首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Chien  F Fan  M M Lee  D A Handley 《Biorheology》1984,21(4):631-641
The effects of variations in transmural pressure over a range of 0 to 200 mmHg on transendothelial transport of macromolecules were studied in the canine common carotid artery. The uptake of 125I-albumin per unit artery weight increased with rising pressure. There was no significant difference in albumin permeability per unit luminal surface area between 0 and 100 mmHg, but permeability nearly doubled when pressure was raised to 200 mmHg. The contribution of an increased rate of transendothelial vesicle diffusion, as evaluated from the experimental determination of the ratio of attached-to-free vesicles and theoretical modeling, was found to be negligible. The reduction in transendothelial vesicle diffusion distance due to pressure-induced thinning of the peripheral zone contributes to a 25% increase in permeability. With the use of colloidal Ag and Au of various sizes, vesicle loading of particles with diameters greater than or equal to 15 nm was found to be severely restricted at transmural pressure less than or equal to 100 mmHg, but it was significantly enhanced at 200 mmHg, when particles as large as 25 nm became detectable in endothelial vesicles and subendothelial space. This hypertension-induced increase in macromolecular transport across the endothelium may cause an overloading of the arterial wall with low-density lipoproteins and play a significant role in atherogenesis.  相似文献   

2.
3.
Cells have to regulate their volume in order to survive. Moreover, it is now evident that cell volume per se and the membrane transport processes which regulate it, comprise an important signalling unit. For example, macromolecular synthesis, apoptosis, cell growth and hormone secretion are all influenced by the cellular hydration state. Therefore, a thorough understanding of volume-activated transport processes could lead to new strategies being developed to control the function and growth of both normal and cancerous cells. Cell swelling stimulates the release of ions such as K(+) and Cl(-) together with organic osmolytes, especially the beta-amino acid taurine. Despite being the subject of intense research interest, the nature of the volume-activated taurine efflux pathway is still a matter of controversy. On the one hand it has been suggested that osmosensitive taurine efflux utilizes volume-sensitive anion channels whereas on the other it has been proposed that the band 3 anion-exchanger is a swelling-induced taurine efflux pathway. This article reviews the evidence for and against a role of anion channels and exchangers in osmosensitive taurine transport. Furthermore, the distinct possibility that neither pathway is involved in taurine transport is highlighted. The putative relationship between swelling-induced taurine transport and volume-activated anionic amino acid, alpha-neutral amino acid and K(+) transport is also examined.  相似文献   

4.
An important function of the endothelium is to regulate the transport of liquid and solutes across the semi-permeable vascular endothelial barrier. Two cellular pathways have been identified controlling endothelial barrier function. The normally restrictive paracellular pathway, which can become "leaky" during inflammation when gaps are induced between endothelial cells at the level of adherens and tight junctional complexes, and the transcellular pathway, which transports plasma proteins the size of albumin via transcytosis in vesicle carriers originating from cell surface caveolae. During non-inflammatory conditions, caveolae-mediated transport may be the primary mechanism of vascular permeability regulation of fluid phase molecules as well as lipids, hormones, and peptides that bind avidly to albumin. Src family protein tyrosine kinases have been implicated in the upstream signaling pathways that lead to endothelial hyperpermeability through both the paracellular and transcellular pathways. Endothelial barrier dysfunction not only affects vascular homeostasis and cell metabolism, but also governs drug delivery to underlying cells and tissues. In this review of the field, we discuss the current understanding of Src signaling in regulating paracellular and transcellular endothelial permeability pathways and effects on endogenous macromolecule and drug delivery.  相似文献   

5.
A theoretical analysis of non-stationary states in membrane pores is given in this paper, which is based on the rate-theory treatment of transport processes. The principal aim of this study is to give a basis for the interpretation of relaxation experiments in which an external parameter, such as the voltage across the membrane, is suddenly displaced. From the time course of the membrane current information about the microscopic properties of the pore may be obtained. The pore is considered as a sequence of binding sites, separated by energy barriers over which the ion has to jump. It is found that under certain conditions damped oscillations occur after the initial perturbations of the membrane. In all other cases the approach towards the steady state may be described by a discrete spectrum of n relaxation times, where n is the number of binding sites within the pore. In the case of a pore with regular energy profile (internal barriers of identical height) the relaxation times may be obtained as the roots of Tchebycheff polynomials for arbitrary n. It is shown that the present treatment becomes identical with the continuum analysis of transport processes in the limit of large n.  相似文献   

6.
Nucleocytoplasmic transport of macromolecules.   总被引:23,自引:0,他引:23       下载免费PDF全文
Nucleocytoplasmic transport is a complex process that consists of the movement of numerous macromolecules back and forth across the nuclear envelope. All macromolecules that move in and out of the nucleus do so via nuclear pore complexes that form large proteinaceous channels in the nuclear envelope. In addition to nuclear pores, nuclear transport of macromolecules requires a number of soluble factors that are found both in the cytoplasm and in the nucleus. A combination of biochemical, genetic, and cell biological approaches have been used to identify and characterize the various components of the nuclear transport machinery. Recent studies have shown that both import to and export from the nucleus are mediated by signals found within the transport substrates. Several studies have demonstrated that these signals are recognized by soluble factors that target these substrates to the nuclear pore. Once substrates have been directed to the pore, most transport events depend on a cycle of GTP hydrolysis mediated by the small Ras-like GTPase, Ran, as well as other proteins that regulate the guanine nucleotide-bound state of Ran. Many of the essential factors have been identified, and the challenge that remains is to determine the exact mechanism by which transport occurs. This review attempts to present an integrated view of our current understanding of nuclear transport while highlighting the contributions that have been made through studies with genetic organisms such as the budding yeast, Saccharomyces cerevisiae.  相似文献   

7.
Ion transport through pores: a rate-theory analysis   总被引:26,自引:0,他引:26  
  相似文献   

8.
The macromolecular transport in bovine aortic endothelial monolayers, cultured in vitro, was studied by fluorescence microscopy, confocal laser scanning microscopy, and transmission electron microscopy. A fluid-phase endocytic tracer, fluorescein isothiocyanate dextran 70 kD (FITC-dextran 70), was found to be transported into and out of endothelial cells via vesicles arranged as chains stretching between the luminal surface and the cell interior and also from cell interior to the abluminal surface. The endocytic activity was reduced by colchicine, which disrupts microtubules, and increased during treatment with cytochalasin B, which blocks microfilament polymerization. These findings indicate that microtubules are required for fluid-phase endocytosis and that microfilaments hinder this process. © 1993 Wiley-Liss, Inc.  相似文献   

9.
The central features of nuclear import have been conserved during evolution. In yeast the nuclear accumulation of proteins follows the same selective and active transport mechanisms known from higher eukaryotes. Yeast nuclear proteins contain nuclear localization sequences (NLS) which are presumably recognized by receptors in the cytoplasm and the nuclear envelope. Subsequent to this recognition step, nuclear proteins are translocated into the nucleus via the nuclear pore complexes. The structure of the yeast nuclear pore complex resembles that of higher eukaryotes. Recently, the first putative components of the yeast nuclear import machinery have been cloned and sequenced. The genetically amenable yeast system allows for an efficient structural and functional analysis of these components. Due to the evolutionary conservation potential insights into the nuclear import mechanisms in yeast can be transferred to higher eukaryotes. Thus, yeast can be considered as a eukaryotic model system to study nuclear transport.  相似文献   

10.
Capillary transport of adenosine   总被引:2,自引:0,他引:2  
We tested the hypothesis that capillary exchange of adenosine is influenced by the ability of endothelial cells (ECs) to take up adenosine. Triple-indicator diffusion experiments were performed by injecting [14C]adenosine, [3H]9-beta-D-arabinofuranosylhypoxanthine ( [3H]araH), and radioiodinated serum albumin (RISA) into the arterial perfusate of isolated nonworking guinea pig hearts. Tracer appearance in venous effluent was observed over time. The early extraction of [14C]adenosine was much higher than that of [3H]araH. Extracted [3H]araH returned to the vascular space, but [14C]adenosine did not. Quantitative analysis of the curves by using a mathematical model indicates that approximately half of the extracted adenosine enters ECs and is metabolized. The remainder enters the interstitium and is taken up by myocytes, ECs, or other cells and is metabolized. We conclude that uptake of adenosine by ECs represents a significant influence on the capillary exchange of adenosine.  相似文献   

11.
We describe a new algorithm, CHUNNEL, to automatically find, characterize, and display tunnels or pores in proteins. The correctness and accuracy of the algorithm is verified on a constructed set of proteins and used to analyze large sets of real proteins. The verification set contains proteins with artificially created pores of known path and width profile. The previous benchmark algorithm, HOLE, is compared with the new algorithm. Results show that the major advantage of the new algorithm is that it can successfully find and characterize tunnels with no a priori guidance or clues about the location of the tunnel mouth, and it will successfully find multiple tunnels if present. CHUNNEL can also be used in conjunction with HOLE, with the former used to prime HOLE and the latter to track and characterize the pores. Analysis was conducted on families of membrane protein structures culled from the Protein Data Bank as well as on a set of transmembrane proteins with predicted membrane-aqueous phase interfaces, yielding the first completely automated examination of tunnels through membrane proteins, including tunnels that exit in the membrane bilayer.  相似文献   

12.
13.
Peroxidase-catalyzed benzidine binding to DNA and other macromolecules   总被引:1,自引:0,他引:1  
[14C]Benzidine is rapidly oxidized by a peroxidase/H2O2 system to products which bind irreversibly to DNA. The presence of exogenous DNA also prevented benzidine polymerization to 'benzidine brown' and azobenzidine. Two molar equivalents of H2O2 were required to oxidize the benzidine and achieve maximal DNA binding. Furthermore, 95% of the benzidine was trapped and 36 nmol benzidine was bound per mg DNA. Polyriboguanylic acid was as effective as DNA in binding benzidine, but polyriboadenylic acid, polyribouridylic acid and polyribocytidylic acid were much less effective. Binding of [14C]benzidine correlated well with the absorbance at 295 nm and 390 nm of the modified DNA or various synthetic homopolymers of ribonucleotides isolated from the reaction mixture. The peroxidase/H2O2 system also catalyzed the binding of dichlorobenzidine, o-tolidine and o-dianisidine to DNA but 3,5,3',5'-tetramethylbenzidine, a non-carcinogen, did not bind. The binding could be prevented by various biological hydrogen donors, thiols, or phenolic antioxidants. The mechanisms for DNA protection were investigated; the oxidized benzidine species involved in binding can be reduced with ascorbate, NADPH, or thiols, and trapped by thiols or phenolic antioxidants to form conjugates or adducts.  相似文献   

14.
15.
The major structural and enzymatically active protein in spicules from siliceous sponges, e.g., for Suberites domuncula studied here, is silicatein. Silicatein has been established to be the key enzyme that catalyzes the formation of biosilica, a polymer that represents the inorganic scaffold for the spicule. In the present study, it is shown, by application of high-resolution transmission and scanning transmission electron microscopy that, during the initial phase of spicule synthesis, nanofibrils with a diameter of around 10 nm are formed that comprise bundles of between 10 and 20 nanofibrils. In intracellular vacuoles, silicasomes, the nanofibrils form polar structures with a pointed tip and a blunt end. In a time-dependent manner, these nanofibrillar bundles become embedded into a Si-rich matrix, indicative for the formation of biosilica via silicatein molecules that form the nanofibrils. These biosilicified nanofibrillar bundles become extruded from the intracellular space, where they are located in the silicasomes, to the extracellular environment by an evagination process, during which a cellular protrusion forms the axial canal in the growing spicule. The nanofibrillar bundles condense and progressively form the axial filament that becomes localized in the extracellular space. It is concluded that the silicatein-composing nanofibrils act not only as enzymatic silica bio-condensing platforms but also as a structure-giving guidance for the growing spicule.  相似文献   

16.
Under ordinary circumstances, the membrane tension of a giant unilamellar vesicle is essentially nil. Using visible light, we stretch the vesicles, increasing the membrane tension until the membrane responds by the sudden opening of a large pore (several micrometers in size). Only a single pore is observed at a time in a given vesicle. However, a cascade of transient pores appear, up to 30-40 in succession, in the same vesicle. These pores are transient: they reseal within a few seconds as the inner liquid leaks out. The membrane tension, which is the driving force for pore opening, is relaxed with the opening of a pore and the leakage of the inner liquid; the line tension of the pore's edge is then able to drive the closure of a pore. We use fluorescent membrane probes and real-time videomicroscopy to study the dynamics of the pores. These can be visualized only if the vesicles are prepared in a viscous solution to slow down the leakout of the internal liquid. From measurements of the closure velocity of the pores, we are able to infer the line tension,. We have studied the effect of the shape of inclusion molecules on. Cholesterol, which can be modeled as an inverted cone-shaped molecule, increases the line tension when incorporated into the bilayers. Conversely, addition of cone-shaped detergents reduces. The effect of some detergents can be dramatic, reducing by two orders of magnitude, and increasing pore lifetimes up to several minutes. We give some examples of transport through transient pores and present a rough measurement of the leakout velocity of the inner liquid through a pore. We discuss how our results can be extended to less viscous aqueous solutions which are more relevant for biological systems and biotechnological applications.  相似文献   

17.
A general continuum derivation of the nonelectrolyte (Js) and volume (Jv) flux through a pore whose cross section is a function of axial position (nonuniform) is given. In general, the flux equations cannot be reduced to the same form as for a uniform pore and it is not possible to characterize the pore kinetics by three constants as in the uniform pore case. However, it is shown that under certain conditions, the nonuniform pore equations can be approximated by the uniform pore form and can be characterized by three constants (omega, sigma, Lp). The only condition needed to reduce the Jv equation to the uniform form is that the solution be dilute. The deviation of the Js equation from the uniform form is characterized by an asymmetrical function of Jv whose maximum value is estimated. It is shown that the maximum posible fractional deviation of the Js equation from the uniform form is given by the parameter: 0:5sigmaJv/omegaRT. Since this parameter is less then 0.15 for most membrane studies, the nonuniform Js equation can usually be approximated by the uniform pore form. The general results are illustrated by explicit calculations on several models of nonuniform pores. It is shown, for example, that the "equivalent pore radius" defined in the usual way is a function of the experimental parameter that is measured and is not unique.  相似文献   

18.
19.
The presence of histamine receptors on lymphocyte membranes was investigated using conjugates of histamine and macromolecules tritiated or iodinated with I-125. Histamine-RSA conjugate binds to lymphocytes and causes patching and capping of the bound conjugate. It was found, however, that free histamine did not inhibit the binding of histamine-rabbit serum albumin to mouse lymphocytes, nor did His-RSA interfere with the binding of free histamine. In addition conjugates between RSA and other small molecules, such as ethylamine, ethanolamine, tyramine and glycine, were found to bind to the same sites on lymphocyte membrane as did His-RSA. Ethylamine-RSA like His-RSA when coupled to Sepharose, was capable of removing antibody producing cells from spleen cells of mice immunized against sheep red blood cells. In addition, when spleen cells from such immunized mice were passed through ethylamine or histamine-RSA-Sepharose and the unbound cells were subsequently injected into X-irradiated mice, a 1.8 fold increase in the immunological response was noted. We conclude that the selective binding to lymphocytes of the various ligand-macromolecular conjugates may be due to some general properties of the cell membrane and not to any specific receptors. Nevertheless, these conjugates can be used as a tool to remove selectively antibody producing cells as well as some regulatory cells.  相似文献   

20.
S Irie  M Tavassoli 《Cell biology reviews》1991,25(4):317-33, 340-1
In addition to its many functions in biosynthesis, growth, coagulation and rheology, vascular endothelium is anatomically interposed between the vascular space and the tissue fluid. Recent evidence indicates that it mediates cellular and molecular exchange between these compartments. The exchange can occur through differentiated microdomains of endothelium such as fenestrae. These areas are differentiated with regard to surface charge, protein distribution within the lipid bilayer, membrane fluidity and other features. The exchange is also affected by certain characteristics of the molecule to be transported: molecular size, charge, shape and its carbohydrate content. Proportionately, the largest volume of exchange occurs across the endothelial cytoplasm by vesicular transport systems. Two systems are particularly in evidence; (a) receptor-mediated transcytosis which is specific, and (b) fluid-phase endocytosis. The molecule may become modified in transit and the modification may be of essence in determining its target point and its subsequent metabolism. While most of these modifications involve the carbohydrate moiety of the glycoproteins, glycosylation of non-glycoproteins such as albumin, may also be of physiological significance in transendothelial transport. By virtue of its transport potential, albumin can thus affect the transport of other substances. Recent advances in the molecular transport function of endothelium have been reviewed in the context of its physiological and clinical significance. The basis for the concept of a generalized tissue-blood barrier has been offered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号