首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new mutation inEscherichia coli K12,isfA, is described, which causes inhibition of SOS functions. The mutation, discovered in a ΔpolA + mutant, is responsible for inhibition of several phenomena related to the SOS response inpolA + strains: UV- and methyl methanesulfonate-induced mutagenesis, resumption of DNA replication in UV-irradiated cells, cell filamentation, prophage induction and increase in UV sensitivity. TheisfA mutation also significantly reduces UV-induced expression of β-galactosidase fromrecA::lacZ andumuC′::lacZ fusions. The results suggest that theisfA gene product may affect RecA* coprotease activity and may be involved in the regulation of the termination of the SOS response after completion of DNA repair. TheisfA mutation was localized at 85 min on theE. coli chromosome, and preliminary experiments suggest that it may be dominant to the wild-type allele.  相似文献   

2.
Further studies on theisfA mutation responsible for anti-SOS and antimutagenic activities inEscherichia coli are described. We have previously shown that theisfA mutation inhibits mutagenesis and other SOS-dependent phenomena, possibly by interfering with RecA coprotease activity. TheisfA mutation has now been demonstrated also to suppress mutator activity inE. coli recA730 andrecA730 lexA51(Def) strains that constitutively express RecA coprotease activity. We further show that the antimutator activity of theisfA mutation is related to inhibition of RecA coprotease-dependent processing of UmuD. Expression of UmuD' from plasmid pGW2122 efficiently restores UV-induced mutagenesis in therecA730 isfA strain and partially restores its mutator activity. On the other hand, overproduction of UmuD'C proteins from pGW2123 plasmid markedly enhances UV sensitivity with no restoration of mutability.  相似文献   

3.
Further studies on theisfA mutation responsible for anti-SOS and antimutagenic activities inEscherichia coli are described. We have previously shown that theisfA mutation inhibits mutagenesis and other SOS-dependent phenomena, possibly by interfering with RecA coprotease activity. TheisfA mutation has now been demonstrated also to suppress mutator activity inE. coli recA730 andrecA730 lexA51(Def) strains that constitutively express RecA coprotease activity. We further show that the antimutator activity of theisfA mutation is related to inhibition of RecA coprotease-dependent processing of UmuD. Expression of UmuD' from plasmid pGW2122 efficiently restores UV-induced mutagenesis in therecA730 isfA strain and partially restores its mutator activity. On the other hand, overproduction of UmuD'C proteins from pGW2123 plasmid markedly enhances UV sensitivity with no restoration of mutability.  相似文献   

4.
A conditional-lethal mutation (rpoB364) mapping to the gene that encodes the β-subunit of RNA polymerase was obtained inEscherichia coli. This mutation caused cell filamentation at the restrictive growth temperature and partial derepression of the osmotically regulatedproU operon at the permissive growth temperature. Even under the latter condition, transformants of therpoB364 mutant strain carrying the plasmid vector pACYC184, but not those carrying otherpolA-dependent multicopy plasmids such as pACYC177 or pBR322, were killed in early stationary phase; one class of suppressor mutants isolated as survivors within these transformant colonies were further derepressed forproU-lac expression, and the mutation in each of several independent clones of this class was mapped tohns, the gene that encodes the protein H-NS of theE. coli nucleoid. Thehns mutations did not suppress the conditional-lethal growth phenotype of therpoB364 mutant itself. On the other hand, intracellular overproduction of guanosine 3’, 5’-bispyrophosphate (ppGpp) in therpoB364 strain alleviated both the growth inhibition at the restrictive temperature and the pACYC184-mediated stationary-phase lethality. Upon subcloning into pUC19 or into pACYC177, a 105-bpXbal-HindIII fragment from pACYC184 was shown to be sufficient to confer therpoB364 hns +-dependent lethal phenotype. We suggest that the level in stationary-phase cultures of a gene product(s) that interacts with the pACYC184 DNA fragment is altered in therpoB364 hns+derivative (compared to that inrpoB+ orrpoB364 hns strains) and that this results in cell suicide.  相似文献   

5.
6.
Summary The induction of prophage by ultraviolet light has been measured inE. coli K12 lysogenic cells deficient in DNA polymerase I. The efficiency of the induction process was greater inpolA1 polC(dnaE) double mutants incubated at the temperature that blocks DNA replication than inpolA + polC single mutants. Similarly, thepolA1 mutation sensitizedtif-promoted lysogenic induction in apolA1 tif strain at 42°. In strains bearing thepolA12 mutation, which growth normally at 30°, induction of the prophage occured after the shift to 42°. It is concluded that dissapearance of the DNA polymerase I activity leads to changes in DNA replication that are able, per se, to trigger the prophage induction process.  相似文献   

7.
8.
9.
10.
The DNA damaging properties of dichlorvos (2,2 dichlorovinyl dimethyl phosphate), methyl methanesulphonate (MMS) and iodoacetamide (IAA) have been studied, using alkaline sucrose sedimentation. In a strain of E. coli deficient in DNA polymerase I (polA) both dichlorvos and MMS caused random strand breakage, MMS being about twice as efficient as dichlorvos on a molar basis. In pol+ bacteria, DNA strand breaks or alkali labile bonds were detected following treatment with roughly five-fold higher concentrations of MMS but at similar high concentrations of dichlorvos there was an all or none breakdown of DNA molecules to fragments of very low molecular weight which correlated well with lethality.DNA synthesized after treatment of pol+ and polA bacteria with MMS was of low molecular weight, indicating the presence of discontinuities. With dichlorvos, the effect was much smaller.Apparent all-or-none DNA breakdown was also found when the polA strain of E. coli was treated with low concentrations of iodoacetamide, an agent that does not detectably alkylate DNA. At higher concentrations the breakdown was suppressed and random strand breakage occurred instea. These effects did not occurr with pol+ bacteria and correlated well with the greater sensitivity to iodoacetamide of the polA strain in survival experiments. We suggest that the major DNA damage resulting from treatment with iodoacetamide and dichlorvos arises indirectly through alkylation of other cellular constituents and consequent uncontrolled nuclease attack on the DNA. Discontinuities in newly synthesized DNA and mutagenesis following dichlorvos treatment, however, presumably result from direct alkylation of DNA.Strand breakage caused by dichlorvos and MMS in Chinese hamster cells tended to correlate with the extent to which these agents alkylate DNA, but survivval tended to correlate with the alkylation of protein.  相似文献   

11.
The SOS system of Escherichia coli aids survival following damage to DNA by promoting DNA repair while cell division is delayed. Induction of the SOS response is dependent on RecA and also on the product of recF. We show that normal induction also requires the products of recO and recR. SOS induction was monitored using a sfiA-lacZ fusion strain. Induction was delayed to a similar degree by mutation in recF, recO or recR. A similar effect was observed following overexpression of RecR from a recombinant recR +plasmid. We show that the overexpression of RecR also reduces the UV resistance of a recBC sbcBC strain and of a sfiA strain, but not of a rec + sfiA +strain. The implications of these data for the kinetics of DNA repair are discussed.  相似文献   

12.
WhenEscherichia coli harbouring theppm (earlier calledadi) mutation and the F′lacZU118 episome is subjected to lactose selection in the presence of suboptimal concentrations of glycerol, Lac+ colonies emerge after 5–6 days. They are shown to harbour an ochre suppressor mutation at 15.15 min. Inactivation ofrecA results in approximately four-fold reduction in the response. In theppm — ochre suppressor double mutant background the leakiness of thelacZ allele carried by F′ CC105 is enhanced, suggesting misreading of a valine codon (GUG) as glutamic acid codon (GAG). This is accompanied by reversion of thelacZ mutation tolacZ + (GTG → GAG). In LB medium both the leakiness and reversion are inhibited by streptomycin. Inactivation ofrecA did not affect leakiness but abolished reversion. These data are discussed in relation to the importance of allele leakiness and restricted growth in stationary-phase (adaptive) mutagenesis.  相似文献   

13.
To study the variation in spontaneous mutation frequencies in different chromosomal domains, a mini-Mu-kan-lacZ ?transposable element was constructed to insert the lacZ ?(Trp570 → Opal) allele into many different loci in the Escherichia coli chromosome. Papillation on MacConkey lactose plates was used to screen for mini-Mu insertion mutants with elevated levels of spontaneous mutagenesis of lacZop → LacZ+ candidates were then screened for normal mutation frequencies in other genes. Two different insertion mutants with this enhanced mutagenesis phenotype were isolated from 14?000 colonies, and named plm-1 (preferential lacZmutagenesis) and plm-2. The frequency of LacZ?→ LacZ+ mutations in these plm mutants was over 400-fold higher than that in isogenic strains containing mini-Mu-kan-lacZop insertions at other loci. Six Lac+ reversion (or suppression) mutations obtained from each of the two plm mutants were mapped by P1 transduction and all were found to be linked to the Kanr gene in the mini-Mu-kan-lacZop, suggesting that a localized mutagenic event is responsible for the preferential mutagenesis. Furthermore, both the LacZ+→ LacZ?and Kanr→ Kans mutant frequencies of these Lac+ revertants were in the range of 10?3 to 10?2, indicating that this putative localized mutagenesis is neither allele nor gene specific. To identify the plm loci, the chromosomal regions flanking the mini-Mu insertion sites were cloned and sequenced. A computer-assisted database search of homologous sequences revealed that the plm-1 locus is identical to the mutS gene; the mini-Mu insertion most probably results in the production of a truncated MutS protein. We suggest that the enhanced lacZ mutation frequency in plm-1 may be associated with an active process involving the putative truncated MutS protein. The DNA sequence of the plm-2 locus matched a putative malate oxidoreductase gene located at 55.5 min of the E. coli chromosome.  相似文献   

14.
Escherichia coli cells are capable of complex regulatory responses to environmental conditions and stresses. In some circumstances, the response includes an increase in the mutation rate, effectively mutagenizing the genome. The classic example is the SOS response to DNA damage. Recent work indicates that other environmental stresses can also result in mutation of the genome. Modulation of mutation rate may be a more prevalent stress response than previously thought. In this review we focus on genome-wide mutation inE. coli cells subjected to a nonlethal genetic selection for reversion of alac frameshift allele. Reversion of thelac frameshift allele occurs via a novel mechanism that requires homologous recombination functions, and is enhanced by transiently diminished postsynthesis mismatch repair. A model for recombination-dependent stationary-phase mutation will be presented and its relevance for genome-wide mutation discussed.  相似文献   

15.
It has previously been suggested that inhibition of the proofreading 3′-5′ exonuclease activity of DNA polymerase may play an important role in generation of UV-induced mutations inEscherichia coli. Our previous work showing that overproduction of ε, the proofreading subunit of DNA polymerase III, counteracts the SOS mutagenic response ofE. coli seemed to be consistent with this hypothesis. To explore further the nature of the antimutagenic effect of ε we constructed plasmid pMK17, which encodes only two of the three highly conserved segments of ε — Exol and ExoII; the third segment, ExoIII, which is essential for 3′–5′ exonuclease activity, is deleted. We show that at 40°C, over-production of the truncated e subunit significantly delays production of M13 phage, suggesting that the protein retains its capacity to bind to DNA. On the other hand, the presence of pMK17 in atrpE65 strain growing at 40°C causes a 10-fold decrease in the frequency of UV-induced Trp+ mutations. This antimutagenic effect of the truncated s is effectively relieved by excess UmuD,C proteins. We also show that the presence of plasmid pIP21, which contains thednaQ49 allele encoding an ε subunit that is defective in proofreading activity, almost completely prevents generation of UV-induced mutations in thetrpE65 strain. We propose that the DNA binding ability of free ε, rather than its 3′–5′ exonuclease activity, affects processing of premutagenic UV-induced lesions, possibly by interfering with the interaction between the UmuC-UmuD′-RecA complex and Pol III holoenzyme. This interaction is probably a necessary condition for translesion synthesis.  相似文献   

16.
17.
DNA synthesis after the ultraviolet irradiation was followed in the excision proficient strainEscherichia coli B/rHcr +, in which the ability to excise thymin dimers was suppressed by a preirradiation inhibition of DNA and protein syntheses and in the excision deficient strainEscherichia coli B/rHcr ?. Synthesis of pulse-labeled DNA, its stability and semiconservative DNA synthesis were compared in both strains. It was found that cells of theHcr + strain restore semiconservative DNA synthesis and the pulselabeled DNA appears stable, in spite of the fact that dimers are not excised under these conditions. On the other hand, cells of theHcr ? strain are unable to restore semiconservative DNA synthesis and the pulselabeled DNA is degraded. As the repair by the excision of dimers under the used experimental conditions may be excluded in both strains, it is possible to assume that activity of enzymes included in theHcr + marker is prerequisite for restoring the DNA synthesizing system in theHcr + strain.  相似文献   

18.
TheSchizosaccharomyces pombe rhp51 + gene encodes a recombinational repair protein that shares significant sequence identities with the bacterial RecA and theSaccharomyces cerevisiae RAD51 protein. Levels ofrhp51 + mRNA increase following several types of DNA damage or inhibition of DNA synthesis. Anrhp51::ura4 fusion gene was used to identify the cis-acting promoter elements involved in regulatingrhp51 + expression in response to DNA damage. Two elements, designated DRE1 and DRE2 (fordamage-responsiveelement), match a decamer consensus URS (upstream repressing sequence) found in the promoters of many other DNA repair and metabolism genes fromS. cerevisiae. However, our results show that DRE1 and DRE2 each function as a UAS (upstream activating sequence) rather than a URS and are also required for DNA-damage inducibility of the gene. A 20-bp fragment located downstream of both DRE1 and DRE2 is responsible for URS function. The DRE1 and DRE2 elements cross-competed for binding to two proteins of 45 and 59 kDa. DNase I footprint analysis suggests that DRE1 and DRE2 bind to the same DNA-binding proteins. These results suggest that the DRE-binding proteins may play an important role in the DNA-damage inducibility ofrhp51 + expression.  相似文献   

19.
In response to environmentally caused DNA damage, SOS genes are up-regulated due to RecA-mediated relief of LexA repression. In Escherichia coli, the SOS umuDC operon is required for DNA damage checkpoint functions and for replicating damaged DNA in the error-prone process called SOS mutagenesis. In the model soil bacterium Acinetobacter baylyi strain ADP1, however, the content, regulation, and function of the umuDC operon are unusual. The umuC gene is incomplete, and a remnant of an ISEhe3-like transposase has replaced the middle 57% of the umuC coding region. The umuD open reading frame is intact, but it is 1.5 times the size of other umuD genes and has an extra 5′ region that lacks homology to known umuD genes. Analysis of a umuD::lacZ fusion showed that umuD was expressed at very high levels in both the absence and presence of mitomycin C and that this expression was not affected in a recA-deficient background. The umuD mutation did not affect the growth rate or survival after UV-induced DNA damage. However, the UmuD-like protein found in ADP1 (UmuDAb) was required for induction of an adjacent DNA damage-inducible gene, ddrR. The umuD mutation specifically reduced the DNA damage induction of the RecA-dependent DNA damage-inducible ddrR locus by 83% (from 12.9-fold to 2.3-fold induction), but it did not affect the 33.9-fold induction of benA, an unrelated benzoate degradation gene. These data suggest that the response of the ADP1 umuDC operon to DNA damage is unusual and that UmuDAb specifically regulates the expression of at least one DNA damage-inducible gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号