共查询到5条相似文献,搜索用时 0 毫秒
1.
Vladimir D. Kreslavski Galina K. Vasilyeva Steven D. Comfort Rhae A. Drijber Patrick J. Shea 《Bioremediation Journal》1999,3(1):59-67
Enhanced microbial activity and xenobiotic transformations take place in the rhizosphere. Degradation and binding of 2,4,6-trinitrotoluene (TNT) were determined in two rhizosphere soils (RS) and compared to respective unplanted control soils (CS). The rhizosphere soils were obtained after growing corn for 70 d in soils containing 2.8% (Soil A) or 5.9% (Soil B) organic matter. Aerobically agitated soil slurries (3:1, solution/soil) were prepared from RS and CS and amended with 75 mg TNT L-1 (14C-labeled). TNT degraded more rapidly and formed more un-extractable bound residue in RS than in CS. In Soil A, total extractable TNT decreased from 225 to 1.0 mg kg-1 in RS, whereas 11 mg kg-1 remained in CS after 15 d. Unextractable bound 14C residues accounted for 40% of the added 14C-TNT in RS and 28% in CS. The smaller differences in Soil B were attributed partially to the higher organic matter content. The predominant TNT degradation products were monoaminodinitrotoluenes (ADNT), which accumulated and disappeared more rapidly in RS than in CS, and hydroxylaminodinitrotoluenes (HADNT). When sterilized by γ-irradiation, no significant differences between RS and CS were observed in TNT loss or bound residue formation. More rapid TNT degradation and enhanced bound residue formation in the unsterilized RS was attributed to micro-bial-facilitated production and transformation of HADNT and ADNT, which are potential precursors to bound residue formation. If plants can be established on TNT-contaminated soil, these results indicate that the rhizosphere can accelerate reductive transformation of TNT and promote bound residue formation. 相似文献
2.
Agnès Y. Renoux Jean Caumartin Sonia Thiboutot Guy Ampleman Geoffrey I. Sunahara 《人类与生态风险评估》2001,7(6):1715-1735
The Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines of the Canadian Council of Ministers of the Environment was used to prepare preliminary Environmental Soil Quality Guidelines (SQGE) for 2,4,6-trinitrotoluene (TNT). A thorough literature search led to the compilation of the existing toxicological data. Calculated Environmental Soil Quality Guidelines for TNT are SQGE=0.02?mg/kg (preliminary value) for agricultural land use and 86?mg/kg for residential/park, commercial/industrial land use. Because of the lack of sufficient scientific information on the effects of TNT in soil on microbial processes, this type of evaluation was not possible. For oral toxicological data, laboratory animals were used instead of grazing and foraging species to determine the ingestion guideline since no related literature was found. Furthermore, this work has led to the identification of avenues of future research necessary to complete the task at hand. The research should focus on specific studies involving direct contact between the organisms and the soil, in order to: (1) develop a database of effects of TNT on microbial processes, (2) study the effects of TNT ingestion on birds and grazing herbivores, (3) determine plant bioconcentration factors, and (4) observe in situ the toxic effects after direct contact exposure. 相似文献
3.
The explosives TNT, HMX, and RDX are integral components of many munitions. The wastes from the manufacture and the use of these and other explosives has resulted in substantial contamination of water and soil. White rot fungi have been proposed for use in the bioremediation of contaminated soil and water. Strains of Phanerochaete chrysosporium and Pleurotus ostreatus adapted to grow on high concentrations of TNT were studied with regard to their ability to degrade TNT in liquid cultures. Both strains were able to cause extensive degradation of TNT. Field bioremediation studies using P. ostreatus were performed on site at the Yorktown Naval Weapons Station Yorktown (Yorktown, VA). In two plots, 6 cubic yards of soil contaminated with TNT, HMX, and RDX were blended with 3 cubic yards of a substrate mixture containing nutrients that promote the growth of fungi. In soil amended with growth substrate and P. ostreatus, concentrations of TNT, HMX and RDX were reduced from 194.0±50, 61±20 mg/kg and 118.0±30 to 3±4, 18±7 and 5±3?mg/kg, respectively, during a 62-day incubation period. Interestingly, in soil that was amended with this substrate mixture, but not with P. ostreatus, the concentrations of TNT, HMX, and RDX were also reduced substantially from 283±100, 67±20, and 144±50?mg/kg to 10±10, 34±20, and 12±10?mg/kg, respectively, during the same period. Thus, it appears that addition of amendments that enhance the growth and activity of indigenous microorganisms was sufficient to promote extensive degradation of these compounds in soil. 相似文献
4.
A cost-effective removal strategy was studied in bench-scale columns that involved vapor extraction (SVE) and bioventing (SBV) sequential treatment of toluene- and decane-contaminated soil. By using GC analysis to measure hydrocarbon concentrations, CO2, and O2 content values in the outlet gas, the removal kinetics were determined as was the contribution of evaporation and biodegradation to the removal of contaminants from soil. The effect of operating mode on treatment performance was studied at a continuous air flow and consecutively at two different flow rates, and compared with an intermittent (pulse) flow rate. The two-rate flow was required due to the inhibitory effect of toluene on indigenous microorganisms at above 75% of the toluene saturation concentrations in the gas phase. The intermittent flow was controlled by the O2 content values in the soil gas, which at above 4% did not limit biodegradation. To reach comparable removal efficiency at the constant flow, about three times less air was required for toluene than for decane. This air volume could be reduced, in the case of decane, by a factor of 1.6 and 2.9, at the two-rate and intermittent flow, respectively. A higher contribution of biodegradation to the overall removal of hydrocarbon will lower hydrocarbon concentrations in the off-gases to be treated. Together with the decreased amount of air used, this can reduce the overall remediation costs. The overall process can be better understood by determining the degree of contaminants removal by evaporation and biodegradation in the experimental set up. 相似文献
5.
When rat brain membranes were incubated with the benzodiazepine agonist [3H]flunitrazepam or the partial inverse benzodiazepine agonist [3H]Ro 15-4513 in the presence of ultraviolet light one protein (P51) was specifically and irreversibly labeled in cerebellum and at least two proteins (P51 and P55) were labeled in hippocampus. After digestion of the membranes with trypsin, protein P51 was degraded into several peptides. When P51 was photolabeled with [3H]Ro 15-4513, four peptides with apparent molecular weights of 39,000, 29,000, 21,000, and 17,000 were observed. When P51 was labeled with [3H]flunitrazepam, only two peptides with apparent molecular weights of 39,000 and 25,000 were obtained. Protein P55 was only partially degraded by trypsin, and whether it was labeled with [3H]flunitrazepam or [3H]Ro 15-4513 it yielded the same two proteolytic peptides with apparent molecular weights of 42,000 and 45,000. These results support the existence of at least two different benzodiazepine receptor subtypes associated with proteins P51 and P55. The different receptors seem to be differentially protected against treatment with trypsin. In addition, these results indicate that in the benzodiazepine receptor subtype associated with P51 benzodiazepine agonists and partial inverse benzodiazepine agonists irreversibly bind to different parts of the molecule. 相似文献