首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seo JS  Keum YS  Hu Y  Lee SE  Li QX 《Biodegradation》2007,18(1):123-131
Burkholderia sp. C3 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Hilo, Hawaii, USA, and studied for its degradation of phenanthrene as a sole carbon source. The initial 3,4-C dioxygenation was faster than 1,2-C dioxygenation in the first 3-day culture. However, 1-hydroxy-2-naphthoic acid derived from 3,4-C dioxygenation degraded much slower than 2-hydroxy-1-naphthoic acid derived from 1,2-C dioxygenation. Slow degradation of 1-hydroxy-2-naphthoic acid relative to 2-hydroxy-1-naphthoic acid may trigger 1,2-C dioxygenation faster after 3 days of culture. High concentrations of 5,6-␣and 7,8-benzocoumarins indicated that meta-cleavage was the major degradation mechanism of phenanthrene-1,2- and -3,4-diols. Separate cultures with 2-hydroxy-1-naphthoic acid and 1-hydroxy-2-naphthoic acid showed that the degradation rate of the former to naphthalene-1,2-diol was much faster than that of the latter. The two upper metabolic pathways of phenanthrene are converged into naphthalene-1,2-diol that is further metabolized to 2-carboxycinnamic acid and 2-hydroxybenzalpyruvic acid by ortho- and meta-cleavages, respectively. Transformation of naphthalene-1,2-diol to 2-carboxycinnamic acid by this strain represents the first observation of ortho-cleavage of two rings-PAH-diols by a Gram-negative species.  相似文献   

2.
The chrysene-degrading bacterium Pseudoxanthomonas sp. PNK-04 was isolated from a coal sample. Three novel metabolites, hydroxyphenanthroic acid, 1-hydroxy-2-naphthoic acid and salicylic acid, were identified by TLC, HPLC and MS. Key enzyme activities, namely 1-hydroxy-2-naphthoate hydroxylase, 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-1,2-dioxygenase, were noted in the cell-free extract. These results suggest that chrysene is catabolized via hydroxyphenanthroic acid, 1-hydroxy-2-naphthoic acid, salicylic acid and catechol. The terminal aromatic metabolite, catechol, is then catabolized by catechol-1,2-dioxygenase to cis,cis-muconic acid, ultimately forming TCA cycle intermediates. Based on these studies, the proposed catabolic pathway for chrysene degradation by strain PNK-04 is chrysene → hydroxyphenanthroic acid → 1-hydroxy-2-naphthoic acid → 1,2-dihydroxynaphthalene → salicylic acid → catechol →cis,cis-muconic acid.  相似文献   

3.
Stenotrophomonas sp. RMSK capable of degrading acenaphthylene as a sole source of carbon and energy was isolated from coal sample. Metabolites produced were analyzed and characterized by TLC, HPLC and mass spectrometry. Identification of naphthalene-1,8-dicarboxylic acid, 1-naphthoic acid, 1,2-dihydroxynaphthalene, salicylate and detection of key enzymes namely 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-1,2-dioxygenase in the cell free extract suggest that acenaphthylene metabolized via 1,2-dihydroxynaphthalene, salicylate and catechol. The terminal metabolite, catechol was then metabolized by catechol-1,2-dioxygenase to cis,cis-muconic acid, ultimately forming TCA cycle intermediates. Based on these studies, the proposed metabolic pathway in strain RMSK is, acenaphthylene → naphthalene-1,8-dicarboxylic acid → 1-naphthoic acid → 1,2-dihydroxynaphthalene → salicylic acid → catechol → cis,cis-muconic acid.  相似文献   

4.
Three aerobic bacterial consortia GY2, GS3 and GM2 were enriched from polycyclic aromatic hydrocarbon-contaminated soils with water-silicone oil biphasic systems. An aerobic bacterial strain utilizing phenanthrene as the sole carbon and energy source was isolated from bacterial consortium GY2 and identified as Sphingomonas sp. strain GY2B. Within 48 h and at 30°C the strain metabolized 99.1% of phenanthrene (100 mg/l) added to batch culture in mineral salts medium and the cell number increased by about 40-fold. Three metabolites 1-hydroxy-2-naphthoic acid, 1-naphthol and salicylic acid, were identified by gas chromatographic mass spectrometry and UV–visible spectroscopy analysis. A degradation pathway was proposed based on the identified metabolites. In addition to phenanthrene, strain GY2B could use other aromatic compounds such as naphthalene, 2-naphthol, salicylic acid, catechol, phenol, benzene and toluene as a sole source of carbon and energy.  相似文献   

5.
The present study describes the assimilation of phenanthrene by an aerobic bacterium, Ochrobactrum sp. strain PWTJD, isolated from municipal waste-contaminated soil sample utilizing phenanthrene as a sole source of carbon and energy. The isolate was identified as Ochrobactrum sp. based on the morphological, nutritional and biochemical characteristics as well as 16S rRNA gene sequence analysis. A combination of chromatographic analyses, oxygen uptake assay and enzymatic studies confirmed the degradation of phenanthrene by the strain PWTJD via 2-hydroxy-1-naphthoic acid, salicylic acid and catechol. The strain PWTJD could also utilize 2-hydroxy-1-naphthoic acid and salicylic acid, while the former was metabolized by a ferric-dependent meta-cleavage dioxygenase. In the lower pathway, salicylic acid was metabolized to catechol and was further degraded by catechol 2,3-dioxygenase to 2-hydroxymuconoaldehyde acid, ultimately leading to tricarboxylic acid cycle intermediates. This is the first report of the complete degradation of a polycyclic aromatic hydrocarbon molecule by Gram-negative Ochrobactrum sp. describing the involvement of the meta-cleavage pathway of 2-hydroxy-1-naphthoic acid in phenanthrene assimilation.  相似文献   

6.
Sphingomonas sp. strain P2, which is capable of utilizing phenanthrene as a sole carbon and energy source, was isolated from petroleum-contaminated soil in Thailand. Gas chromatography-mass spectrometry and (1)H and (13)C nuclear magnetic resonance analyses revealed two novel metabolites from the phenanthrene degradation pathway. One was identified as 5,6-benzocoumarin, which was derived by dioxygenation at the 1- and 2-positions of phenanthrene, and the other was determined to be 1,5-dihydroxy-2-naphthoic acid. Other metabolites from phenanthrene degradation were identified as 7, 8-benzocoumarin, 1-hydroxy-2-naphthoic acid and coumarin. From these results, it is suggested that strain P2 can degrade phenanthrene via dioxygenation at both 1,2- and 3,4-positions followed by meta-cleavage.  相似文献   

7.
Pseudomonas sp. strain PP2 isolated in our laboratory efficiently metabolizes phenanthrene at 0.3% concentration as the sole source of carbon and energy. The metabolic pathways for the degradation of phenanthrene, benzoate and p-hydroxybenzoate were elucidated by identifying metabolites, biotransformation studies, oxygen uptake by whole cells on probable metabolic intermediates, and monitoring enzyme activities in cell-free extracts. The results obtained suggest that phenanthrene degradation is initiated by double hydroxylation resulting in the formation of 3,4-dihydroxyphenanthrene. The diol was finally oxidized to 2-hydroxymuconic semialdehyde. Detection of 1-hydroxy-2-naphthoic acid, alpha-naphthol, 1,2-dihydroxy naphthalene, and salicylate in the spent medium by thin layer chromatography; the presence of 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-2,3-dioxygenase activity in the extract; O(2) uptake by cells on alpha-naphthol, 1,2-dihydroxynaphthalene, salicylaldehyde, salicylate and catechol; and no O(2) uptake on o-phthalate and 3,4-dihydroxybenzoate supports the novel route of metabolism of phenanthrene via 1-hydroxy-2-naphthoic acid --> [alpha-naphthol] --> 1,2-dihydroxy naphthalene --> salicylate --> catechol. The strain degrades benzoate via catechol and cis,cis-muconic acid, and p-hydroxybenzoate via 3,4-dihydroxybenzoate and 3-carboxy- cis,cis-muconic acid. Interestingly, the culture failed to grow on naphthalene. When grown on either hydrocarbon or dextrose, the culture showed good extracellular biosurfactant production. Growth-dependent changes in the cell surface hydrophobicity, and emulsification activity experiments suggest that: (1) production of biosurfactant was constitutive and growth-associated, (2) production was higher when cells were grown on phenanthrene as compared to dextrose and benzoate, (3) hydrocarbon-grown cells were more hydrophobic and showed higher affinity towards both aromatic and aliphatic hydrocarbons compared to dextrose-grown cells, and (4) mid-log-phase cells were significantly (2-fold) more hydrophobic than stationary phase cells. Based on these results, we hypothesize that growth-associated extracellular biosurfactant production and modulation of cell surface hydrophobicity plays an important role in hydrocarbon assimilation/uptake in Pseudomonas sp. strain PP2.  相似文献   

8.
Sinorhizobium sp. C4 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Hilo, HI, USA. This isolate can utilize phenanthrene as a sole carbon source. Sixteen metabolites of phenanthrene were isolated and identified, and the metabolic map was proposed. Degradation of phenanthrene was initiated by dioxygenation on 1,2- and 3,4-C, where the 3,4-dioxygenation was dominant. Subsequent accumulation of 5,6- and 7,8-benzocoumarins confirmed dioxygenation on multiple positions and extradiol cleavage of corresponding diols. The products were further transformed to 1-hydroxy-2-naphthoic acid and 2-hydroxy-1-naphthoic acid then to naphthalene-1,2-diol. In addition to the typical degradation pathways, intradiol cleavage of phenanthrene-3,4-diol was proposed based on the observation of naphthalene-1,2-dicarboxylic acid. Degradation of naphthalene-1,2-diol proceeded through intradiol cleavage to produce trans-2-carboxycinnamic acid. Phthalic acid, 4,5-dihydroxyphthalic acid, and protocatechuic acid were identified as probable metabolites of trans-2-carboxycinnamic acid, but no trace salicylic acid or its metabolites were found. This is the first detailed study of PAH metabolism by a Sinorhizobium species. The results give a new insight into microbial degradation of PAHs.  相似文献   

9.
Naphthalene was used as a model compound in order to study the anaerobic pathway of polycyclic aromatic hydrocarbon degradation. Previously we had determined that carboxylation is an initial step for anaerobic metabolism of naphthalene, but no other intermediate metabolites were identified (Zhang & Young 1997). In the present study we further elucidate the pathway with the identification of six novel naphthalene metabolites detected when cultures were fed naphthalene in the presence of its analog 1-fluoronaphthalene. Results from cultures supplemented with either deuterated naphthalene or non-deuterated naphthalene plus [13C]bicarbonate confirm that the metabolites originated from naphthalene. Three of these metabolites were identified by comparison with the following standards: 2-naphthoic acid (2-NA), 5,6,7,8-tetrahydro-2-naphthoic acid, and decahydro-2-naphthoic acid. The presence of 5,6,7,8-tetrahydro-2-NA as a metabolite of naphthalene degradation indicates that the first reduction reaction occurs at the unsubstituted ring, rather than the carboxylated ring. The overall results suggest that after the initial carboxylation of naphthalene, 2-NA is sequentially reduced to decahydro-2-naphthoic acid through 5 hydrogenation reactions, each of which eliminated one double bond. Incorporation of deuterium atoms from D2O into 5,6,7,8-tetrahydro-2-naphthoic acid suggests that water is the proton source for hydrogenation.  相似文献   

10.
A phenanthrene (PHE) degrading bacterium strain BZ-3 was isolated from the crude oil contaminated soil in Binzhou, China. The isolate was identified as Pseudomonas sp. BZ-3 on the basis of 16S rRNA gene sequence. Various experiments were conducted to investigate the effect of pH, salinity and PHE concentration on the degradation efficiency of PHE. The degradation efficiency and degradation metabolites of PHE were detected by using GC–MS and HPLC-MS analyses. The strain BZ-3 could degrade 75% of PHE at an initial concentration of 50 mg/L under 20 g/L salinity in 7 days. PHE degradation kinetics was estimated in a first-order degradation rate model and the rate coefficient was calculated as 0.108 d−1. On the basis of the identified degradation metabolites, the strain BZ-3 could degrade PHE in the salicylate metabolic pathway. In a mixture system consisting of PHE and other PAHs including naphthalene (NA), anthracene (ANTH), and pyrene (PYR), the strain BZ-3 showed an efficiently degradation capability. Further study showed that the strain BZ-3 could also use NA, ANTH, PYR, xylene, 1-hydroxy-2-naphthoic acid, and hexane as the sole carbon and energy source, but did not grow on nitrobenzene-containing medium.  相似文献   

11.
Anaerobic degradation of 2-methylnaphthalene was investigated with a sulfate-reducing enrichment culture. Metabolite analyses revealed two groups of degradation products. The first group comprised two succinic acid adducts which were identified as naphthyl-2-methyl-succinic acid and naphthyl-2-methylene-succinic acid by comparison with chemically synthesized reference compounds. Naphthyl-2-methyl-succinic acid accumulated to 0.5 μM in culture supernatants. Production of naphthyl-2-methyl-succinic acid was analyzed in enzyme assays with dense cell suspensions. The conversion of 2-methylnaphthalene to naphthyl-2-methyl-succinic acid was detected at a specific activity of 0.020 ± 0.003 nmol min−1 mg of protein−1 only in the presence of cells and fumarate. We conclude that under anaerobic conditions 2-methylnaphthalene is activated by fumarate addition to the methyl group, as is the case in anaerobic toluene degradation. The second group of metabolites comprised 2-naphthoic acid and reduced 2-naphthoic acid derivatives, including 5,6,7,8-tetrahydro-2-naphthoic acid, octahydro-2-naphthoic acid, and decahydro-2-naphthoic acid. These compounds were also identified in an earlier study as products of anaerobic naphthalene degradation with the same enrichment culture. A pathway for anaerobic degradation of 2-methylnaphthalene analogous to that for anaerobic toluene degradation is proposed.  相似文献   

12.
Anaerobic degradation of 2-methylnaphthalene was investigated with a sulfate-reducing enrichment culture. Metabolite analyses revealed two groups of degradation products. The first group comprised two succinic acid adducts which were identified as naphthyl-2-methyl-succinic acid and naphthyl-2-methylene-succinic acid by comparison with chemically synthesized reference compounds. Naphthyl-2-methyl-succinic acid accumulated to 0.5 microM in culture supernatants. Production of naphthyl-2-methyl-succinic acid was analyzed in enzyme assays with dense cell suspensions. The conversion of 2-methylnaphthalene to naphthyl-2-methyl-succinic acid was detected at a specific activity of 0.020 +/- 0.003 nmol min(-1) mg of protein(-1) only in the presence of cells and fumarate. We conclude that under anaerobic conditions 2-methylnaphthalene is activated by fumarate addition to the methyl group, as is the case in anaerobic toluene degradation. The second group of metabolites comprised 2-naphthoic acid and reduced 2-naphthoic acid derivatives, including 5,6,7,8-tetrahydro-2-naphthoic acid, octahydro-2-naphthoic acid, and decahydro-2-naphthoic acid. These compounds were also identified in an earlier study as products of anaerobic naphthalene degradation with the same enrichment culture. A pathway for anaerobic degradation of 2-methylnaphthalene analogous to that for anaerobic toluene degradation is proposed.  相似文献   

13.
Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture was studied by substrate utilization tests and identification of metabolites by gas chromatography-mass spectrometry. In substrate utilization tests, the culture was able to oxidize naphthalene, 2-methylnaphthalene, 1- and 2-naphthoic acids, phenylacetic acid, benzoic acid, cyclohexanecarboxylic acid, and cyclohex-1-ene-carboxylic acid with sulfate as the electron acceptor. Neither hydroxylated 1- or 2-naphthoic acid derivatives and 1- or 2-naphthol nor the monoaromatic compounds ortho-phthalic acid, 2-carboxy-1-phenylacetic acid, and salicylic acid were utilized by the culture within 100 days. 2-Naphthoic acid accumulated in all naphthalene-grown cultures. Reduced 2-naphthoic acid derivatives could be identified by comparison of mass spectra and coelution with commercial reference compounds such as 1,2,3,4-tetrahydro-2-naphthoic acid and chemically synthesized decahydro-2-naphthoic acid. 5,6,7,8-Tetrahydro-2-naphthoic acid and octahydro-2-naphthoic acid were tentatively identified by their mass spectra. The metabolites identified suggest a stepwise reduction of the aromatic ring system before ring cleavage. In degradation experiments with [1-13C]naphthalene or deuterated D8-naphthalene, all metabolites mentioned derived from the introduced labeled naphthalene. When a [13C]bicarbonate-buffered growth medium was used in conjunction with unlabeled naphthalene, 13C incorporation into the carboxylic group of 2-naphthoic acid was shown, indicating that activation of naphthalene by carboxylation was the initial degradation step. No ring fission products were identified.  相似文献   

14.
Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture   总被引:5,自引:0,他引:5  
Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture was studied by substrate utilization tests and identification of metabolites by gas chromatography-mass spectrometry. In substrate utilization tests, the culture was able to oxidize naphthalene, 2-methylnaphthalene, 1- and 2-naphthoic acids, phenylacetic acid, benzoic acid, cyclohexanecarboxylic acid, and cyclohex-1-ene-carboxylic acid with sulfate as the electron acceptor. Neither hydroxylated 1- or 2-naphthoic acid derivatives and 1- or 2-naphthol nor the monoaromatic compounds ortho-phthalic acid, 2-carboxy-1-phenylacetic acid, and salicylic acid were utilized by the culture within 100 days. 2-Naphthoic acid accumulated in all naphthalene-grown cultures. Reduced 2-naphthoic acid derivatives could be identified by comparison of mass spectra and coelution with commercial reference compounds such as 1,2,3, 4-tetrahydro-2-naphthoic acid and chemically synthesized decahydro-2-naphthoic acid. 5,6,7,8-Tetrahydro-2-naphthoic acid and octahydro-2-naphthoic acid were tentatively identified by their mass spectra. The metabolites identified suggest a stepwise reduction of the aromatic ring system before ring cleavage. In degradation experiments with [1-(13)C]naphthalene or deuterated D(8)-naphthalene, all metabolites mentioned derived from the introduced labeled naphthalene. When a [(13)C]bicarbonate-buffered growth medium was used in conjunction with unlabeled naphthalene, (13)C incorporation into the carboxylic group of 2-naphthoic acid was shown, indicating that activation of naphthalene by carboxylation was the initial degradation step. No ring fission products were identified.  相似文献   

15.
The present study describes the phenanthrene-degrading activity of Sphingomonas paucimobilis 20006FA and its ability to promote the bioavailability of phenanthrene. S. paucimobilis 20006FA was isolated from a phenanthrene-contaminated soil microcosm. The strain was able to grow in liquid mineral medium saturated with phenanthrene as the sole carbon source, showing high phenanthrene elimination (52.9% of the supplied phenanthrene within 20 days). The accumulation of 1-hydroxy-2-naphthoic acid and salicylic acid as major phenanthrene metabolites and the capacity of the strain to grow with sodium salicylate as the sole source of carbon and energy indicated that the S. paucimobilis 20006FA possesses a complete phenanthrene degradation pathway. However, under the studied conditions, the strain was able to mineralize only the 10% of the consumed phenanthrene. Investigations on the cell ability to promote bioavailability of phenanthrene showed that the S. paucimobilis strain 20006FA exhibited low cell hydrophobicity (0.13), a pronounced chemotaxis toward phenanthrene, and it was able to reduce the surface tension of mineral liquid medium supplemented with phenanthrene as sole carbon source. Scanning electron micrographs revealed that: (1) in suspension cultures, cells formed flocks and showed small vesicles on the cell surface and (2) cells were also able to adhere to phenanthrene crystals and to produce biofilms. Clearly, the strain seems to exhibit two different mechanisms to enhance phenanthrene bioavailability: biosurfactant production and adhesion to the phenanthrene crystals.  相似文献   

16.
Pseudomonas putida CSV86, a soil bacterium, grows on 1- and 2-methylnaphthalene as the sole source of carbon and energy. In order to deduce the pathways for the biodegradation of 1- and 2-methylnaphthalene, metabolites were isolated from the spent medium and purified by thin layer chromatography. Emphasis has been placed on the structural characterisation of isolated intermediates by GC-MS, demonstration of enzyme activities in the cell free extracts and measurement of oxygen uptake by whole cells in the presence of various probable metabolic intermediates. The data obtained from such a study suggest the possibility of occurrence of multiple pathways in the degradation of 1- and 2-methylnaphthalene. We propose that, in one of the pathways, the aromatic ring adjacent to the one bearing the methyl moiety is oxidized leading to the formation of methylsalicylates and methylcatechols. In another pathway the methyl side chain is hydroxylated to-CH2OH which is further converted to-CHO and-COOH resulting in the formation of naphthoic acid as the end product. In addition to this, 2-hydroxymethylnaphthalene formed by the hydroxylation of the methyl group of 2-methylnaphthalene undergoes aromatic ring hydroxylation. The resultant dihydrodiol is further oxidised by a series of enzyme catalysed reactions to form 4-hydroxymethyl catechol as the end product of the pathway.  相似文献   

17.
Cultures of Mycobacterium vanbaalenii strain PYR-1 grown in mineral salts medium and nutrients in the presence of benz[a]anthracene metabolized 15% of the added benz[a]anthracene after 12days of incubation. Neutral and acidic ethyl acetate extractable metabolites were isolated and characterized by high performance liquid chromatography (HPLC) and uv–visible absorption, gas chromatography/mass (GC/MS) and nuclear magnetic resonance (NMR) spectral analysis. Trimethylsilylation of the metabolitesfollowed by GC/MS analysis facilitated identification of metabolites. The characterization of metabolites indicated that M. vanbaalenii initiated attack of benz[a]anthracene at the C-1,2-, C-5,6-, C-7,12- and C-10,11-positions to form dihydroxylated and methoxylated intermediates. The major site of enzymatic attack was in the C-10, C-11 positions. Subsequent ortho- and meta-cleavage of each of the aromatic rings led to the accumulation of novel ring-fission metabolites in the medium. The major metabolites identified were 3-hydrobenzo[f]isobenzofuran-1-one (3.2%), 6-hydrofuran[3,4-g]chromene-2,8-dione (1.3%), benzo[g]chromene-2-one (1.7%), naphtho[2,1-g]chromen-10-one (48.1%), 10-hydroxy-11-methoxybenz[a]anthracene (9.3%), and 10,11-dimethoxybenz[a]anthracene (36.4%). Enzymatic attack at the C-7 and C-12 positions resulted in the formation of benz[a]anthracene-7,12-dione, 1-(2-hydroxybenzoyl)-2-naphthoic acid, and 1-benzoyl-2-naphthoic acid. A phenyl-naphthyl metabolite, 3-(2-carboxylphenyl)-2-naphthoic acid, was formed when M. vanbaalenii was incubated with benz[a]anthracene cis-5,6-dihydrodiol, indicating ortho-cleavage of 5,6-dihydroxybenz[a]anthracene. A minor amount of 5,6-dimethoxybenz[a]anthracene was also formed. The data extend and propose novel pathways for the bacterial metabolism of benz[a]anthracene.  相似文献   

18.
1-Hydroxy-2-naphthoate is formed as an intermediate in the bacterial degradation of phenanthrene. A monooxygenase which catalyzed the oxidation of 1-hydroxy-2-naphthoateto 1,2-dihydroxynaphthalene was purified from the phenanthrene- and naphthalene-degrading Pseudomonas putida strain BS202-P1. The purified protein had a molecular weight of45 kDa and required NAD(P)H and FAD as cofactors. The purified enzyme also catalysed the oxidation of salicylate and various substituted salicylates. The comparison of the Kmand Vmax values for 1-hydroxy-2-naphthoate and salicylate demonstrated a higher catalytic efficiency of the enzyme for salicylate as a substrate. A significant substrate-inhibition was detected with higher concentrations of 1-hydroxy-2-naphthoate.The aminoterminal amino acid sequence of the purified enzyme showed significant homologies to salicylate 1-monooxygenases from other Gram negative bacteria. It was therefore concluded that during the degradation of phenanthrene the conversion of 1-hydroxy-2-naphthoate to 1,2-dihydroxynaphthalene is catalysed by a salicylate1-monooxygenase. Together with previous studies, this suggested that the enzymes of the naphthalene pathway are sufficient to catalyse also the mineralization of phenanthrene.  相似文献   

19.
Anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin (1,2,3,4-tetrahydronaphthalene) was investigated with a sulfate-reducing enrichment culture obtained from a contaminated aquifer. Degradation studies with tetralin revealed 5,6,7,8-tetrahydro-2-naphthoic acid as a major metabolite indicating activation by addition of a C(1) unit to tetralin, comparable to the formation of 2-naphthoic acid in anaerobic naphthalene degradation. The activation reaction was specific for the aromatic ring of tetralin; 1,2,3,4-tetrahydro-2-naphthoic acid was not detected. The reduced 2-naphthoic acid derivatives tetrahydro-, octahydro-, and decahydro-2-naphthoic acid were identified consistently in supernatants of cultures grown with either naphthalene, 2-methylnaphthalene, or tetralin. In addition, two common ring cleavage products were identified. Gas chromatography-mass spectrometry (GC-MS) and high-resolution GC-MS analyses revealed a compound with a cyclohexane ring and two carboxylic acid side chains as one of the first ring cleavage products. The elemental composition was C(11)H(16)O(4) (C(11)H(16)O(4)-diacid), indicating that all carbon atoms of the precursor 2-naphthoic acid structure were preserved in this ring cleavage product. According to the mass spectrum, the side chains could be either an acetic acid and a propenic acid, or a carboxy group and a butenic acid side chain. A further ring cleavage product was identified as 2-carboxycyclohexylacetic acid and was assumed to be formed by beta-oxidation of one of the side chains of the C(11)H(16)O(4)-diacid. Stable isotope-labeling growth experiments with either (13)C-labeled naphthalene, per-deuterated naphthalene-d(8), or a (13)C-bicarbonate-buffered medium showed that the ring cleavage products derived from the introduced carbon source naphthalene. The series of identified metabolites suggests that anaerobic degradation of naphthalenes proceeds via reduction of the aromatic ring system of 2-naphthoic acid to initiate ring cleavage in analogy to the benzoyl-coenzyme A pathway for monoaromatic hydrocarbons. Our findings provide strong indications that further degradation goes through saturated compounds with a cyclohexane ring structure and not through monoaromatic compounds. A metabolic pathway for anaerobic degradation of bicyclic aromatic hydrocarbons with 2-naphthoic acid as the central intermediate is proposed.  相似文献   

20.
Anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin (1,2,3,4-tetrahydronaphthalene) was investigated with a sulfate-reducing enrichment culture obtained from a contaminated aquifer. Degradation studies with tetralin revealed 5,6,7,8-tetrahydro-2-naphthoic acid as a major metabolite indicating activation by addition of a C1 unit to tetralin, comparable to the formation of 2-naphthoic acid in anaerobic naphthalene degradation. The activation reaction was specific for the aromatic ring of tetralin; 1,2,3,4-tetrahydro-2-naphthoic acid was not detected. The reduced 2-naphthoic acid derivatives tetrahydro-, octahydro-, and decahydro-2-naphthoic acid were identified consistently in supernatants of cultures grown with either naphthalene, 2-methylnaphthalene, or tetralin. In addition, two common ring cleavage products were identified. Gas chromatography-mass spectrometry (GC-MS) and high-resolution GC-MS analyses revealed a compound with a cyclohexane ring and two carboxylic acid side chains as one of the first ring cleavage products. The elemental composition was C11H16O4 (C11H16O4-diacid), indicating that all carbon atoms of the precursor 2-naphthoic acid structure were preserved in this ring cleavage product. According to the mass spectrum, the side chains could be either an acetic acid and a propenic acid, or a carboxy group and a butenic acid side chain. A further ring cleavage product was identified as 2-carboxycyclohexylacetic acid and was assumed to be formed by β-oxidation of one of the side chains of the C11H16O4-diacid. Stable isotope-labeling growth experiments with either 13C-labeled naphthalene, per-deuterated naphthalene-d8, or a 13C-bicarbonate-buffered medium showed that the ring cleavage products derived from the introduced carbon source naphthalene. The series of identified metabolites suggests that anaerobic degradation of naphthalenes proceeds via reduction of the aromatic ring system of 2-naphthoic acid to initiate ring cleavage in analogy to the benzoyl-coenzyme A pathway for monoaromatic hydrocarbons. Our findings provide strong indications that further degradation goes through saturated compounds with a cyclohexane ring structure and not through monoaromatic compounds. A metabolic pathway for anaerobic degradation of bicyclic aromatic hydrocarbons with 2-naphthoic acid as the central intermediate is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号