首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of several representative folate, quinazoline and pyridine nucleotide derivatives with dihydrofolate reductase from amethopterin-resistant Lactobacillus casei induces dramatic changes in its circular dichroic spectral properties. The binding of dihydrofolate induces a large extrinsic Cotton effect at 295 nm ([theta] = 113 800 deg . cm2 . dm-1). The generation of this band by dihydrofolate is strictly dependent on complex formation with a single substrate binding site and a KD = 7 . 10(-6) M. The other binary complexes examined include the enzyme . NADPH, enzyme . amethopterin, enzyme . folate, and enzyme . methasquin. All such complexes differ in spectral detail, the negative ellipticity at 330 nm being characteristic of the "folate site" complexes. The circular dichroic spectrum of the ternary complex of reductase . NADPH . methotrexate shows a positive symmetrical band centered at 360 nm ([theta] - 32 000 deg . cm2 . dm-1). Since both of the corresponding binary complexes exhibit negative bands in this region, this induced band represents a unique molecular property of the ternary complex. Chemical modification of a single tryptophan residue of the enzyme, as determined from magnetic circular dichroism spectra, results in a complete loss in the ability to bind either dihydrofolate or NADPH.  相似文献   

2.
Circular-dichroism spectra (200--450 nm) were recorded for Lactobacillus casei MTX/R dihydrofolate reductase and its complexes with substrates, inhibitors and coenzymes. These spectra are compared with those reported by others for dihydrofolate reductase from other sources. The binding of NADP+ or NADPH is associated with the perturbation of one or more aromatic amino acid residues, and there is marked enhancement of the negative c.d. band at 340 nm arising from the dihydronicotinamide chromophore of NADPH. The substrates folate and dihydrofolate give rise to substantial extrinsic c.d. bands on binding, which show a number of specific differences between enzymes from different sources. The binary complexes between the enzyme and the inhibitors methotrexate or trimethoprim also show strong c.d. bands, and these are qualitatively very similar for all dihydrofolate reductases studied so far. The ternary complexes between enzyme, NADPH and trimethoprim or methotrexate are very different from the sum of the spectra of the binary complexes. Trimethoprim leads to the disappearance of the 340 nm c.d. band of bound NADPH, whereas in the methotrexate--NADPH--enzyme ternary complex a "couplet" c.d. spectrum is observed at long wavelengths. Analysis of this latter feature suggests that it arises from a direct interaction between the dihydronicotinamide and pteridine rings in the ternary complex.  相似文献   

3.
Circular dichroism has been used to monitor the binding of pyridine nucleotide cofactors to enzyme-folate analog complexes of dihydrofolate reductase from Escherichia coli B (MB 1428). The enzyme binds one molar equivalent of many folate analogs and two molar equivalents of several pyridine nucleotide cofactors. The apo-enzyme has very low optical activity. The binding of folate analogs including folate, dihydrofolate, methotrexate, trimethoprim and pyrimethamine induce large Cotton effects. Pyridine nucleotides when bound to the enzyme-folate analog complexes also induce new optically active bands; all the effects being due to the first molar equivalent of cofactor bound. NADPH and NADP+ induce very similar bands when bound to the enzyme-methotrexate complex suggesting that the geometry of the complexes formed are very similar. The oxidized and reduced cofactor likewise have similar effects on the enzyme-folate complex. However, NADPH and NADP+ addition to both the enzyme-trimethoprim and enzyme-pyrimethamine complexes have significantly different effects on the circular dichroism spectra, suggesting that the inhibitors which are less homologous to the natural dihydrofolate substrate allow more conformational freedom in the enzyme-inhibitor-cofactor complex. In most cases the prior binding of the folate analog greatly increases the binding of the first molar equivalent of cofactor so that at concentrations of approx. 5-20 muM the binding appears stoichiometric. Pyrimethamine is an exception in that it apparently has no effect on the binding of NADPH to the enzyme.  相似文献   

4.
C T Hou 《Biochemistry》1975,14(17):3899-3902
Circular dichroism studies have been carried out on both apo- and holoprotocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa, in the absence and presence of competitive inhibitors, protocatechualdehyde and 4-nitrocatechol. The apo- and holoenzyme showed identical spectra in the ultraviolet region between 200 and 250 nm (peptide back bone region), but the low intensity negative bands at 330 and 480 nm of the holoenzyme were completely absent in the apoenzyme. On the side chain region, the positive ellipticity peaks of the holoenzyme change into a lower intensity and broader band indicating the participation of aromatic amino acid residues in the primary binding of iron ion. Under anaerobic conditions, spectral changes were evident in the side chain region for the binary complexes of both the holo- and the apoenzyme with protocatechuate. The presence of iron in the holoenzyme results in an increase in positive ellipticity between 290 and 320 nm. Either with or without the iron, the enzyme protein binds protocatechuate and has a greater positive circular dichroism increase at 240-260 nm. CD difference spectra indicate that the modes of binding to form the binary complexes of holo- or apoenzyme with either substrates or competitive inhibitors are different. The bound iron ion stimulates binding. Spectral changes of the holoenzyme in the aromatic region were also observed in different pH environments of lower enzymatic activity. It is still not established whether these aromatic residues play an active or passive role in the binding of iron and/or substrates and inhibitors.  相似文献   

5.
Investigations have been made of the slow, tight-binding inhibition by methotrexate of the reaction catalyzed by dihydrofolate reductase from Streptococcus faecium A. Quantitative analysis has shown that progress curve data are in accord with a mechanism that involves the rapid formation of an enzyme-NADPH-methotrexate complex that subsequently undergoes a relatively slow, reversible isomerization reaction. From the Ki value for the dissociation of methotrexate from the E-NADPH-methotrexate complex (23 nM) and values of 5.1 and 0.013 min-1 for the forward and reverse rate constants of the isomerization reaction, the overall inhibition constant for methotrexate was calculated to be 58 pM. The formation of an enzyme-methotrexate complex was demonstrated by means of fluorescence quenching, and a value of 0.36 muM was determined for its dissociation constant. The same technique was used to determine dissociation constants for the reaction of methotrexate with the E-NADP and E-NADPH complexes. The results indicate that in the presence of either NADPH or NADP there is enhancement of the binding of methotrexate to the enzyme. It is proposed that methotrexate behaves as a pseudosubstrate for dihydrofolate reductase.  相似文献   

6.
Dihydrofolate reductase and its complexes have been studied by fluorescence and circular dichroism. NADPH, trimethoprim, pyrimethamine, or Methotrexate binding causes small changes in the enzyme far ultraviolet CD which possibly arise from alterations in polypeptide backbone of the enzyme; however, their effects on enzyme far ultraviolet CD are also explained as the result of ligand interactions with enzyme aromatic groups. In ternary complexes of the enzyme, fluorescence properties of bound NADPH are surprisingly sensitive to the type of inhibitor bound nearby. The effect of temperature on the enzyme and its complexes is clearly shown by changes in enzyme fluorescence and CD. At temperatures near 45 degrees C, the enzyme undergoes an irreversible denaturation, as shown by major alterations in enzyme far ultraviolet CD and by an increased rate of fluorescence quenching. Binary complexes with NADPH or Methotrexate stabilize the enzyme towards this heat denaturation, whereas bound trimethoprim and pyrimethamine do not. Ternary complexes with NADPH and any of the ligands are more stable than the enzyme itself toward heat denaturation. Fluorescence-temperature and fluorescence polarization studies show that near 30 degrees C the enzyme undergoes a reversible transition that is modified by NADPH or methotrexate.  相似文献   

7.
Abstract

The binding of the benzodioxolo-benzoquinolizine alkaloid, berberine chloride to natural and synthetic DNAs has been studied by intrinsic and extrinsic circular dichroic measurements. Binding of berberine causes changes in the circular dichroism spectrum of DNA as shown by the increase of molar ellipticity of the 270nm band, but with very little change of the 240nm band. The molar ellipticity at the saturation depends strongly on the base composition of DNA and also on salt concentration, but always larger for the AT rich DNA than the GC rich DNA The features in the circular dichroic spectral changes of berberine-synthetic DNA complexes were similar to that of native DNA but depends on the sequence of base pairs.

On binding to DNA and polynucleotides, the alkaloid becomes optically active. The extrinsic circular dichroism developed in the visible absorption region (300–500nm) for the berberine-DNA complexes shows two broad spectral bands in the regions 425–440nm and 340–360nm with the maximum varying depending on base composition and sequence of DNA While the 425nm band shows less variation on the binding ratio, the 360nm band is remarkably dependent on the DNA/alkaloid ratio. The generation of the alkaloid associated extrinsic circular dichroic bands is not dependent on the base composition or sequence of base pairs, but the nature and magnitude of the bands are very much dependent on these two factors and also on the salt concentration. The interpretation of the results with respect to the modes of the alkaloid binding to DNA are presented.  相似文献   

8.
The binding of the benzodioxolo-benzoquinolizine alkaloid, berberine chloride to natural and synthetic DNAs has been studied by intrinsic and extrinsic circular dichroic measurements. Binding of berberine causes changes in the circular dichroism spectrum of DNA as shown by the increase of molar ellipticity of the 270nm band, but with very little change of the 240nm band. The molar ellipticity at the saturation depends strongly on the base composition of DNA and also on salt concentration, but always larger for the AT rich DNA than the GC rich DNA. The features in the circular dichroic spectral changes of berberine-synthetic DNA complexes were similar to that of native DNA, but depends on the sequence of base pairs. On binding to DNA and polynucleotides, the alkaloid becomes optically active. The extrinsic circular dichroism developed in the visible absorption region (300-500nm) for the berberine-DNA complexes shows two broad spectral bands in the regions 425-440nm and 340-360nm with the maximum varying depending on base composition and sequence of DNA. While the 425nm band shows less variation on the binding ratio, the 360nm band is remarkably dependent on the DNA/alkaloid ratio. The generation of the alkaloid associated extrinsic circular dichroic bands is not dependent on the base composition or sequence of base pairs, but the nature and magnitude of the bands are very much dependent on these two factors and also on the salt concentration. The interpretation of the results with respect to the modes of the alkaloid binding to DNA are presented.  相似文献   

9.
Ultraviolet circular dichroism spectrum of purified NADPH cytochrome P-450 reductase was characterized by two negative bands centered at 208 and 222 nm. The approximation of the alpha-helical content from the value of the mean residue ellipticity at 222 nm indicated 28% of alpha-helical structures. Heat inactivation of the enzyme was associated to a drastic change in the secondary structure of the protein. Membrane reconstitution experiments by inclusion of the enzyme into liposomes revealed that the conformation of NADPH cytochrome P-450 reductase was sensitive to its phospholipid environment. Egg lecithin as well as synthetic phosphatidylcholines, at the optimal phospholipid-enzyme molar ratio 200, was able to increase up to 37% the mean residue ellipticity at 222 nm. Addition of phosphatidylserine or phosphatidylethanolamine produced no effect. Non-ionic detergent such as Emulgen 913 weakly enhanced the mean residue ellipticity.  相似文献   

10.
The structure of the lectin discoidin I has been studied by circular dichroism and fluorescence spectroscopy. A positive ellipticity band at 224 nm is detected in the CD spectrum of discoidin I. The fluorescence spectra show a defined shoulder at 325 nm that through acrylamide quenching has been associated with a displaced tryptophan residue partly buried in the discoidin I molecule. This tryptophan could also be responsible for the 224 nm positive band of the CD spectrum. These spectroscopic characteristics of discoidin I indicate the existence of structural homologies with fibronectin, where the optical activity of aromatic chromophores has been associated with the positive ellipticity band at 227 nm. The CD adjust parameters and theoretical secondary structure predictions show that discoidin I is a molecule with a low content of alpha-helix and beta-strand and high content of beta-turn structures, similar to other lectins.  相似文献   

11.
The structure of the lectin discoidin I has been studied by circular dichroism and fluorescence spectroscopy. A positive ellipticity band at 224 nm is detected in the CD spectrum of discoidin I. The fluorescence spectra show a defined shoulder at 325 nm that through acrylamide quenching has been associated with a displaced tryptophan residue partly buried in the discoidin I molecule. This tryptophan could also be responsible for the 224 nm positive band of the CD spectrum. These spectroscopic characteristics of discoidin I indicate the existence of structural homologies with fibronectin, where the optical activity of aromatic chromophores has been associated with the positive ellipticity band at 227 nm. The CD adjust parameters and theoretical secondary structure predictions show that discoidin I is a molecule with a low content of α-helix and β-strand and high content of β-turn structures, similar to other lectins.  相似文献   

12.
To study the interaction between D-amino acid oxidase [EC 1.4.3.3] and quasi-substrates such as benzoate and o-, m-, and p-aminobenzoate, visible circular dichroism spectra (CD spectra) were measured and the binding rate and affinity of o-aminobenzoate to the enzyme were observed by following the absorption changes at various wavelengths. We found a new CD band around 560 nm, corresponding to the charge-transfer complexes which result from the formation of aminobenzoate complexes with the enzyme. The ellipticity of this band was positive for the p-aminobenzoate complex, but negative for the o- and m-aminobenzoate complexes. Crossover points in CD spectra were observed at 470 nm for the m-aminobenzoate complex and at 475 nm for the o-aminobenzoate complex. They probably resulted from overlapping of the positive CD band of FAD bound with the enzyme and the negative CD band of the charge-transfer complex. We propose that the amino group in aminobenzoate, not the pi-electrons of the benzene ring, is the electron donor in the charge-transfer complex and that the position of the amino group is very important for the charge-transfer interaction. The binding rate and affinity of o-aminobenzoate to the enzyme were determined using the absorption changes at 370 nm (380 nm), caused by the modification of electronic states of FAD bound with the enzyme, and at 550 nm (565 nm), caused by the formation of the charge-transfer complex of o-aminobenzoate with the enzyme. No differences between these parameters with wavelength were observed. This independence of wavelength simplifies discussion of the experimental data obtained from absorption changes.  相似文献   

13.
The circular dichroism has been used to evaluate the effect of mutation on the environment of the pyridoxal phosphate coenzyme in the active site of the beta-subunit in the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium. Seven mutant forms of the alpha 2 beta 2-complex with single amino acid replacements at residues 87, 109, 188, 306, and 350 of the beta-subunit have been prepared by site-directed mutagenesis, purified to homogeneity, and characterized by absorption and circular dichroism spectroscopy. Since the wild type and mutant alpha 2 beta 2 complexes all exhibit positive circular dichroism in the coenzyme absorption band, pyridoxal phosphate must bind asymmetrically in the active site of these enzymes. However, the coenzyme may have an altered orientation or active site environment in five of the mutant enzymes that display less intense ellipticity bands. The mutant enzyme in which lysine 87 is replaced by threonine has very weak ellipticity at 400 nm. Since lysine 87 forms a Schiff base with pyridoxal phosphate in the wild type enzyme, our results demonstrate the importance of the Schiff base linkage for rigid or asymmetric binding. Although the mutant enzymes display spectra in the presence of L-serine that differ from that of the wild type enzyme, addition of alpha-glycerol 3-phosphate converts the spectra of two of the mutant enzymes to that of the wild type enzyme. We conclude that this alpha-subunit ligand may produce a conformational change in the alpha-subunit that is transmitted to the mutant beta-subunits and partially corrects conformational alterations in the mutant enzymes.  相似文献   

14.
The effect of anion binding to ceruloplasmin has been studied using absorption and cirbular dichroism spectral data. At anion to ceruloplasmin molar ratios approaching infinite, OCN-, N3- and SCN- bind to ceruloplasmin giving rise to similar alterations in circular dichroism and absorption spectra. The positive bands at 610 and 520 nm in circular dichroism spectra disappear, a negative one apperars at 600 nm and the peak at 450 nm is only slightly modified. There is a new negative band at 410 nm well-defined in OCN- ceruloplasmin spectra. The decrease in absorption at 610 nm is ascribed to the disruption of one type I Cu-S(cysteine) bond owing presumably to the changes induced by anions in the protein secondary structure. The new band at 410 nm is assigned to a charge transfer transition from the ligand replacing cysteine at its binding site. Both absorption and circular dichroism spectra show isobestic points indicating that anion binding to the enzyme, disruption of one of the two type I Cu-S bonds and coordination of this Cu to another protein residue take place simultaneously.  相似文献   

15.
The conformational properties of soybean β-amylase were investigated by the circular dichroism probe and measurement of enzyme activity. The enzyme exhibited a positive circular dichroism band at 192 nm, a negative band at 222 nm, and a shoulder near 210 nm. Analysis of the spectrum in the far ultraviolet zone indicated the presence of approximately 30% of α helix and 5–10% of β-pleated sheet, the rest of the polypeptide main chain possessing aperiodic structure. In the near ultraviolet reagion, the enzyme protein showed at least six positive peaks at 259, 265, 273, 281, 292, and 297 nm. The positive bands at 292 and 297 nm remained unaltered on acetylation of the enzyme by N-acetylimidazole and were assigned to tryptophanyl chromophores. These bands were affected in intensity in the presence of maltose or cycloheptaamylose, which indicates that some tryptophan residues are situated at the binding sites. The native conformation of soybean β-amylase was found to be sensitive to pH variation (below pH 5 and above pH 10), sodium dodecyl sulfate, guanidine hydrochloride, and heating to 50–55 °C. Complete disorganization of the secondary structure was attained by 6 m guanidine hydrochloride. Sodium dodecyl sulfate was effective in disturbing the tertiary structure of the enzyme but did not affect significantly the secondary structure. Enzymatic inactivation was paralleled by the decrease of circular dichroism bands in the near ultraviolet region as produced by the denaturants. It is concluded that the uniquely folded structure of the enzyme contains some less rigid domains and a rigid core stabilized by hydrophobic interactions, electrostatic interactions, and hydrogen bonds.  相似文献   

16.
Circular dichroism and difference ultraviolet visible spectra were obtained for cobalt hemoglobin derivatives. At 287 nm the ellipticity difference between the oxy- and deoxycobaltohemoglobin is about one-half as great as that for the native proteins indicating smaller quaternary conformational changes for the former. Deoxygenation increases the Soret rotational strengths of both iron and cobalt hemoglobins to comparable degrees suggesting similar conformational changes for their aromatic residues near the "heme." Deoxygenation causes a much larger decrease of L band ellipticity for iron than cobalt hemoglobin. Circular dichroism spectra of nitrosylcobaltohemoglobin indicate the molecule to have a T quaternary structure. The circular dichroism spectra of cobaltihemoglobin do not seem to fit the patterns of the other cobalt derivatives and its 287 nm ellipticity is pH-dependent. From the shape of the Soret circular dichroism spectra, it is estimated that the transition dipole makes an angle with the line joining the two opposing pyrrole nitrogens of about 60 degrees for oxy- and deoxycobaltohemoglobin, 80 degrees for cobaltihemoglobin, as compared to 70 degrees for the native oxy- and deoxyhemoglobins. Inositol hexaphosphate has little or no effect on the circular dichroism spectra of cobalt hemoglobins in the 287 nm region, but it significantly increases the Soret rotational strength and decreases the L band ellipticity. The results are interpreted to mean that polyphosphates modify primarily the protein structure of hemoglobins at the tertiary level, and that the intersubunit interactions are weak in cobalt hemoglobins.  相似文献   

17.
S R Stone  J F Morrison 《Biochemistry》1988,27(15):5493-5499
Kinetic studies on the reaction catalyzed by dihydrofolate reductase from Escherichia coli have been undertaken with the aim of characterizing further the kinetic mechanism of the reaction. For this purpose, the kinetic properties of substrates were determined by measurement of (a) initial velocities over a wide range of substrate concentrations and (b) the stickiness of substrates in ternary enzyme complexes. Stickiness is defined as the rate at which a substrate reacts to give products relative to the rate at which that substrate dissociates. Stickiness was determined by varying the viscosity of reaction mixtures and the concentration of one substrate in the presence of a saturating concentration of the other substrate. The results indicate that NADPH is sticky in the enzyme-NADPH-dihydrofolate complex, while dihydrofolate is much less sticky in this complex. At higher concentrations, NADPH functions as an activator through the formation of an enzyme-NADPH-tetrahydrofolate from which tetrahydrofolate is released more rapidly than from an enzyme-tetrahydrofolate complex. Higher concentrations of dihydrofolate also cause enzyme activation, and it appears that this effect is due to the ability of dihydrofolate to displace tetrahydrofolate from a binary enzyme complex through the formation of a transitory enzyme-tetrahydrofolate-dihydrofolate complex. As NADPH and dihydrofolate function as activators and as NADPH behaves as a sticky substrate, the kinetic mechanism of the dihydrofolate reductase reaction with the natural substrates is steady-state random. By contrast with NADPH, reduced 3-acetylpyridine adenine dinucleotide phosphate exhibits only slight stickiness and does not function as an activator.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The circular dichroism spectra of Escherichia coli 30 S ribosomal subunits have been determined between 200 and 320 nm in the presence and in the absence of initiation factor IF-3. The addition of IF-3 did not produce any major alteration of the circular dichroism spectrum of the 30 S subunits between 320 and 240 nm, but resulted in an increase of the negative ellipticity between 240 and 205 nm. The effect was maximal for an IF-3:30 S molar ratio of approximately one, and further addition of IF-3 did not lead to a further increase of ellipticity. A similar effect was not seen when the 30 S ribosomal subunits were previously heat-inactivated to destroy their IF-3 binding capacity. These data indicate that the ribosomal binding of IF-3 may be accompanied by an increase in the secondary structure of the ribosomal proteins, but does not involve any major net change in the secondary structure of the rRNA.  相似文献   

19.
The interactions of a homogeneous preparation of rat liver dihydropteridine reductase with NADH, NADPH, NAD+, NADP+, and the 1-N6-ethenoadenine derivative of NAD+ have been investigated by fluorescence titration, circular dichroism, equilibrium dialysis, Sephadex G-25 chromatography, and polyacrylamide gel electrophoresis. The procedures indicate that the dimeric enzyme has a definite preference for NADH, but binds only 1 mol of this nucleotide per mol of enzyme. The binary complex of enzyme with NADH is only partially stable to exhaustive dialysis and gel electrophoresis, where it shows greater mobility (0.26) than the free enzyme (0.21); however, the complex can be isolated by Sephadex G-25 chromatography, and characterized with respect to its absorbance spectrum. No ternary complexes are observed when samples of reductase, preincubated with excess NADH, and either the reaction product, 2-amino-4-hydroxy-6,7-dimethyl-5,6,7,8-tetrahydropteridine, or the inhibitor, methotrexate, are subjected to polyacrylamide gel electrophoresis.  相似文献   

20.
When dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli B, MB 1428, is treated with approximately a 5 mol ratio of N-bromosuccinimide (NBS) to enzyme at pH 7.2 and assayed at the same pH, there is a 40% loss of activity due to the modification of 1 histidine residue and possibly 1 methionine residue before oxidation of tryptophan occurs. The initial modification is accompanied by a shift of the pH for maximal enzymatic activity from pH 7.2 to pH 5.5 Upon further treatment with N-bromosuccinimide, the activity is gradually reduced from 60 to 0% as tryptophan residues become oxidized. An NBS to enzyme mole ratio of approximately 20 results in 90% inactivation of the enzyme. When the enzyme is titrated with NBS in 6 M guanidine HCl, 5 mol of tryptophan react per mol of enzyme, a result in agreement with the total tryptophan content as determined by magnetic circular dichroism. The 40% NBS-inactivated sample posses full binding capacity for methotrexate and reduced triphosphopyridine nucleotide, and the Km values for dihydrofolate and TPNH are the same as for the native enzyme. After 90% inactivation, only half of the enzyme molecules bind methotrexate, and the dissociation constant for methotrexate is 40 nM as compared to 4 nM for native enzyme in solutions of 0.1 M ionic strength, pH 7.2 Also, TPNH is not bound as tightly to the modified enzyme-methotrexate complex as to the unmodified enzyme-methotrexate complex. Circular dichroism studies indicate the 90% NBS-inactivated enzyme has the same alpha helix content as the native enzyme but less beta structure, while the 40% inactivated enzyme is essentially the same as the native enzyme. Protection experiments were complicated by the fact that NBS reacts with the substrates and cofactors of the enzyme. Although protection of specific residues was not determined, it was clear that TPNH was partially protected from NBS reaction when bound to the enzyme, and the enzyme, and the enzyme was not inactivated by NBS until the TPNH had reacted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号