首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ketamine-anesthetized Sprague-Dawley rats were exposed to far-field 700-MHz continuous-wave radiofrequency radiation (RFR) in both E and H orientations. Irradiation was conducted at whole-body average specific absorption rates (SARs) of 9.2 and 13.0 W/kg (E and H, respectively) that resulted in approximately equivalent colonic specific heating rates (SHRs). Exposures were performed to repeatedly increase colonic temperature by 1 degree C (38.5 to 39.5 degrees C). Tympanic, tail, left and right subcutaneous (toward and away from RFR source), and colonic temperatures, arterial blood pressure, and respiratory rate were continuously recorded. In spite of equivalent colonic SHRs and the reduced E-orientation average SAR, the right subcutaneous, tympanic, and tail SARs, SHRs and absolute temperature increases were significantly greater in E than in H orientation. The cooling rate at all monitoring sites was also significantly greater in E than in H orientation. Heart rate and mean arterial blood pressure significantly increased during irradiation; however, changes between orientations were not different. Respiratory rate significantly increased during irradiation in H, but not in E orientation. These results indicate that during resonant frequency irradiation, differences occur in the pattern of heat deposition between E- and H-orientation exposure. When compared with previous investigations performed at supraresonant frequencies, the lower level of cardiovascular change in this study was probably related to the lower periphery-to-core thermal gradient.  相似文献   

2.
Summary Ketamine-anesthetized Sprague-Dawley rats were exposed in both E and H orientations to far-field 2.45-GHz continuous-wave radiofrequency radiation (RFR) at a power density of 60 mW/cm2 (whole-body average specific absorption rate of 14 W/kg). Intermittent exposures were performed in both orientations in the same animal to repeatedly increase colonic temperature from 38.5 to 39.5° C. Tympanic, subcutaneous (sides toward and away from RFR source), and colonic temperature, ECG, arterial blood pressure, and respiratory rate were continuously recorded. The pattern of heat distribution within the animal and the physiological responses were significantly different between E-and H-orientation exposure. Irradiation in E orientation resulted in greater peripheral and tympanic heating, while irradiation in H orientation resulted in greater core heating. Heart rate and blood pressure increased significantly during irradiation and returned to baseline levels when exposure was discontinued; the increases were significantly greater in E than in H orientation. Respiratory rate increased significantly during irradiation in H, but not in E orientation. The physiological responses could have been influenced by the different levels or rates of subcutaneous and tympanic heating, or the differential between core and peripheral heating during E- and H-orientation irradiation. These results suggest that, when interpreting results of RFR exposure, animal orientation during irradiation must be considered.  相似文献   

3.
Summary Ketamine-anesthetized Sprague-Dawley rats were exposed in H orientation to far-field 9.3-GHz continuous-wave (CW) and pulsed (2 µs, 500 pps) radiofrequency radiation (RFR) at average power densities of 30 and 60 mW/cm2 (whole-body average specific absorption rates of 9.3 and 18.6 W/kg, respectively). Irradiation was conducted to cyclicly increase colonic temperature from 38.5 to 39.5° C. Colonic, tympanic, and subcutaneous temperatures, ECG, blood pressure, and respiratory rate were continuously recorded during experimentation. At both power densities, the subcutaneous and tympanic temperature increases significantly exceeded the colonic temperature increase. At both exposure levels, heart rate increased significantly during irradiation and returned to baseline when exposure was discontinued. Blood pressure and respiratory rate did not significantly change during irradiation. There were no significant differences between the effects of CW and pulsed RFR exposure. The levels of subcutaneous heating and heart rate change were greater, and the times required to achieve and to recover from a 1° C colonic temperature increase were longer than in previous studies conducted at 2.8 GHz. Results of these studies indicate that the carrier frequency used during irradiation markedly affects the pattern of heat distribution and the physiological responses of RF-irradiated animals.  相似文献   

4.
Cardiovascular and thermal responses in rats during 94 GHz irradiation   总被引:1,自引:0,他引:1  
We investigated the thermal distribution and cardiovascular effects produced by sustained exposure of rats to 94 GHz radio-frequency electromagnetic radiation (RFR). Sixteen ketamine-anesthetized Sprague-Dawley rats were exposed individually at a power density of 75 mW/cm2 under far-field conditions in E orientation. Irradiation began when colonic temperature was 37 degrees C and continued until death. Large, immediate increases in subcutaneous temperature on the irradiated side were accompanied by more moderate, delayed increases in colonic temperature. These body-temperature responses were similar to previous results obtained during 35 GHz RFR exposure. During irradiation, arterial blood pressure initially increased and then precipitously decreased until death. The heart rate increased throughout the exposure period. When comparing the results of these 94 GHz exposures with those in previous studies of lower RFR frequencies, it appears that the patterns of heart-rate and blood-pressure changes that occur before death are similar. We conclude that exposure to 94 GHz RFR produces extreme peripheral heating without similar levels of core heating and that this pattern of heat deposition is sufficient to produce circulatory failure and subsequent death.  相似文献   

5.
Anesthetized rats were exposed to 5.6-GHz continuous wave radiofrequency radiation at an average power density of 60 mW/cm2 (average specific absorption rate 12 W/kg). Exposure was performed to raise colonic temperature from 38.5 to 39.5 degrees C. Following acute administration of chlorpromazine, body temperature exhibited a faster return to baseline temperature when exposure was discontinued. When exposure was initiated at 38.5 degrees C and continued until lethal temperatures resulted, chlorpromazine-treated animals exhibited significantly shorter survival times than saline-treated animals. Thus, although chlorpromazine enhanced thermo-regulatory efficiency at colonic temperatures below 39.5 degrees C, the drug caused increased susceptibility to terminal radiofrequency radiation exposure. The present results, when compared to previous studies of irradiation at 2.8 GHz, indicate that the effects of chlorpromazine on thermal responses to RFR during intermittent and terminal exposure are similar at both 2.8 and 5.6 GHz.  相似文献   

6.
The present study was performed to determine if any heart rate or blood pressure changes occur during intermittent exposure to radiofrequency radiation (RFR), and to determine if parasympathetic blockade due to atropine has any effect on these changes or on thermal responses. Anesthetized rats were exposed to 2.8 GHz pulsed RFR at an average power level of 60 mW/cm2 (average specific absorption rate, 14 W/kg). During an initial exposure period to raise colonic temperature to 39.5 degrees C, heart rate decreased significantly. This thermal bradycardia is similar to that reported by other investigators during environmental heat exposure. Intermittent exposure to radiation, which was designed to result in 1 degree C colonic temperature changes, did not significantly affect heart rate or mean arterial blood pressure, before or after atropine administration. The time courses of these 1 degree C temperature changes were not altered significantly by atropine. Following administration of atropine, the thermal bradycardia during the initial heating period was still evident. Thus, factors other than vagal activity are responsible for the phenomenon. It is possible that the bradycardia is a consequence of a general reduction in metabolism, which occurs also during environmental heat exposure.  相似文献   

7.
Relatively large thermal gradients may exist during exposure of an animal to microwaves (MWs), particularly at high frequencies. Differences in thermal gradients within the body may lead to noticeable differences in the magnitude of cardiovascular changes resulting from MW exposure. This study compares the thermal distribution and cardiovascular effects of exposure to a single MW frequency with effects of simultaneous exposure to two frequencies. Ketamine-anesthetized male Sprague-Dawley rats (n = 58) were exposed individually to one of three conditions: 1-GHz, 10-GHz, or combined 1- and 10-GHz MWs at an equivalent whole-body specific absorption rate of 12 W/kg. The continuous-wave irradiation was conducted under far-field conditions with animals in E orientation (left lateral exposure, long axis parallel to the electric field) or in H orientation (left lateral exposure, long axis perpendicular to the electric field). Irradiation was started when colonic temperature was 37.5 degrees C and was continued until lethal temperatures were attained. Colonic, tympanic, left and right subcutaneous, and tail temperatures, and arterial blood pressure, heart rate, and respiratory rate were continuously recorded. In both E and H orientations, survival time (i.e., time from colonic temperature of 37.5 degrees C until death) was lowest in animals exposed at 1-GHz, intermediate in those exposed at 1- and 10-GHz combined, and greatest in the 10-GHz group (most differences statistically significant). At all sites (with the exception of right subcutaneous), temperature values in the 1- and 10-GHz combined group were between those of the single-frequency exposure groups in both E and H orientations. During irradiation, arterial blood pressure initially increased and then decreased until death. Heart rate increased throughout the exposure period. The general, overall patterns of these changes were similar in all groups. The results indicate that no unusual physiological responses occur during multi-frequency MW exposure, when compared with results of single-frequency exposure. Bioelectromagnetics 21:159-166, 2000. Published 2000 Wiley-Liss, Inc.  相似文献   

8.
Effects of intermittent exposure to 5.6-GHz radiofrequency radiation (RFR) on heart rate, blood pressure, and respiratory rate were examined in anesthetized rats. During exposure to 60 mW/cm2 which resulted in a 1 degree C change in colonic temperature, heart rate increased; the values returned to control levels after exposure was discontinued. No changes in mean arterial blood pressure or in respiratory rate were observed. Exposure to 30 mW/cm2 caused no significant changes in heart rate, blood pressure, or respiratory rate. The data indicate that heart rate changes during exposure to 5.6-GHz RFR are related to the average power density applied, and thus to the rate of change in temperature, and not simply to the absolute change in temperature.  相似文献   

9.
The purpose of this study was to determine any potential falls-resistance benefits that might arise from treadmill-slip-perturbation training. One hundred sixty-six healthy community-dwelling older adults were randomly assigned to either the treadmill-slip-training group (Tt) or the treadmill-control group (Tc). Tt received 40 slip-like perturbations during treadmill walking. Tc received unperturbed treadmill walking for 30 min. Following their treadmill session, both groups were exposed to a novel slip during over-ground walking. Their responses to this novel slip were also compared to previously collected data from participants who received either over-ground-slip training (Ot) with 24 slips or over-ground walking (Oc) with no training before experiencing their novel over-ground slip. Fall rates and both proactive (pre-slip) and reactive (post-slip) stability were assessed and compared for the novel over-ground slip in groups Tt, Tc, and Oc, as well as for the 24th slip in Ot. Results showed Tt had fewer falls than Tc (9.6% versus 43.8%, p < 0.001) but more falls than Ot (9.6% versus 0%, p < 0.001). Tt also had greater proactive and reactive stability than Tc (Tt > Tc, p < 0.01), however, Tt’s stabilities were lower than those of Ot (p < 0.01). There was no difference in fall-rate or reactive stability between Tc and Oc, though treadmill walking did improve the proactive stability control of the latter. While the treadmill-slip-training protocol could immediately reduce the numbers of falls from a novel laboratory-reproduced slip, such improvements were far less than that from the motor adaptation to the over-ground-slip-training protocol.  相似文献   

10.
1. Whole-body exposure of animals to radiofrequency radiation (RFR) can cause an increase in body temperature. 2. Responses to heating, whether due to RFR or to more conventional means, include changes in heart rate and blood pressure. 3. Although cardiovascular responses to various types of heating are similar, differences in the magnitude of changes may result from different thermal gradients within the body. 4. This review compares the effects of RFR and conventional environmental heating on heart rate and blood pressure.  相似文献   

11.
Summary To compare the effects of ketamine anesthesia and mild restraint on microwave-induced thermal and cardiovascular changes, sixteen Fischer 344 rats were irradiated in two states:1) unanesthetized, restrained, and2) ketamine-anesthetized (150 mg/kg, I.M.). Individual animals were exposed in H orientation to far-field continuous-wave 2.8-GHz microwaves. Irradiation was conducted at a power density of 60 mW/cm2 (whole-body average specific absorption rate of 14.4 W/kg) to cyclicly increase colonic temperature from 38.5 to 39.5° C. Colonic and subcutaneous temperatures, aortic blood pressure, and heart rate were continuously monitored. The time required for colonic temperature to increase 1° C was significantly longer in the anesthetized state; however, the time to return to baseline was similar under both conditions. Heart rate and blood pressure significantly increased during irradiation in the unanesthetized state, but remained virtually unchanged in the anesthetized state. The subcutaneous temperature increase during exposure was significantly greater in the anesthetized state. The differences in responses of anesthetized and mildly restrained animals should be considered when conducting experiments on thermoregulatory responses to microwave irradiation.  相似文献   

12.
During the last several decades, numerous studies have been performed aiming at the question of whether or not exposure to radiofrequency radiation (RFR) influences the permeability of the blood-brain barrier (BBB). The objective of this study was to investigate the effect of RFR on the permeability of BBB in male and female Wistar albino rats. Right brain, left brain, cerebellum, and total brain were analyzed separately in the study. Rats were exposed to 0.9 and 1.8 GHz continuous-wave (CW) RFR for 20 min (at SARs of 4.26 mW/kg and 1.46 mW/kg, respectively) while under anesthesia. Control rats were sham-exposed. Disruption of BBB integrity was detected spectrophotometrically using the Evans-blue dye, which has been used as a BBB tracer and is known to be bound to serum albumin. Right brain, left brain, cerebellum, and total brain were evaluated for BBB permeability. In female rats, no albumin extravasation was found in in the brain after RFR exposure. A significant increase in albumin was found in the brains of the RF-exposed male rats when compared to sham-exposed male brains. These results suggest that exposure to 0.9 and 1.8 GHz CW RFR at levels below the international limits can affect the vascular permeability in the brain of male rats. The possible risk of RFR exposure in humans is a major concern for the society. Thus, this topic should be investigated more thoroughly in the future.  相似文献   

13.
During the last several decades, numerous studies have been performed aiming at the question of whether or not exposure to radiofrequency radiation (RFR) influences the permeability of the blood-brain barrier (BBB). The objective of this study was to investigate the effect of RFR on the permeability of BBB in male and female Wistar albino rats. Right brain, left brain, cerebellum, and total brain were analyzed separately in the study. Rats were exposed to 0.9 and 1.8?GHz continuous-wave (CW) RFR for 20?min (at SARs of 4.26?mW/kg and 1.46?mW/kg, respectively) while under anesthesia. Control rats were sham-exposed. Disruption of BBB integrity was detected spectrophotometrically using the Evans-blue dye, which has been used as a BBB tracer and is known to be bound to serum albumin. Right brain, left brain, cerebellum, and total brain were evaluated for BBB permeability. In female rats, no albumin extravasation was found in in the brain after RFR exposure. A significant increase in albumin was found in the brains of the RF-exposed male rats when compared to sham-exposed male brains. These results suggest that exposure to 0.9 and 1.8?GHz CW RFR at levels below the international limits can affect the vascular permeability in the brain of male rats. The possible risk of RFR exposure in humans is a major concern for the society. Thus, this topic should be investigated more thoroughly in the future.  相似文献   

14.
The aim of this investigation was to study the synergistic DNA damage effects in human lymphocytes induced by 1.8 GHz radiofrequency field radiation (RFR, SAR of 3 W/kg) with four chemical mutagens, i.e. mitomycin C (MMC, DNA crosslinker), bleomycin (BLM, radiomimetic agent), methyl methanesulfonate (MMS, alkylating agent), and 4-nitroquinoline-1-oxide (4NQO, UV-mimetic agent). The DNA damage of lymphocytes exposed to RFR and/or with chemical mutagens was detected at two incubation time (0 or 21 h) after treatment with comet assay in vitro. Three combinative exposure ways were used. Cells were exposed to RFR and chemical mutagens for 2 and 3h, respectively. Tail length (TL) and tail moment (TM) were utilized as DNA damage indexes. The results showed no difference of DNA damage indexes between RFR group and control group at 0 and 21 h incubation after exposure (P>0.05). There were significant difference of DNA damage indexes between MMC group and RFR+MMC co-exposure group at 0 and 21 h incubation after treatment (P<0.01). Also the significant difference of DNA damage indexes between 4NQO group and RFR+4NQO co-exposure group at 0 and 21 h incubation after treatment was observed (P<0.05 or P<0.01). The DNA damage in RFR+BLM co-exposure groups and RFR+MMS co-exposure groups was not significantly increased, as compared with corresponding BLM and MMS groups (P>0.05). The experimental results indicated 1.8 GHz RFR (SAR, 3 W/kg) for 2h did not induce the human lymphocyte DNA damage effects in vitro, but could enhance the human lymphocyte DNA damage effects induced by MMC and 4NQO. The synergistic DNA damage effects of 1.8 GHz RFR with BLM or MMS were not obvious.  相似文献   

15.
The effect of continuous-wave (CW) and pulsed-wave (PW) radiofrequency radiation (RFR) in the microwave range on UV-induced DNA repair has been investigated in MRC-5 normal human diploid fibroblasts. RFR exposure at power densities of 1 (or 5) and 10 mW/cm2 gave a maximum specific absorption rate (SAR) (at 10 mW/cm2) of 0.39 +/- 0.15 W/kg for 350 MHz RFR, 4.5 +/- 3.0 W/kg for 850 MHz RFR, and 2.7 +/- 1.6 W/kg for 1.2 GHz RFR. RFR exposures for 1 to 3 h at 37 degrees C, in either continuous-wave or pulsed-wave modes, had no effect on the rate of repair replication label incorporated into preexisting UV-damaged DNA. RFR exposures (PW), with a constant medium temperature of 39 degrees C at 350 and 850 MHz during the repair period after UV damage, also had no effect. Assay for induction of repair synthesis by RFR exposure alone in non-UV irradiated cells was negative for the 350-, 850-, and 1200-MHz CW and PW RFR at 37 degrees C and the 350- and 850-MHz PW RFR at 39 degrees C. RFR does not induce DNA repair under these exposure conditions. In preliminary experiments--with the tissue culture medium maintained at 39 degrees C and RFR exposures (PW) at the frequencies of 350, 850, and 1200 MHz--no effect on incorporation of [3H]thymidine into DNA undergoing semiconservative synthesis was observed.  相似文献   

16.
We aimed to investigate the potential hazardous effects of prenatal and/or postnatal exposure to 1800 MHz GSM-like radiofrequency radiation (RFR) on the blood chemistry and lipid peroxidation levels of infant rabbits. A total of 72 New Zealand female and male white rabbits aged 1-month were used. Thirty-six female and 36 male were divided into four groups which were composed of nine infants: (i) Group 1 were the sham exposure (control), (ii) Group 2 were exposed to RFR, 15 min daily for 7 days in the prenatal period (between 15th and 22nd days of the gestational period) (prenatal exposure group). (iii) Group 3 were exposed to RFR 15 min/day (14 days for male, whereas 7 days for female) after they reached 1-month of age (postnatal exposure group). (iv) Group 4 were exposed to RFR for 15 min daily during 7 days in the prenatal period (between 15th and 22nd days of the gestational period) and 15 min/day (14 days for male, whereas 7 days for female) after they reached 1-month of age (prenatal and postnatal exposure group). Results showed that serum lipid peroxidation level in both female and male rabbits changed due to the RFR exposure. However, different parameters of the blood biochemistry were affected by exposure in male and female infants. Consequently, the whole-body 1800 MHz GSM-like RFR exposure may lead to oxidative stress and changes on some blood chemistry parameters. Studies on RFR exposure during prenatal and postnatal periods will help to establish international standards for the protection of pregnants and newborns from environmental RFR.  相似文献   

17.
This study was undertaken to determine the effects of 2,450-MHz microwave irradiation on thermoregulation, metabolism, and cardiovascular function of rats. Young adult male animals (430 g) were exposed for 30 min to 2,450-MHz microwaves in a cavity at absorbed dose rates of 0, 4.5, 6.5, or 11.1 mW/G. For animals of the size used in this study, these dose rates represent absorption of energy at the rate of 27.7, 40.1, and 68.2 cal/min, respectively. For a period of 5 h following exposure, measurements were made of colonic temperature, skin temperature, oxygen consumption, carbon dioxide production, respiratory quotient, and heart rate. Rats that received 27.7 cal/min for 30 min exhibited an initial transient increase in colonic and skin temperatures but no alterations in other functions. The group irradiated at 40.1 cal/min had greater elevations in colonic and skin temperatures immediately after exposure, followed by overcompensation and lower than normal colonic temperatures for about 3 h. The metabolic rate was depressed in this group for 3 h. Bradycardia developed within 20 min after exposure and persisted for about 3 h. The group of rats that received 68.2 cal/min for 30 min had responses similar to those of the 40.1 cal/min group, but the changes were more severe and lasted longer. In addition, a number of transient abnormalities were noted in the ECG tracings of rats that had received the highest dose, including irregular rhythms and incomplete heart block. The physiological changes observed in this study can be attributed to the heating induced by irradiation.  相似文献   

18.
Effects of nonthermal radiofrequency radiation (RFR) of the global system of mobile communication (GSM) cellular phones have been as yet mostly studied at the molecular level in the context of cellular stress and proliferation, as well as neurotransmitter production and localization. In this study, a simulation model was designed for the exposure of pregnant rats to pulsed GSM-like RFR (9.4 GHz), based on the different resonant frequencies of man and rat. The power density applied was 5 microW/cm2, in order to avoid thermal electromagnetic effects as much as possible. Pregnant rats were exposed to RFR during days 1-3 postcoitum (p.c.) (embryogenesis, pre-implantation) and days 4-7 p.c. (early organogenesis, peri-implantation). Relative expression and localization of bone morphogenetic proteins (BMP) and their receptors (BMPR), members of a molecular family currently considered as major endocrine and autocrine morphogens and known to be involved in renal development, were investigated in newborn kidneys from RFR exposed and sham irradiated (control) rats. Semi-quantitative duplex RT-PCR for BMP-4, -7, BMPR-IA, -IB, and -II showed increased BMP-4 and BMPR-IA, and decreased BMPR-II relative expression in newborn kidneys. These changes were statistically significant for BMP-4, BMPR-IA, and -II after exposure on days 1-3 p.c. (P <.001 each), and for BMP-4 and BMPR-IA after exposure on days 4-7 p.c. (P <.001 and P =.005, respectively). Immunohistochemistry and in situ hybridization (ISH) showed aberrant expression and localization of these molecules at the histological level. Our findings suggest that GSM-like RFR interferes with gene expression during early gestation and results in aberrations of BMP expression in the newborn. These molecular changes do not appear to affect renal organogenesis and may reflect a delay in the development of this organ. The differences of relative BMP expression after different time periods of exposure indicate the importance of timing for GSM-like RFR effects on embryonic development.  相似文献   

19.
The ability of radio frequency radiation (RFR) to exert irreversible nonthermal (i.e., not caused by accompanying heat) effects on biologics has been widely debated due to a relative paucity of comprehensive critical details in published reports dealing with this issue. In this study, we used rigorous control over experimental conditions to determine whether continuous RFR nonthermally affects commercially important enzymes and live bacterial and human cells using three most commonly used frequencies in current RF identification technology, namely 2.45 GHz, 915 MHz, and 13.56 MHz. Diverse biological samples were exposed to RFR under deliberately harsh conditions to increase the likelihood of observing such effects should they exist. Enzymatic activities of horseradish peroxidase and β‐galactosidase in aqueous solution exhibited no statistically discernable consequences of even very intense RFR. Likewise, with putative thermal effects excluded, the viabilities of bacteria (both gram‐positive and gram‐negative) and of human cells were not detectably compromised by such an RFR exposure. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

20.
1. In rats acclimated to 23 degrees C (RT rats) or 5 degrees C (CA rats), core temperature (Tc), tail temperature (Tt) and oxygen consumption (VO2) were measured during exposure to a hypergravic field. 2. Rats were exposed for 5.5 h to a 3 g field while ambient temperature (Ta) was varied. For the first 2 h, Ta was 25 degrees C; then Ta was raised to 34 degrees C for 1.5 h. During this period of warm exposure, Tc increased 4 degrees C in both RT and CA rats. Finally, Ta was returned to 25 degrees C for 2 h, and Tc decreased toward the levels measured prior to warm exposure. 3. In a second experiment at 3 g, RT and CA rats were exposed to cold (12 degrees C) after two hours at 25 degrees C. During the one hour cold exposure, Tc fell 1.5 degrees C in RT and 0.5 degree C in CA rats. After cold exposure, when ambient temperature was again 25 degrees C, Tc of RT and CA rats returned toward the levels measured prior to the thermal disturbance. 4. Rats appear to regulate their temperature, albeit at a lower level, in a 3 g field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号