首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
Treatment of the human promyelocytic leukemia cell line HL-60, with 12-o-tetradecanoylphorbol acetate (TPA) results in the differentiation into macrophage-like cell. A potent inhibitor of protein kinase C, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine(H-7), suppressed the proliferation of HL-60 cells and also inhibited TPA-induced cell differentiation of these cells. N-(2-guanidinoethyl)-5-isoquinolinesulfonamide(HA-1004), a weaker analog of H-7, failed to inhibit this TPA-induced cell differentiation. H-7 also inhibited TPA-induced protein phosphorylation in these cells. Thus, protein kinase C-mediated phosphorylation may be involved in the process of TPA-induced HL-60 cell differentiation.  相似文献   

2.
We have used normal human monocytes as a model system to begin elucidating the signal transduction mechanism associated with the IL-3R. Normal human monocytes deprived of human serum and CSF become quiescent in vitro. Stimulation of these cells with rIL-3 induces expression of the c-jun protooncogene, as detected by Northern blotting of total monocyte RNA. This protooncogene is also induced in these cells by phorbol ester through direct stimulation of protein kinase C. Concentrations of the protein kinase C inhibitor I-(5-isoquindinyl-sulfonyl)-2 methylpiperazine (H-7) between 30 and 100 microM (5-20 x Ki) inhibit this induction by phorbol ester. The same concentration-range of H-7 completely inhibited the induction of c-jun by human IL-3. A structural analog of H-7 designated HA-1004 preferentially inhibits cyclic nucleotide-dependent protein kinase rather that protein kinase C. HA-1004 at 5 to 20 x Ki did not inhibit IL-3-induced c-jun mRNA accumulation. Further 30 microM genistein that is an effective inhibitor of cellular tyrosine kinases did not inhibit IL-3-induced c-jun expression. Immunoprecipitation of lysates from [32P]orthophosphate labeled cells with antiphosphotyrosine polyclonal antibody showed that IL-3-stimulated phosphorylation of a 70-kDa protein and a 110-kDa protein on tyrosine, and that these protein phosphorylations were completely inhibited by 30 microM genistein. As further confirmation that IL-3 is stimulating protein kinase C in human monocytes we have found that IL-3 stimulates phosphorylation of the unique protein kinase C substrate myristoylated alanine-rich C kinase substrate in these cells. It is therefore likely that the interaction of IL-3 with its receptor generates diacylglycerol and stimulates the Ca2+/phospholipid-dependent protein kinase C.  相似文献   

3.
The induction of differentiation in SH-SY5Y human neuroblastoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by a rapid and a transient expression of c-fos mRNA and a down-regulation of c-myc mRNA. The TPA-induced expression of c-fos mRNA was inhibited by H-7, a specific inhibitor of protein kinase C (PK-C). Dioctanoylglycerol (DiC8) failed to induce differentiation of SH-SY5Y cells or to down-regulate c-myc mRNA but it did induce the expression of c-fos mRNA. Treatment of IMR-32 human neuroblastoma cells with TPA did not cause differentiation although c-fos mRNA was induced. Since PK-C in SH-SY5Y cells was activated by both TPA and DiC8 it is suggested that the activation of PK-C alone is not sufficient to induce differentiation in SH-SY5Y cells. The down-regulation of c-myc mRNA rather than the induction of c-fos mRNA seems to be associated with differentiation process in SH-SY5Y cells.  相似文献   

4.
《Cell differentiation》1984,14(2):135-144
Cultured human SH-SY5Y neuroblastoma cells differentiated in the presence of retinoic acid (RA) or 12-0-tetradecanoyl-phorbol-13-acetate (TPA). In both cases, the cells acquired long cell processes and the cell growth was partially inhibited. Treatment with RA or TPA resulted in an increased neuron-specific enolase activity, relative to the total cellular enolase activity. At the optimal concentration, TPA induced a 200-fold increase in the concentration of noradrenalin, whereas in RA-treated cells the corresponding increase was only fourfold. Cells treated with a combination of RA and TPA were morphologically differentiated and growth inhibited and had a high relative activity of neuron-specific enolase. The increase in the concentration of noradrenalin induced by TPA was inhibited by RA in a concentration-dependent fashion. However, despite this result there seemed to be no general antagonistic effect of RA on the TPA-induced differentiation. The phenotypes of the cells treated by RA, TPA, or the combination of RA and TPA, did, on the other hand, differ from each other. Our results suggest that RA and TPA induce the SH-SY5Y cells to differentiate along different pathways.  相似文献   

5.
The role of protein kinase C (PK-C) in the early metabolic events involved in human natural killer (NK) cell activation has been studied through the action of PK-C-specific activators and inhibitors. Highly purified human large granular lymphocytes (LGL) were treated for 1 hr with the diacylglycerol analog 1-oleoyl-2-acetyl glycerol (OAG) (10(-4)-10(-5) g/ml) or with 12-O-tetradecanoylphorbol-13-acetate (TPA) (10(-8)-10(-10) g/ml), both specific activators of PK-C. Both these agents consistently increased NK activity against K562 target cells. Suboptimal doses of either OAG or TPA also synergized with Ca2+ ionophores to augment spontaneous cytotoxic activity. Pretreatment of LGL with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrocloride (H7) (5-40 microM), a potent PK-C inhibitor, greatly reduced NK activity in a time- and dose-dependent fashion. By contrast, N-(2-guanidinoethyl)-5-isoquinolinesulfonamide hydrochloride (HA 1004), a potent cAMP- and cGMP-dependent PK inhibitor with almost no effect on PK-C, marginally reduced NK activity. Moreover, almost complete NK activity inhibition was observed when H7 (10 microM), but not HA 1004 (50 microM), was present in the NK assay. Finally, 48 hr stimulation of LGL with TPA (10(-6) g/ml), a treatment able to inactivate most of the PK-C cellular pool, almost completely abrogated NK activity. This functional evidence was supported by phosphorylation of several endogenous substrates which occurs within 5 min in TPA-treated LGL. Two proteins of 70 and 56 kDa have been identified as major PK-C substrates, together with other phosphorylated proteins with MW ranging from 177 to 43 kDa. H7, but not HA 1004, almost completely inhibited the TPA-induced phosphorylation of all of these proteins in the NK cells. These data strongly suggest that selective activation of PK-C plays an essential role in the mechanisms of NK cell activation.  相似文献   

6.
7.
Recent evidence has demonstrated a protein kinase C (PKC)-dependent step in cytotoxic T lymphocyte activation. Here, we examined the influence of PKC in the lytic response of human NK cells to K562, an NK-sensitive tumor target cell. We used the known protein kinase inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7) and HA1004. H-7 caused a dose-related inhibition of NK cell-mediated cytolysis (CMC) when the inhibitor was present throughout the course of the 3-h chromium release assay. The 50% inhibitory concentration for H-7 was 7 microM. In contrast, HA1004, which exerts a greater inhibitory effect on cyclic nucleotide-dependent protein kinases than PKC, had no effect on NK-CMC. The suppression of NK-CMC by H-7 was not due to inhibition of binding of the effector cells to target cells and could be reversed by the addition of PMA. H-7 was most effective in abrogating NK-CMC when added to the assay within the first 30 min and treatment of the effector and target cells with H-7 resulted in no loss of NK-CMC. Because nearly 50% of the normal NK lytic activity had taken place by 30 min, this suggested that H-7 inhibited an early event. H-7 exerted a dose-related suppression of antibody-dependent cell-mediated cytotoxicity (ADCC) suggesting that NK-CMC and ADCC share the utilization of PKC, however, HA1004 did not inhibit ADCC. Treating NK cells with IL-2 or IFN-beta did not overcome the inhibition of NK-CMC by H-7. In this study, we have thus demonstrated the presence of a PKC-dependent step in NK-CMC and ADCC.  相似文献   

8.
The role of protein kinase C (PKC) in the regulation of ornithine decarboxylase (ODC) activity during interleukin-2 (IL-2)-dependent cell growth was investigated. A large biphasic increase in the activity of ODC was observed after treatment of IL-2-deprived CTLL-2 cells with recombinant human IL-2 (rec IL-2). The PKC activators phorbol 12-myristate 13-acetate (PMA) and 4 beta-phorbol 12,13-didecanoate (4 beta-PDD), but not the inactive analog 4 alpha-PDD, induced ODC activity in exponentially growing cultures. Unlike IL-2, however, phorbol esters were poor inducers of IL-2-depleted cultures. H-7, a potent inhibitor of PKC and cyclic nucleotide-dependent protein kinases (CN-PK), suppressed the IL-2-induced ODC activity, while HA1004, a more potent inhibitor of CN-PK than of PKC, had opposite effects depending on its concentration. The results suggest that activation of PKC is involved in but is not the sole mechanism for the induction of ODC by rec IL-2. At concentrations which suppressed the induction of ODC activity by IL-2, H-7 inhibited DNA synthesis and HA1004 did not.  相似文献   

9.
Activation of protein kinase C has been shown to be involved in the activation pathway of many cell types. Recently, a number of investigations have suggested that protein kinase C plays an essential role in T lymphocyte activation. The recent synthesis of the protein kinase inhibitors, H-7 and HA1004, have now made possible a new approach for testing the relevance of protein kinase C in T cell activation and proliferation. We now report that the antigen-induced and interleukin-2-induced proliferation of murine T cell lines can be consistently inhibited by the protein kinase C inhibitor, H-7. HA1004, a somewhat more potent inhibitor of cyclic nucleotide-dependent protein kinases, but a significantly weaker inhibitor of protein kinase C than H-7, demonstrated no consistent inhibition of these T cell responses. These results represent a further demonstration that protein kinase C plays an essential role in the activation of T cells.  相似文献   

10.
11.
In cultured cells derived from micromeres, H-7 strongly inhibited the outgrowth of pseudopodial cables and the formation of spicule rods at concentrations around the Ki values for protein kinases. HA1004 did not inhibit the cable growth and spicule rod formation in these cells at higher concentrations than the Ki values for cyclic nucleotide-dependent protein kinases. Pseudopodial cable growth was also inhibited by H-7 in furosemide-treated cells which were able to undergo normal growth of the cables without the formation of spicule rods. Protein phosphorylation, measured by 32P incorporation into proteins in the cells exposed to 32Pi, was inhibited by H-7 at the concentrations for the blockage of the cable growth but was hardly blocked by HA1004. The cable growth and protein phosphorylation were activated by phorbol 12-myristate 13-acetate. The activity of Ca2+, phospholipid-dependent protein kinase (protein kinase C), which was inhibited by H-7, became appreciably high in micromere-derived cells at 16 hr of culture at 20°C, at which the outgrowth of pseudopodial cables was going to be initiated and gradually increased keeping pace with the cable growth. These suggest that the outgrowth of the cables is supported by protein phosphorylation catalyzed by protein kinase C.  相似文献   

12.
Protein kinase C (PKC) plays a central role in external signal transduction for many cell types. To examine the involvement of PKC in the control of erythropoiesis, we tested the effects of PKC inhibitors on in vitro colony formation by late erythroid progenitors (CFU-e) from normal and Friend virus-infected mice. Inhibitors of PKC and other kinases (H-7 and H-8) inhibited CFU-e at concentrations which inhibit PKC. HA1004, an inhibitor of the cyclic nucleotide-dependent kinases and a weak inhibitor of PKC, had little effect on CFU-e. In the absence of erythropoietin, a combination of phorbol ester and Ca++ ionophore significantly increased normal CFU-e. These results suggest PKC plays a role in the transduction of regulatory signals for the growth of CFU-e.  相似文献   

13.
The cellular mechanism of glucagon gene expression in intact rat islets and their synthesis and release of glucagon were investigated. Arginine significantly increased the amounts of preproglucagon mRNA and glucagon in the islets and glucagon release. H-7, a specific inhibitor of protein kinase C (PKC), significantly inhibited these effects of arginine. However, H-8, a potent inhibitor of cyclic nucleotide-dependent protein kinases, did not affect the arginine-induced biosynthesis of glucagon or glucagon release. These results suggest that the regulation of glucagon gene expression by arginine is mediated by PKC, not by cyclic nucleotide-dependent protein kinases.  相似文献   

14.
We have examined the effect of the protein kinase C activator, TPA, on mRNA levels for subunits of cAMP-dependent protein kinases in the human colonic cancer cell line HT-29, subline m2. Messenger RNA for the regulatory subunit, RI alpha, of cAMP-dependent protein kinases was shown to be present and regulated by TPA. Other mRNAs for subunits of cAMP-dependent protein kinases (RI beta, RII alpha, RII beta, C alpha, C beta) were also present in these cells, but revealed no or only minor changes upon TPA stimulation. When HT-29 cells were cultured in the presence of 10 nM TPA for various time periods, a biphasic response was observed in RI alpha mRNA levels with a maximal increase (approximately 4 fold) after 24 hours. TPA stimulated RI alpha mRNA increased in a concentration-dependent manner and maximal response (4-8 fold) was seen at 3-10 nM. The TPA-induced increase in RI alpha mRNA was not obtained when cells were incubated with TPA together with the protein kinase C inhibitors, staurosporine or H7. The cAMP-analog 8-CPTcAMP alone induced RI alpha mRNA levels 50% more than TPA. Combined treatment with TPA (10 nM) and 8-CPTcAMP (0.1 mM) gave an increase in RI alpha mRNA similar to TPA. These results demonstrate an interaction between the protein kinase C pathway and mRNA levels for the RI alpha subunit of cAMP-dependent protein kinases in HT-29 cells.  相似文献   

15.
Activation of M3 muscarinic receptors in HT-29 cells by carbachol rapidly increases polyphosphoinositide breakdown. Pretreatment of these cells with carbachol (0.1 mM) for 5 h completely inhibits the subsequent ability of carbachol to increase [3H]inositol monophosphate ([3H]InsP) accumulation, paralleled by a total loss of muscarinic binding sites. In contrast, protein kinase C (PK-C)-mediated desensitization by incubation with phorbol esters [PMA (phorbol 12-myristate 13-acetate)], leading to a time- and dose-dependent inhibition of cholinergically stimulated InsP release (95% inhibition after 4 h with 0.1 microM-PMA), is accompanied by only a 40% decrease in muscarinic receptor binding, which suggests an additional mechanism of negative-feedback control. Neither carbachol nor PMA pretreatment had any effect on receptor affinity. Incubation with carbachol for 15 min caused a small increase of membrane-associated PK-C activity (15% increase, P less than 0.05) as compared with the potency of phorbol esters (PMA) (3-4-fold increase, P less than 0.01). Long-term incubation (4-24 h) with PMA resulted in a complete down-regulation of cytosolic and particulate PK-C activity. Stimulation of InsP release by NaF (20 mM) was not affected after a pretreatment with phorbol esters or carbachol, demonstrating an intact function of G-protein and phospholipase-C (PL-C) at the effector side. Determination of PL-C activity in a liposomal system with [3H]PtdInsP2 as substrate, showed no change in PL-C activity after carbachol (13 h) and short-term PMA (2.5 h) pretreatment, whereas long-term preincubation with phorbol esters (13 h) caused a small but significant decrease in PL-C activity (19%, P less than 0.05). Our results indicate that agonist-induced desensitization of phosphoinositide turnover occurs predominantly at the receptor level, with a rapid loss of muscarinic receptors. Exogenous activation of PK-C by phorbol esters seems to dissociate the interaction between receptor and G-protein/PL-C, without major effects on total cellular PL-C activity.  相似文献   

16.
17.
The effect of phorbol esters and so the involvement of Ca2+/phospholipid-dependent protein kinase (protein kinase C;PKC) in the release of acetylcholine (ACh) was studied using Torpedo electric organ synaptosomes. 12-O-Tetradecanoylphorbol 13-acetate (TPA), a known activator of PKC, induced neurotransmitter release in a concentration-dependent manner and increased the potassium-evoked release of ACh. The effect of TPA was shown to be independent of the extrasynaptosomal calcium concentration. TPA-induced ACh release was reversed by H-7, an inhibitor of PKC activity. This drug showed no effect on potassium-evoked ACh release. Botulinum toxin, a strong blocker of potassium-induced ACh release in that synaptosomal preparation, showed no inhibitory effect on the TPA-induced ACh release. Our results suggest that activation of PKC potentiates the release of an ACh pool that is not releasable by potassium depolarization, independently of the extracellular calcium concentration.  相似文献   

18.
19.
Recombinant monocyte-chemotactic and activating factor (rMCAF; alternative acronyms MCP-1, TDCF, human JE) induced migration of human monocytes across polycarbonate or nitrocellulose filters. Maximal induction of migration was observed at a concentration of 10 ng/ml (10(-9) M). Checkerboard analysis revealed that rMCAF elicited true gradient-dependent chemotactic migration, although a gradient independent chemokinetic effect was observed at low concentrations (1-5 ng/ml). rMCAF caused a rapid (less than 5 s) and transient (approximately 1.5 min) increase of free cytosolic Ca2+ ions, as assessed by the fura-2 probe. No Ca2+ increase was detected in neutrophils or lymphocytes stimulated by rMCAF. Studies conducted in the absence of extracellular Ca2+ or in the presence of Ni2+ (an inhibitor of Ca2+ influx) suggested that the increase of intracellular Ca2+ induced by rMCAF is dependent on the influx of extracellular Ca2+ through plasma membrane channels. Bordetella pertussis toxin inhibited the intracellular Ca2+ elevation and chemotaxis caused by rMCAF. The possible involvement of Ca(2+)-dependent protein kinases in rMCAF signaling pathway(s) was explored using inhibitors. Inhibitors of GMP-dependent kinase and myosin L chain kinase had no effect on rMCAF-induced monocyte migration. In contrast, protein kinase C/cAMP-dependent kinase inhibitors (such as, C-I, H-7, HA-1004, KT5720, and Staurosporine) markedly decreased rMCAF induced chemotaxis suggesting the involvement of a serine/threonine protein kinase, possibly protein kinase C, in rMCAF signaling pathway.  相似文献   

20.
Tight junctions (TJs), the most apical of the intercellular junctions, prevent the passage of ions and molecules through the paracellular pathway. Intracellular signalling molecules are likely to be involved in the regulation of TJ integrity. In order to specifically investigate the role of protein kinase A (PKA) in the maintenance of epithelial TJ integrity, calcium-switch experiments were performed, in which calcium was removed from EpH4 and MDCK culture medium, in the absence or presence of the PKA inhibitors H-89 or HA-1004. Removal of calcium from the culture media of the epithelial cells resulted in disruption of the TJs, characterised by a loss of membrane association of the TJ-associated proteins occludin, ZO-1 and ZO-2, by a loss of TJ strands, by a marked decrease in the transepithelial electrical resistance and by a dramatic increase in the transepithelial permeability to tracers. The association of occludin, ZO-1 and ZO-2 with the actin cytoskeleton is not affected. In contrast, when the removal of calcium was performed in the presence of either the PKA inhibitor H-89 or HA-1004, all barrier characteristics were preserved. Our data indicate that following the removal of calcium from the culture medium of epithelial cells in vitro, PKA is activated and subsequently is involved in the disruption of TJs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号