glycolic acid) (PLGA) scaffolds. Human liposuction aspirates were proteolytically digested and centrifuged to obtain hASCs. After primary culture in control media and expansion to three passages, the cells were seeded in two-dimensional plates or three-dimensional PLGA scaffolds and cultured in osteogenic media for 4 weeks. In two-dimensional culture, osteogenesis was assessed by RT-PCR analysis of the osteogenic-specific bone sialoprotein mRNA, by alkaline phosphatase staining, and by von Kossa staining. In three-dimensional culture, osteogenesis was assessed by von Kossa and alizarine red S staining at 1, 2, and 4 weeks following osteogenic induction. hASCs incubated in two-dimensional osteogenic media stained positively for alkaline phosphatase and with von Kossa stain after 2 weeks of differentiation. Expression of the osteogenesis-specific bone sialoprotein gene was detected by RT-PCR after 2 weeks of differentiation. PLGA scaffolds seeded with hASCs showed multiple calcified extracellular matrix nodules by von Kossa and alizarine red S staining after 2 weeks of differentiation. In conclusion, the authors identified an osteogenic potential of hASCs and demonstrated osteogenic differentiation of hASCs into an osteogenic lineage in three-dimensional PLGA scaffolds.  相似文献   

18.
The objective of this study was to explore the effects of intermittent hydrostatic pressure (IHP) on the chondrogenic differentiation of cartilage progenitor cells (CPCs) cultivated in alginate beads. CPCs were isolated from the knee joint cartilage of rabbits, and infrapatellar fat pad‐derived stem cells (FPSCs) and chondrocytes (CCs) were included as the control cell types. Cells embedded in alginate beads were treated with IHP at 5 Mpa and 0.5 Hz for 4 h/day for 1, 2, or 4 weeks. The cells' migratory and proliferative capacities were evaluated using the scratch and Live/Dead assays, respectively. Hematoxylin and eosin staining, safranin O staining, and immunohistochemical staining were performed to determine the effects of IHP on the synthesis of extracellular matrix (ECM) proteins. Real‐time polymerase chain reaction analysis was performed to measure the expression of genes related to chondrogenesis. The scratch and Live/Dead assays revealed that IHP significantly promoted the migration and proliferation of FPSCs and CPCs to different extents. The staining experiments showed greater production of cartilage ECM components (glycosaminoglycans and collagen II) by cells exposed to IHP, and the gene expression analysis demonstrated that IHP stimulated the expression of chondrocyte‐related genes. Importantly, these effects of IHP were more prominent in CPCs than in FPSCs and CCs. Considering all of our experimental results combined, we conclude that CPCs demonstrated a stronger chondrogenic differentiation capacity than the FPSCs and CCs under stimulation with IHP. Thus, the use of CPCs, combined with mechanical stimulation, may represent a valuable strategy for cartilage tissue engineering.  相似文献   

19.
Nasal cartilage cells from 21-day-old rat fetuses were cultured at high density in the presence of ascorbic acid and β-glycerophosphate over a 12-day period. Immediately after plating, the cells exhibited a fibroblastic morphology, lost their chondrocyte phenotype and expressed type I collagen. On day 3, clusters of enlarged polygonal cells were found. These cell clusters synthetised type II collagen and formed an alcian-blue-positive matrix. The following days, a progressive increase in the number of cells positive for type 11 collagen was noted and, on day 8, typical cartilaginous nodules were formed. These nodules increased in size and number, spreading outward, laying down a dense matrix which mineralized. Light and electron microscopy observations of cross-sections of nodules confirmed the cartilaginous nature of this tissue formed in vitro with typical chondrocytes embedded in a hyaline matrix. Furthermore, at the electron microscopic level, matrix vesicles were seen in extracellular matrix associated with the initiation of mineralization. Typical rod-like crystals were present in the intercellular spaces along the collagen fibers. These results indicated that in a specific environment, dedifferentiated chondrocytes were able to redifferentiate and to form nodular structures with morphological ultrastructure of calcified cartilage observed in vivo.  相似文献   

20.
Cell-based therapies are used to treat bone defects. We recently described that human multipotent adipose-derived stem (hMADS) cells, which exhibit a normal karyotype, self renewal, and the maintenance of their differentiation properties, are able to differentiate into different lineages. Herein, we show that hMADS cells can differentiate into osteocyte-like cells. In the presence of a low amount of serum and EGF, hMADS cells express specific molecular markers, among which alkaline phosphatase, CBFA-1, osteocalcin, DMP1, PHEX, and podoplanin and develop functional gap-junctions. When loaded on a hardening injectable bone substitute (HIBS) biomaterial and injected subcutaneously into nude mice, hMADS cells develop mineralized woven bone 4 weeks after implantation. Thus hMADS cells represent a valuable tool for pharmacological and biological studies of osteoblast differentiation in vitro and bone development in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号