首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mesophyll cells of Vallisneria gigantea Graebner, Ca2+ regulates the induction and cessation of cytoplasmic streaming. Streaming is induced when the level of calcium in the cytoplasm is lowered through light-accelerated release of Ca2+ from the cells (S Takagi, R Nagai [1988] Plant Physiol 88: 228-232). We have now initiated an investigation on the nature of the photoreceptor(s) that are involved in the regulation of Ca2+ movements across the cell membrane and of streaming. Streaming is induced only when phytochrome exists in the phytochrome—far redabsorbing form (Pfr)—and photosynthesis is allowed to take place for at least 4 minutes. The former effect is typically photoreversible by red and far-red light, and phytochrome is spectro-photometrically detectable in the crude extract from the leaves. The latter effect is assessed in terms of the wavelength dependency and the effects of diuron and atrazine, two inhibitors of photosynthesis. A similar requirement for Pfr and photosynthesis is found to be associated with the acceleration of Ca2+ efflux in the protoplasts. The results suggest that phytochrome and photosynthetic pigment(s) cooperatively regulate cytoplasmic streaming via modulation of the Ca2+ transport in the cell membrane.  相似文献   

2.
Employing the metallochromic dye murexide and by monitoring the uptake of radiolabelled calcium, photoreversible calcium fluxes were measured in wheat leaf protoplast suspensions. Results obtained by both methods were identical — red light promoted and subsequent far-red irradiation reversed an influx of Ca++ ions into the protoplasts. These findings imply phytochrome regulation of Ca++ fluxes across the plasma membrane. The influx of Ca++ stimulated by 2 min red irradiation could be maintained in total darkness for the initial 16–18 min after illumination, after which a 6–8 min efflux process was triggered and the basal Ca++ level restored. Verapamil, a calcium channel blocker, inhibited the red-promoted influx, whereas the far-red mediated efflux could be checked by the use of the ATPase inhibitor vanadate, and also by the calmodulin antagonist chlorpromazine, thus suggesting a role of ion channels and pumps in phytochrome-controlled Ca++ fluxes. The possible involvement of phosphoinositides in phytochrome-modulated calcium fluxes was also investigated.Abbreviations A difference in absorbance - CPZ chlorpromazine - FR far-red (light) - MX murexide - PI phosphatidylinositol - PIP2 phosphatidylinositol 4, 5-bisphosphate - PIPES piperazine-N,N-bis[2-ethanesulfonic acid] - POPOP 1, 4-bis [2-(5-phenyl-1, 3-oxazolyl)]-benzene - PPO 2, 5-diphenyl-1, 3-oxazole - R red (light) - SOV sodium orthovanadate  相似文献   

3.
Protoplasts from dark-grown wheat (Triticum aestivum L.) maintained at a constant osmotic potential at 22°C, were found to swell upon red irradiation (R) and the effect was negated by subsequent far-red light (FR), indicating phytochrome involvement. Swelling only occurred when Ca2+ ions were present in the surrounding medium, or were added within 10 min after R. Furthermore, Mg2+, Ba2+ or K+ could not replace this requirement for Ca2+. The presence of K+ did not enhance the Ca2+-dependent swelling response. When the Ca2+-ionophore A 23187 was added to the medium, protoplasts swelled in the dark to the same extent as after R. Both the Ca2+-channelblocker Verapamil and La3+ inhibited R-induced swelling. It is proposed that R causes the opening of Ca2+-channels in the plasma membrane. Boyle-van't Hoff analyses of protoplast volume after R and FR are consistent with the conclusion that R irradiation causes changes in membrane properties.Abbreviations EDTA ethylenediaminetetraacetic acid - FR far-red light - nov non-osmotic-volume - Pfr FR-absorbing form of phytochrome - Pr R-absorbing form of phytochrome - R red light  相似文献   

4.
Microsomal fractions isolated from coleoptiles of dark or far-red light grown corn show ATP-dependent Ca2+ accumulation. The microsomal transport from dark but not from far-red light grown tissue could be stimulated by calmodulin. Ca2+ accumulation into mitochondria from coleoptiles of far-red light grown corn in also inhibited as compared to the dark controls. Light irradiation of isolated microsomes and mitochondria had no effect on either Ca2+ uptake nor efflux.  相似文献   

5.
Fluxes of Ca2+ across the plasma membrane of isolated wheat protoplasts have been measured both as net accumulation and as uptake under steady-state conditions. The ATPase inhibitors, orthovanadate and diethylstibesterol, and the divalent cation ionophore, A23187, were all found to enhance net Ca2+ accumulation by protoplasts. The uptake of Ca2+ under steady-state conditions was also stimulated by A23187 but relatively unaffected by a range of plant hormones or by red or far red light. Light treatments were compared to dark controls with protoplasts isolated from etiolated wheat.The results suggest that plant cells maintain a Ca2+ gradient across their plasma membrane but it appears not to be under phytochrome control.  相似文献   

6.
Ca2+ is proposed to function as a messenger in such phytochrome-mediated responses as localized cell growth, intracellular movements, and control of plasma membrane properties. To test this hypothesis, the uptake of Ca2+ in irradiated and non-irradiated regions of individual threads of the green alga Mougeotia was studied with the aid of 45Ca2+ and low temperature autoradiography: 10–20 cells within 40–60 cell-long threads were irradiated for up to 1 min, transferred to darkness for 3 to 10 min, submersed in a radioactive medium for 1 min, washed in an unlabelled medium for 30 min, and then autoradiographed at-80° C for several days.The autoradiographs show that those cells which had been pre-irradiated with red light did take up 2–10 times more Ca2+ than the adjacent non-irradiated cells of the same thread. Cells pre-irradiated with farred light or red light followed by far-red light showed no enhanced uptake of Ca2+. These results might be interpreted to indicate, firstly, that phytochrome-Pfr is involved in the enhanced uptake of Ca2+ and secondly, that the accumulation of radioactive Ca2+ in red light irradiated cells is an expression of an increased intracellular concentration of Ca2+. This interpretation is based on the data that (i) the dark interval between irradiation and labelling precluded the involvement of photosynthesis, (ii) the effect of red light was reversible with far-red light, and (iii) the accumulation of Ca2+ persisted during the long wash-out period. We speculate, that the red light-enhanced accumulation of Ca2+ in Mougeotia cells is caused by a Pfr-mediated increase of the Ca-permeability of the plasma membrane, and perhaps by a Pfr-impeding of an active Ca2+-extrusion.Abbreviations APW artificial pond water - EGTA ethylene glycol-bis-(-amino ethyle ether) N,N-tetraacetic acid - R red irradiation - D darkness - FR far-red irradiation - Pfr physiologicallyactive form of phytochrome - Pr physiologically inactive form of phytochrome This paper is part of a Ph. D. Thesis submitted to the University of Erlangen-Nürnberg by E.M. Dreyer  相似文献   

7.
Ca2+ efflux from rat liver mitochondria in the presence of glutamate is stimulated by a decrease in pH from 7.3 to 6.8 and the rate is dependent on the phosphate concentration. During Ca2+ (13 μm) uptake and release at low pH (+ phosphate), swelling is minimal, but a large oxidation of pyridine nucleotides and sustained membrane depolarization occurs. The depolarization (but not Ca2+ efflux) is reversed by ruthenium red. An absolute requirement for phosphate to support Ca2+ efflux is demonstrated by using acetate or lactate to support Ca2+ uptake (efflux is depressed at pH 6.8). Preincubation with mersalyl, to block phosphate movements, with subsequent phosphate addition preceeding Ca2+ uptake also inhibits efflux. β-Mercaptoethanol then stimulates efflux concomittent with membrane repolarization. Ca2+ efflux is not a simple result of collapse of ΔpH since nigericin inhibits phosphate transport and Ca2+ release. Following Ca2+ uptake at pH 6.8, respiratory inhibition occurs, but oxygen consumption coupled to ATP synthesis can be stimulated by succinate (+ rotenone). Addition of succinate allows reuptake of Ca2+, reduction of pyridine nucleotides, and repolarization of the membrane potential. Respiratory inhibition is also seen with nigericin, but no Ca2+ efflux is observed. Coupled respiration with glutamate is seen at pH 6.8 following Ca2+ uptake in the presence of lactate with subsequent addition of phosphate to promote Ca2+ efflux. We conclude that Ca2+ efflux is not a consequence of respiratory inhibition, but is mediated solely by phosphate movements. The inhibitory effect of Mg2+ on Ca2+ efflux is probably due to Mg2+-dependent inhibition of the Ca2+ diffusion potential so that the compensatory increase in ΔpH due to membrane depolarization does not occur and phosphate entry is slowed.  相似文献   

8.
In caulonemal filaments of the mossPhyscomitrella patens (Hedw.), red light triggers a phytochrome-mediated transient depolarisation of the plasma membrane and the formation of side branch initials. Three-electrode voltage clamp and ion flux measurements were employed to elucidate the ionic mechanism and physiological relevance of the red-light-induced changes in ion transport. Current-voltage analyses indicated that ion channels permeable to K+ and Ca2+ are activated at the peak of the depolarisation. Calcium influx evoked by red light coincided with the depolarisation in various conditions, suggesting the involvement of voltage-gated Ca2+ channels. Respective K+ fluxes showed a small initial influx followed by a dramatic transient efflux. A role of anion channels in the depolarising current is suggested by the finding that Cl efflux was also increased after red light irradiation. In the presence of tetraethylammonium (10 mM) or niflumic acid (1 M), which block the red-light-induced membrane depolarisation and ion fluxes, the red-light-promoted formation of side branch initials was also abolished. Lanthanum (100 M), which inhibits K+ fluxes and part of the initial Ca2+ influx activated by red light, reduced the development of side branch initials in red light by 50%. The results suggest a causal link between the red-light-induced ion fluxes and the physiological response. The sequence of events underlying the red-light-triggered membrane potential transient and the role of ion transport in stimulus-response coupling are discussed in terms of a new model for ion-channel interaction at the plasma membrane during signalling.Abbreviations [Ca2+]c cytosolic free Ca2+ - I-V current-voltage - E equilibrium potential - Pr red-light-absorbing phytochrome form - Pr far-red-light-absorbing phytochrome form - SPQ 6-methoxy-l-(3-sulphonatopropyl)quinolinium - TEA tetraethylammonium  相似文献   

9.
The anoxia-dependent elevation of cytosolic Ca2+ concentration, [Ca2+]cyt, was investigated in plants differing in tolerance to hypoxia. The [Ca2+]cyt was measured by fluorescence microscopy in single protoplasts loaded with the calcium-fluoroprobe Fura 2-AM. Imposition of anoxia led to a fast (within 3 min) significant elevation of [Ca2+]cyt in rice leaf protoplasts. A tenfold drop in the external Ca2+ concentration (to 0.1 mM) resulted in considerable decrease of the [Ca2+]cyt shift. Rice root protoplasts reacted upon anoxia with higher amplitude. Addition of plasma membrane (verapamil, La3+ and EGTA) and intracellular membrane Ca2+-channel antagonists (Li+, ruthenium red and cyclosporine A) reduced the anoxic Ca2+-accumulation in rice. Wheat protoplasts responded to anoxia by smaller changes of [Ca2+]cyt. In wheat leaf protoplasts, the amplitude of the Ca2+-shift little depended on the external level of Ca2+. Wheat root protoplasts were characterized by a small shift of [Ca2+]cyt under anoxia. Plasmalemma Ca2+-channel blockers had little effect on the elevation of cytosolic Ca2+ in wheat protoplasts. Intact rice seedlings absorbed Ca2+ from the external medium under anoxic treatment. On the contrary, wheat seedlings were characterized by leakage of Ca2+. Verapamil abolished the Ca2+ influx in rice roots and Ca2+ efflux from wheat roots. Anoxia-induced [Ca2+]cyt elevation was high particularly in rice, a hypoxia-tolerant species. In conclusion, both external and internal Ca2+ stores are important for anoxic [Ca2+]cyt elevation in rice, whereas the hypoxia-intolerant wheat does not require external sources for [Ca2+]cyt rise. Leaf and root protoplasts similarly responded to anoxia, independent of their organ origin.  相似文献   

10.
S. Takagi  E. Kamitsubo  R. Nagai 《Protoplasma》1992,168(3-4):153-158
Summary Using a centrifuge microscope with stroboscopic illumination, we examined the effects of light irradiation on the passive movement of chloroplasts in dark-adapted mesophyll cells ofVallisneria gigantea. While irradiation with red light accelerates the passive gliding of chloroplasts produced by centrifugal force, irradiation with far-red light negates this effect. Irradiation with blue light does not accelerate the passive gliding, while red light is completely effective even in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, an inhibitor of photosynthesis. An apparently active movement of chloroplasts can be induced by irradiation with red or blue light only in the presence of the far-red light-absorbing form of phytochrome. The significance of the reaction in the light with respect to the regulation of cytoplasmic streaming is discussed.Abbreviations APW artificial pond water - CMS centrifuge microscope of the stroboscopic type - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Pfr phytochrome, far-red light-absorbing form - Pr phytochrome, red light-absorbing form  相似文献   

11.
Witold Piwowarczyk 《Planta》1988,173(1):42-45
The influence of red and far-red irradiation on the transport of H+ and 86Rb+ through the plasmalemma was studied using parenchymal protoplasts isolated from Vicia faba leaves. The results indicate that red light stimulates H+ secretion and the uptake of 86Rb+. Moreover, it has been demonstrated that far-red irradiation acts antagonistically with respect to red light in both these processes.  相似文献   

12.
Isolated internodes of Nitella (N. opaca, N. flexilis) and Nitellopsis spec. were punctured with single microelectrodes and their membrane potentials were recorded continuously during various light treatments. In red light the initial response was always a depolarization. This depolarization began with a lag-time of 0.4-3.5s and reached a steady state within 1–2 min of continuous illumination. Repolarization began within several seconds after turning off the light. The magnitude of the red-light-induced depolarization increased with the Ca2+-concentration of the medium. The largest depolarizations were recorded in 5 m mol l-1 Ca2+. Ca2+ could not be replaced in this function by Na+, Mg2+, La3+ or mannitol. Far-red light alone had no effect on the resting membrane potential. Far-red light applied immediately after red light accelerated the repolarization of the membrane potential. Far-red light applied simultaneously with red light reduced the amount of depolarization and increased the rate of repolarization. The results indicate that phytochrome and Ca2+ are involved in the light-induced depolarization of the membrane. They are consistent with the hypothesis that phytochrome may act by triggering a Ca2+-influx at the plasma membrane.Abbreviations APW artificial pond water - Pfr far-red absorbing form of phytochrome - DCMU 3-(3,4-Dichlorphenyl)-1,1-dimethylurea  相似文献   

13.
Light transiently depolarizes the membrane of growing leaf cells. The ionic basis for changes in cell membrane electrical potentials in response to light has been determined separately for growing epidermal and mesophyll cells of the argenteum mutant of pea (Pisum sativum L.). In mesophyll cells light induces a large, transient depolarization that depends on the external Cl concentration, is unaffected by changes in the external Ca2+ or K+ concentration, is stimulated by K+-channel blockers tetraethylammonium (TEA+) and Ba2+, and is inhibited by 3-(3-4-dichlorophenyl)-1,1-dimethylurea (DCMU). In isolated epidermal tissue, light induces a small, transient depolarization followed by a hyperpolarization of the membrane potential. The depolarization is enhanced by increasing the external Ca2+ concentration and by addition of Ba2+, and is not sensitive to DCMU. Epidermal cells in contact with mesophyll display a depolarization resembling the response of the underlying mesophyll cells. The light-induced depolarization in mesophyll cells seems to be mediated by an increased efflux of Cl while the membrane-potential changes in epidermal strips reflect changes in the fluxes of Ca2+ and in the activity of the proton-pumping ATPase.Abbreviations BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid - CCCP carbonylcyanide m-chlorophenylhydrazone - DCMU 3-(3-4-dichlorophenyl)-1,1-dimethylurea - LID e light-induced depolarization in epidermal cells - LID m light-induced depolarization in mesophyll cells - LIH light-induced hyperpolarization - TEA+ tetraethylammonium Ecotrans paper #43. This research was supported by National Science Foundation grants DCB-8903744 and MCB-9220110 to E.V.  相似文献   

14.
Summary The mechanism of the cessation of cytoplasmic streaming upon membrane excitation inCharaceae internodal cells was investigated.Cell fragments containing only cytoplasm were prepared by collecting the endoplasm at one cell end by centrifugation. In such cell fragments lacking the tonoplast, an action potential induced streaming cessation, indicating that an action potential at the plasmalemma alone is enough to stop the streaming.The active rotation of chloroplasts passively flowing together with the endoplasm also stopped simultaneously with the streaming cessation upon excitation. The time lag or interval between the rotation cessation and the electrical stimulation for inducing the action potential increased with the distance of the chloroplasts from the cortex. The time lag was about 1 second/15 m, suggesting that an agent causing the rotation cessation is diffused throughout the endoplasm.Using internodes whose tonoplast was removed by replacing the cell sap with EGTA-containing solution (tonoplast-free cells,Tazawa et al. 1976), we investigated the streaming rate with respect to the internal Ca2+ concentration. The rate was roughly identical to that of normal cells at a Ca2+ concentration of less than 10–7 M. It decreased with an increase in the internal Ca2+ concentration and was zero at 1 mM Ca2+.The above results, together with the two facts that Ca2+ reversibly inhibits chloroplast rotation (Hayama andTazawa, unpublished) and the streaming in tonoplast-free cells does not stop upon excitation (Tazawa et al. 1976), lead us to conclude that a transient increase in the Ca2+ concentration in the cytoplasm directly stops the cytoplasmic streaming. Both Ca influxes across the resting and active membranes were roughly proportional to the external Ca2+ concentration, which did not affect the rate of streaming recovery. Based on these results, several possibilities for the increase in Ca2+ concentration in the cytoplasm causing streaming cessation were discussed.  相似文献   

15.
Assimilate efflux from vacuum-infiltrated leaf slices (spinach, barley) into a buffered solution was examined in relation to Ca+ + -activity and osmotic conditions. Efflux from isolated mesophyll protoplasts and from a unicellular green alga (Eremosphaera viridis de Bary) was also measured.In the presence of Ca+ +, assimilate efflux from leaf slices was small (1 to 5 % of the total carbon fixation rate, depending on osmotic conditions). Efflux was drastically stimulated by addition of Ca+ + -chelators. If expressed as µmol carbon mg-1 chlorophyll h-1, it reached 50 % of the assimilation rate. Efflux from protoplasts or algae was slow and insensitive to Ca+ + chelators at concentrations which caused fast efflux from leaf slices.Assimilate efflux from leaf slices was rather unspecific. Both in the tissue and the surrounding medium, sucrose was the most abundantly labelled compound (70 to 80 % of total soluble labelled material).A 50 % decrease of efflux was observed when turgor pressure was lowered by addition of sorbitol (200 to 300 mosmol kg-1). At extremely high sorbitol concentrations (> 1500 mosmol kg-1) efflux increased again and was relatively less stimulated by EDTA.It is suggested that assimilate efflux from leaf slices is mainly diffusion through open veins and/or plasmodesmata. When these symplastic connections are closed by addition of Ca+ +, the remaining transmembrane flux into the apoplast is small. Thus, assimilate movement from the mesophyll to the phloem appears to be symplastic, not apoplastic as suggested in the literature.  相似文献   

16.
Abstract. Net efflux of Cl? was measured potentiometrically (Ag/AgCl electrode) during turgor regulation which was induced by hypotonic treatment (hypotonic turgor regulation) in the alga Lamprothamnium succinctum. The efflux of Cl? reached the peak value (11 μmol m ?2s?1) several minutes after the hypotonic treatment was started and then declined. The efflux of Cl? and inhibition of the cytoplasmic streaming [reflection of an increase in cytoplasmic concentration of free Ca2+([Ca2+]c)] were blocked under a low external concentration of Ca2+ ([Ca2+]e) (0·01 mol m?3) and resumed after raising [Ca2+]e to the normal value (3·9 mol m?3). The decrease in cell-osmotic pressure upon hypotonic treatment was inhibited by lowering either turgor pressure or [Ca2h]e. The inhibition was reflected in decreases of both the efflux of Cl? and the membrane conductance. Recovery of the cytoplasmic streaming from the inhibition was also accelerated by the same treatments. It is concluded that an increase in turgor pressure is continuously sensed by the cells and that continuous presence of external Ca2+ is necessary for the hypotonic turgor regulation.  相似文献   

17.
Internodal cells ofNitella axilliformis had a membrane potential of about−120mV and showed active cytoplasmic streaming with a rate of about 90 μm/sec in artificial pond water (APW) at 25C. When APW was replaced with 50 mM KCl solution, the membrane potential depolarized accompanying an action potential, and the cytoplasmic streaming stopped. Soon after this quick cessation, the streaming started again, but its velocity remained very low for at least 60 min. Removal of KCl from the external medium led to repolarization of the membrane and accelerated recovery of the streaming. The change in the concentration of free Ca2+ in the cytoplasm ([Ca2+]c) was monitored by light emission from aequorin which had previously been injected into the cytoplasm. Upon application of KCl to the external medium, the light emission, i.e., [Ca2+]c, quickly increased. It then decreased exponentially and reached the original low level within 100 sec. The cause of the long-lasting inhibition of cytoplasmic streaming observed even when [Ca2+]c had returned to its low resting level is discussed based on the mechanism proposed for action potential-induced cessation of cytoplasmic streaming; inactivation of myosin by Ca2+-dependent phosphorylation or formation of cross bridge between actin filaments and myosin.  相似文献   

18.
Bongkrekic acid and atractyloside, inhibitors of adenine nucleotide translocase, do not inhibit Ca2+ uptake and H+ production by pig heart mitochondria. However, bongkrekic acid, but not atractyloside, inhibits dinitrophenol-induced Ca2+ efflux and H+ uptake. Conversely, ruthenium red blocks Ca2+ uptake and H+ production but does not prevent dinitrophenol-induced Ca2+ efflux and H+ uptake by mitochondria. These results suggest that mitochondrial Ca2+ uptake and release exist as two independent pathways. The efflux of Ca2+ from mitochondria is mediated by a bongkrekic acid sensitive component which is apparently not identical to the ruthenium red sensitive Ca2+ uptake carrier.  相似文献   

19.
PMAP-23 (RIIDLLWRVRRPQKPKFVTVWVR-NH2) is an antimicrobial peptide (AMP) derived from porcine myeloid. Membrane disruption is thought to underpin the anticandidal activity of PMAP-23. However, many AMPs act via mechanisms other than simple membrane permeabilisation. Here, we investigated the anticandidal mechanism of PMAP-23 at low concentrations. Membrane disruption and depolarisation and rapid K+ efflux were observed in Candida albicans cells treated with 5?µM PMAP-23. In contrast, 2.5?µM PMAP-23 caused membrane depolarisation and K+ efflux without membrane disruption. The lower PMAP-23 concentration increased cytosolic and mitochondrial Ca2+ levels. Disruption of Ca2+ homeostasis altered the NAD+/NADH ratio and resulted in reactive oxygen species (ROS) accumulation and glutathione oxidation. PMAP-23 treatment also stimulated apoptosis, as evidenced by metacaspase activation, DNA fragmentation, and phosphatidylserine externalisation. Pretreatment with the mitochondrial Ca2+ uptake inhibitor (ruthenium red) or ROS scavenger (N-acetylcysteine) attenuated these apoptotic events. Our results suggest that PMAP-23 induces apoptosis as antifungal mechanism, and mitochondrial Ca2+-induced ROS is major factor to trigger the apoptosis. Thus, the anticandidal activity of PMAP-23 is not based solely on disruption of biological membranes but also involves induction of apoptosis via mitochondrial Ca2+-dependent ROS. PMAP-23 mode of action sheds new light on the antifungal mechanism of antimicrobial peptides, supporting the role of Ca2+ and ROS in apoptosis regulation.  相似文献   

20.
Intracellular Ca2+ concentration regulating the cytoplasmicstreaming in Vallisneria mesophyll cells was estimated. Theleaf segment was cut open at the middle of the mesophyll celllayers and the exposed mesophyll cells were treated with testsolutions of various Ca2+ concentrations in the dark. This allowedA23187 [GenBank] , a calcium ionophore, to exert its full effect on thecell membrane. The streaming was induced or maintained in solutions which containedCa2+ at lower than 10–6M. However, Ca2+ at concentrationshigher than 10–5M had a definite, inhibitory effect. Theinduction and cessation of streaming could be repeated by alternatelychanging the solutions. (Received March 14, 1986; Accepted May 15, 1986)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号