首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many fundamental neurological issues such as neuronal polarity, the formation and remodeling of synapses, synaptic transmission, and the pathogenesis of the neuronal cell death are closely related to the membrane dynamics. The elucidation of functional roles of a detergent-insoluble cholesterol-rich domain (raft) could therefore provide good clues to the molecular understanding of these important phenomena, for the participation of the raft in the fundamental cell functions, such as signal transduction and selective transport of lipids and proteins, has been elucidated in nonneural cells. Interestingly, the brain is rich in raft and the brain-derived raft differs in its lipid and protein components from other tissue-derived rafts. Since many excellent reviews are written on the membrane lipid dynamics of this microdomain, signal transduction, and neuronal glycolipids, we review on the characterization of the raft proteins recovered in the detergent-insoluble low-density fraction from rat brain. Special focus is addressed on the biochemical characterization of a neuronal enriched protein, NAP-22, for the lipid organizing activity of this protein has become increasingly clear.  相似文献   

2.
In vertebrates, the formation of raft lipid microdomains plays an important part in both polarized protein sorting and signal transduction. To establish a system in which raft-dependent processes could be studied genetically, we have analyzed the protein and lipid composition of these microdomains in Drosophila melanogaster. Using mass spectrometry, we identified the phospholipids, sphingolipids, and sterols present in Drosophila membranes. Despite chemical differences between Drosophila and mammalian lipids, their structure suggests that the biophysical properties that allow raft formation have been preserved. Consistent with this, we have identified a detergent-insoluble fraction of Drosophila membranes that, like mammalian rafts, is rich in sterol, sphingolipids, and glycosylphosphatidylinositol-linked proteins. We show that the sterol-linked Hedgehog N-terminal fragment associates specifically with this detergent-insoluble membrane fraction. Our findings demonstrate that raft formation is preserved across widely separated phyla in organisms with different lipid structures. They further suggest sterol modification as a novel mechanism for targeting proteins to raft membranes and raise the possibility that signaling and polarized intracellular transport of Hedgehog are based on raft association.  相似文献   

3.
The dynamic segregation of membrane components within microdomains, such as the sterol-enriched and sphingolipid-enriched membrane rafts, emerges as a central regulatory mechanism governing physiological responses in various organisms. Over the past five years, plasma membrane located raft-like domains have been described in several plant species. The protein and lipid compositions of detergent-insoluble membranes, supposed to contain these domains, have been extensively characterised. Imaging methods have shown that lateral segregation of lipids and proteins exists at the nanoscale level at the plant plasma membrane, correlating detergent insolubility and membrane-domain localisation of presumptive raft proteins. Finally, the dynamic association of specific proteins with detergent-insoluble membranes upon environmental stress has been reported, confirming a possible role for plant rafts as signal transduction platforms, particularly during biotic interactions.  相似文献   

4.
Many lines of evidence show that membranes contain microdomains, "lipid rafts", that are different from the rest of the membrane in specific lipid and protein composition. In several biological systems, they were shown to be necessary for trafficking and signal transduction. Here, we investigate if lipid rafts have a role in the regulation of the G protein-mediated pathway underlying vertebrate phototransduction. Photoreceptor membranes contain detergent-resistant membrane (DRM) rafts. Rhodopsin and cGMP phosphodiesterase are found in raft and nonraft portions of the membrane; guanylate cyclase is found exclusively in the raft. Distribution of these proteins does not change in the light or dark. In contrast, the G protein transducin, the RGS9-1-Gbeta5L complex, and the p44 isoform of arrestin undergo dramatic translocation to the raft upon illumination. Phosphorylation of RGS9-1 occurs exclusively in the raft. GTPgammaS or pertussis toxin prevent the light-mediated translocation of transducin and RGS9-1, whereas AlF(minus sign)(4) causes both proteins to move to the raft in the dark. This shows that the Galphat-RGS9-1-Gbeta5L complex has the highest affinity to rafts in the transition state of the GTPase. GTPgammaS binds to transducin at a significantly slower rate in the raft, indicating that this translocation results in a reduced rhodopsin-transducin coupling. Thus, an external signal can rearrange components of a G protein pathway in specific domains of the cell membrane, changing its signaling properties. These findings could reveal a novel mechanism utilized by the cells for regulation of G protein-mediated signal transduction.  相似文献   

5.
动物肝是具有极强再生能力的器官,研究并阐明肝再生的机制可为肝移植等与肝损伤相关的疾病治疗提供理论依据.质膜包括“脂筏(lipid rafts)”和“质膜微囊(caveolae)”的微区,具有参与胞吞胞饮、信号转导、运输胆固醇等重要功能.肝再生过程中,肝质膜微区脂筏蛋白质受到内部调控的影响会发生改变. 捕获脂筏微区信号蛋白分布的变化,对于理解和阐明肝再生过程中信号通路途径有重要意义.本研究应用成熟的大鼠2/3肝切除模型结合蔗糖密度梯度离心法,提取假手术组与肝再生组大鼠肝细胞质膜,并进一步纯化获得质膜微区蛋白质.通过SDS-PAGE分离以及ESI-Q-TOF质谱鉴定,对获得的质膜微区蛋白质进行差异分析. 结果显示,有30个微区蛋白质差异表达,其中13个上调、17个下调.生物信息学分析表明,所鉴定到的蛋白质主要参与细胞增殖、程序性死亡、细胞凋亡等调控,同时涉及到与肝再生密切相关的血管生成等信号通路.本文为质膜微区蛋白质的研究提供了方法上的参考以及相关基础数据,为后续临床肝再生的研究奠定了一定的基础.  相似文献   

6.
Lipid rafts are highly enriched in cholesterol and sphingolipids. In contrast to many reports that verify the importance of cholesterol among raft lipid components, studies that address the role of sphingolipids in raft organization and function are scarce. Here, we investigate the role of glycosphingolipids (GSLs) in raft structure and raft-mediated signal transduction in T lymphocytes by the usage of a specific GSL synthesis inhibitor, d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP). Surface GM1 expression and the expression of GSLs in rafts were profoundly reduced by D-PDMP treatment, whereas the expression of other lipid and protein constituents, such as cholesterol, sphingomyelin, Lck, and linker for activation of T cells, was not affected. T cell receptor-mediated signal transduction induced by antigen stimulation or by antibody cross-linking was normal in D-PDMP-treated T cells. In contrast, the signal through glycosylphosphatidylinositol (GPI)-anchored proteins was clearly augmented by D-PDMP treatment. Moreover, GPI-anchored proteins became more susceptible to phosphatidylinositol-specific phospholipase C cleavage in D-PDMP-treated cells, demonstrating that GSL depletion from rafts primarily influences the expression state and function of GPI-anchored proteins. Finally, by comparing the effect of D-PDMP with that of methyl-beta-cyclodextrin, we identified that compared with cholesterol depletion, GSL depletion has the opposite effect on the phosphatidylinositol-specific phospholipase C sensitivity and signaling ability of GPI-anchored proteins. These results indicate a specific role of GSLs in T cell membrane rafts that is dispensable for T cell receptor signaling but is important for the signal via GPI-anchored proteins.  相似文献   

7.
8.
Lipid rafts in plasma membranes are hypothesized to play key roles in many cellular processes including signal transduction, membrane trafficking and entry of pathogens. We recently documented the biochemical characterization of lipid rafts, isolated as detergent-insoluble membranes, from Medicago truncatula root plasma membranes. We evidenced that the plant-specific lipid steryl-conjugates are among the main lipids of rafts together with free sterols and sphingolipids. An extensive proteomic analysis showed the presence of a specific set of proteins common to other lipid rafts, plus the presence of a redox system around a cytochrome b561 not previously identified in lipid rafts of either plants or animals. Here, we discuss the similarities and differences between the lipids and proteins of plant and animal lipid rafts. Moreover we describe the potential biochemical functioning of the M. truncatula root lipid raft redox proteins and question whether they may play a physiological role in legume-symbiont interactions.Key Words: plasma membrane, Medicago, root, legume-Rhizobium symbiosis, redox, sterol, sphingolipid  相似文献   

9.
Engagement of immune receptors by antigen may lead to activation, cell proliferation, differentiation and effector functions. It has recently been proposed that the initiation and propagation of the signaling events taking place in immune cells occur in specialized membrane regions called lipid rafts. These detergent-insoluble glycolipid domains are specialized membrane compartments enriched in cholesterol and glycolipids. They also contain many lipid-modified signaling proteins such as tyrosine kinases of the Src family, GPI (glycosylphosphatidylinositol)-linked proteins as well as adaptor proteins. The confinement of signaling molecules in membrane subdomains suggests that lipid rafts function as platforms for the formation of multicomponent transduction complexes. Indeed, upon receptor binding, immune receptors become raft-associated and additional components of the signaling pathways are recruited to rafts in order to form signaling complexes. It has been speculated that the entry of immune receptors into rafts can regulate cell activation. Accordingly, numerous experiments have provided substantial evidence that raft integrity is crucial for the initiation and maintenance of intracellular signals. Recent studies have also shown that the access and translocation of immune receptors to lipid rafts are developmentally regulated (immature versus mature cells, Th1 versus Th2 lymphocytes) and sensitive to pharmacological agents. The aim of the present review is to summarize the current knowledge of immune receptor signal transduction with particular emphasis on the role of membrane compartments in immune activation. Finally, experimental evidences indicating that these membrane structures may represent clinically relevant potential targets for immune regulation, will be discussed.  相似文献   

10.
Numerous cell membrane associated processes, including signal transduction, membrane sorting, protein processing and virus trafficking take place in membrane subdomains. Protein-protein interactions provide the frameworks necessary to generate biologically functional membrane domains. For example, coat proteins define membrane areas destined for sorting processes, viral proteins self-assemble to generate a budding virus, and adapter molecules organize multimolecular signalling assemblies, which catalyse downstream reactions. The concept of raft lipid-based membrane domains provides a different principle for compartmentalization and segregation of membrane constituents. Accordingly, rafts are defined by the physical properties of the lipid bilayer and function by selective partitioning of membrane lipids and proteins into membrane domains of specific phase behaviour and lipid packing. Here, I will discuss the interplay of these independent principles of protein scaffolds and raft lipid microdomains leading to the generation of biologically functional membrane domains.  相似文献   

11.
细胞膜局部区域可形成富含饱和脂质、胆固醇、鞘脂的脂筏域作为其信号转导调控平台。传统实验手段在研究脂筏及其功能时受到系统复杂度高及区域结构瞬时性强等制约。近年来,分子动力学模拟技术为细胞膜的组织原则提供了重要的理论支撑,从简单的单一组分模型到多组分系统转变,最终形成了越来越多的细胞膜仿真模型。其中,粗粒化模拟由于其简化模型,可大副拓展模拟体系的复杂程度与模拟时间,在细胞膜以及蛋白质-脂质相互作用相关研究中得到了广泛应用。本文采用MARTINI粗粒化力场模拟,构建了一种含有阴离子脂质磷脂酰肌醇二磷酸(phosphatidylinositol diphosphate, PIP2)的混合膜体系。模拟结果表明,该体系在适当温度及饱和度条件下,能自发分层形成脂筏域;膜厚度、膜组分分布、膜组分流动性等多种参数均表明,脂筏结构形成且符合其结构特征;少量PIP2添加不影响分层特性且PIP2对脂筏具有显著亲和性。此外,利用该模型以跨膜信号蛋白CD3ε为例研究了脂筏域体系中蛋白质-脂质相互作用。结果表明,PIP2-CD3ε胞内区相互作用可能是脂筏招募CD3ε的驱动力,且该过程可受钙离子调控。本工作体现了粗粒化模拟在仿真膜相关研究中的巨大优势及良好应用前景。  相似文献   

12.
Hayashi T  Su TP 《Life sciences》2005,77(14):1612-1624
The brain is highly enriched in lipids. However, the molecular biological roles of lipids in the brain have been largely unexplored. Although, in 1990s, several studies have demonstrated the roles of lipids in a variety of neuronal functions and certain neurological diseases, the involvement of lipids in drug dependence, if any, is almost totally unknown. Sigma-1 receptors are brain-enriched proteins that interact with psychostimulants such as cocaine and methamphetamine. Sigma-1 receptors possess a putative sterol-binding pocket and are predominantly expressed on the endoplasmic reticulum (ER) where most lipids and their precursors are synthesized. Sigma-1 receptors are involved in drug-seeking behaviors and in psychostimulant-induced behavioral sensitization. Recent studies demonstrated that sigma-1 receptors target the lipid-storing subcompartments of the ER and are colocalized with cholesterol and neutral lipids. Sigma-1 receptors form detergent-insoluble lipid microdomains (lipid rafts) on the ER subcompartments and can translocate on the ER when stimulated. Upregulation of sigma-1 receptors affect the levels of plasma membrane lipid rafts by changing the lipid components therein. The membrane reconstitution thus induced by sigma-1 receptors in turn affects functions of proteins residing in plasma membrane lipid rafts including tropic factor receptors and tyrosine kinases. Specifically, we recently found that sigma-1 receptors modulate MAP kinase activation induced by tropic factors, neuritegenesis and oligodendrocyte differentiation-all related to lipid raft reconstitution. Sigma-1 receptors may thus play a role in psychostimulant-induced long-lasting morphological changes in the brain via the capacity of sigma-1 receptors in regulating ER lipid transport and the resultant plasma membrane lipid raft reconstitution.  相似文献   

13.
The current notion of biological membranes encompasses a very complex structure, made of dynamically changing compartments or domains where different membrane components partition. These domains have been related to important cellular functions such as membrane sorting, signal transduction, membrane fusion, neuronal maturation, and protein activation. Many reviews have dealt with membrane domains where lipid-lipid interactions direct their formation, especially in the case of raft domains, so in this review we considered domains induced by integral membrane proteins. The nature of the interactions involved and the different mechanisms through which membrane proteins segregate lipid domains are presented, in particular with regard to those induced by the nAChR. It may be concluded that coupling of favourable lipid-lipid and lipid-protein interactions is a general condition for this phenomenon to occur.  相似文献   

14.
Lipid rafts are detergent-insoluble membrane domains that play a key role in signal transduction by the T-cell antigen receptor. Proteome analysis revealed the presence of amidosulfobetaine-soluble signal transducing, integral membrane, cytoskeletal, heat shock, and GTP-binding proteins in rafts prepared from Jurkat cells. Several of these proteins were recruited to rafts by CD3/CD28 costimulation. Of particular interest is the inducible association of activated IkappaB kinase complexes with raft vesicles that could be captured with anti-flotillin-1 antibodies. Following amidosulfobetaine solubilization, flotillin-beta and IKKbeta underwent reciprocal co-immunoprecipitation. Treatment of Jurkat cells with methyl-beta-cyclodextrin disrupted the assembly and activation of this raft complex and also interfered in CD3/ CD28-induced activation of a NF-kappaB response element in the IL-2 promoter.  相似文献   

15.
Vaccinia virus infects a wide variety of mammalian cells from different hosts, but the mechanism of virus entry is not clearly defined. The mature intracellular vaccinia virus contains several envelope proteins mediating virion adsorption to cell surface glycosaminoglycans; however, it is not known how the bound virions initiate virion penetration into cells. For this study, we investigated the importance of plasma membrane lipid rafts in the mature intracellular vaccinia virus infection process by using biochemical and fluorescence imaging techniques. A raft-disrupting drug, methyl-beta-cyclodextrin, inhibited vaccinia virus uncoating without affecting virion attachment, indicating that cholesterol-containing lipid rafts are essential for virion penetration into mammalian cells. To provide direct evidence of a virus and lipid raft association, we isolated detergent-insoluble glycolipid-enriched membranes from cells immediately after virus infection and demonstrated that several viral envelope proteins, A14, A17L, and D8L, were present in the cell membrane lipid raft fractions, whereas the envelope H3L protein was not. Such an association did not occur after virions attached to cells at 4 degrees C and was only observed when virion penetration occurred at 37 degrees C. Immunofluorescence microscopy also revealed that cell surface staining of viral envelope proteins was colocalized with GM1, a lipid raft marker on the plasma membrane, consistent with biochemical analyses. Finally, mutant viruses lacking the H3L, D8L, or A27L protein remained associated with lipid rafts, indicating that the initial attachment of vaccinia virions through glycosaminoglycans is not required for lipid raft formation.  相似文献   

16.
Tetanus (TeNT) is a zinc protease that blocks neurotransmission by cleaving the synaptic protein vesicle-associated membrane protein/synaptobrevin. Although its intracellular catalytic activity is well established, the mechanism by which this neurotoxin interacts with the neuronal surface is not known. In this study, we characterize p15s, the first plasma membrane TeNT binding proteins and we show that they are glycosylphosphatidylinositol-anchored glycoproteins in nerve growth factor (NGF)-differentiated PC12 cells, spinal cord cells, and purified motor neurons. We identify p15 as neuronal Thy-1 in NGF-differentiated PC12 cells. Fluorescence lifetime imaging microscopy measurements confirm the close association of the binding domain of TeNT and Thy-1 at the plasma membrane. We find that TeNT is recruited to detergent-insoluble lipid microdomains on the surface of neuronal cells. Finally, we show that cholesterol depletion affects a raft subpool and blocks the internalization and intracellular activity of the toxin. Our results indicate that TeNT interacts with target cells by binding to lipid rafts and that cholesterol is required for TeNT internalization and/or trafficking in neurons.  相似文献   

17.
Activation of T cell antigen receptor (TCR) induces tyrosine phosphorylations that mediate the assembly of signaling protein complexes. Moreover, cholesterol-sphingolipid raft membrane domains have been implicated to play a role in TCR signal transduction. Here, we studied the assembly of TCR with signal transduction proteins and raft markers in plasma membrane subdomains of Jurkat T leukemic cells. We employed a novel method to immunoisolate plasma membrane subfragments that were highly concentrated in activated TCR-CD3 complexes and associated signaling proteins. We found that the raft transmembrane protein linker for activation of T cells (LAT), but not a palmitoylation-deficient non-raft LAT mutant, strongly accumulated in TCR-enriched immunoisolates in a tyrosine phosphorylation-dependent manner. In contrast, other raft-associated molecules, including protein tyrosine kinases Lck and Fyn, GM1, and cholesterol, were not highly concentrated in TCR-enriched plasma membrane immunoisolates. Many downstream signaling proteins coisolated with the TCR/LAT-enriched plasma membrane fragments, suggesting that LAT/TCR assemblies form a structural scaffold for TCR signal transduction proteins. Our results indicate that TCR signaling assemblies in plasma membrane subdomains, rather than generally concentrating raft-associated membrane proteins and lipids, form by a selective protein-mediated anchoring of the raft membrane protein LAT in vicinity of TCR.  相似文献   

18.
Membrane protein - microvilli - lipid raft - GPI-anchored protein - epithelial cell The 31 kDa integral membrane protein stomatin (protein 7.2b) has a monotopic structure and a cytofacial orientation. We have shown previously that stomatin is located in plasma membrane protruding structures and forms high-order homo-oligomers in the human epithelial cell line UAC, suggesting that this protein has a structural function in the cortical morphogenesis of the cells. It is also present in a pool of juxtanuclear vesicles. In this study, we show that stomatin colocalizes with the GPI-anchored proteins placental alkaline phosphatase (PLAP) and membrane folate receptor alpha (MFRalpha) endogenously expressed in UAC cells. This observation enabled us to demonstrate two different aspects of stomatin. First, using anti-PLAP antibody internalization, we show that the peri-centrosomal vesicles containing stomatin correspond to a subset of endosomes, which can also be labeled with the late endosomal/lysosomal marker LAMP-2. Secondly, we found that stomatin is partially present in detergent-insoluble membrane domains and co-patches with PLAP on the plasma membrane, after cross-linking of PLAP by antibodies. These data indicate that stomatin and GPI-anchored proteins are linked through lipid rafts and undergo the same sorting events. We propose that stomatin, through its affinity for lipid rafts, functions in concentrating GPI-anchored proteins in membrane microvillar structures. Consistent with this hypothesis, we found that stomatin is expressed exclusively in microvilli of the apical membrane in polarized Madin-Darby canine kidney (MDCK) cells.  相似文献   

19.
The soluble N-terminal ectodomain of amyloid precursor protein (sAPP), resulting from alpha-secretase-mediated proteolytic processing, has been shown to function as a growth factor for epithelial cells, including keratinocytes and thyrocytes. Extracellularly applied sAPP binds to a cell surface receptor and exhibits a patchy binding pattern reminiscent of that observed for raft proteins. Here we show that (i) the receptor-bound sAPP resides in a detergent-insoluble membrane microdomain which cofractionates in density gradients with cholesterol-rich membrane rafts and caveolae; (ii) the sAPP-binding microdomains are different from caveolae; and (iii) sAPP is capable of binding to isolated rafts and inducing tyrosine phosphorylation of some raft proteins. These observations suggest that a novel type of membrane raft is involved in sAPP signaling.  相似文献   

20.
Glycosylphosphatidylinositol-anchored proteins (GPI-AP) are important players in reception and signal transduction, cell adhesion, guidance, formation of immune synapses, and endocytosis. At that, a particular GPI-AP can have different activities depending on a ligand. It is known that GPI-AP oligomer creates a lipid raft in its base on plasma membrane, which serves as a signaling platform for binding and activation of src-family kinases. Yet, this does not explain different activities of GPI-APs. Meanwhile, it has been shown that short-lived actomyosin complexes are bound to GPI-APs through lipid rafts. Here, we hypothesize that cell cortical cytoskeleton is the main target of GPI-AP signaling. Our hypothesis is based on the fact that the GPI-AP-induced lipid raft bound to actin filaments and anionic lipids of this raft is known to interact with and activate various actin-nucleating factors, such as formins and N-WASP. It is also known that these and other actin-regulating proteins are activated by src-family kinases directly or through their effectors, such as cortactin and abl-kinases. Regulation of cytoskeleton by GPI-APs may have impact on morphogenesis, cell guidance, and endocytosis, as well as on signaling of other receptors. To evaluate our hypothesis, we have comprehensively considered physiological activities of two GPI-APs–urokinase receptor and T-cadherin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号