首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The morphogenesis of lambda proheads is governed by the products of at least four bacteriophage-coded genes (B, C, E and Nu3) and two host-coded genes (groES (mopB) and groEL (mopA)). Earlier genetic experiments indicated that the phenotypes of some of the groES- mutations could be suppressed by mutations in the groEL gene, suggesting an interaction between the two groE proteins in vivo (Tilly, K., and Georgopoulos, C. P. (1982) J. Bacteriol. 149, 1082-1088). The Mr 15,000 groES protein was overproduced and purified to homogeneity by monitoring its presence after polyacrylamide gel electrophoresis. Both gel filtration on an AcA34 sizing column and glycerol gradient centrifugation indicate that the groES protein possesses an oligomeric structure of Mr 80,000. In agreement, electron microscopic pictures of the purified groES protein show that it possesses a symmetrical ring-like structure. The sequence of the first five amino acids and the overall composition of the purified protein match those predicted by the nucleotide sequence of the groES gene. The following results implicate a physical association between the groES and groEL proteins in vitro. The groES protein inhibits the weak ATPase activity of the groEL protein, with a maximal effect seen at a 1:1 molar ratio; the two proteins cosediment during glycerol gradient centrifugation in the presence of ATP and Mg2+; and the groES protein binds specifically to a groEL-affinity column. These results help explain why mutations in either of the groE genes exhibit similar phenotypes with respect to both lambda and bacterial growth.  相似文献   

4.
Cell division of F+ bacteria is coupled to DNA replication of the F plasmid. Two plasmid coded genes, letA (ccdA) and letD (ccdB) are indispensable for this coupling. To investigate bacterial genes that participate in this coupling, we attempted to identify the target of the division inhibitor (the letD gene product) of the F plasmid. Two temperature-sensitive growth defective mutants were screened from bacterial mutants that escaped the letD product growth inhibition that occurs in hosts carrying an FletA mutant. Phage P1-mediated transduction and complementation analysis indicated that the temperature-sensitive mutations are located in the groES (mopB) gene, which is essential for the morphogenesis of several bacteriophages and also for growth of the bacteria. The nucleotide sequence of the promoter region of the gene in which the temperature-sensitive mutations had occurred was virtually identical with that of the groES gene of Escherichia coli; furthermore the sequence of the first five amino acid residues and the overall amino acid composition predicted from the nucleotide sequence of the gene match those of the purified GroES protein. The temperature-sensitive mutants did not allow the propagation of phage lambda at 28 degrees C and formed long filamentous structures without septa at 41 degrees C, as is observed in the case of groES mutants. Growth of the two groES mutants tested was not inhibited by the F plasmid with the letA mutation. These observations suggest to us that the morphogenesis gene groES plays a key role in coupling between replication of the F plasmid and cell division of the host cells.  相似文献   

5.
The products of the groES and groEL genes of Escherichia coli, constituting the groE operon, are known to be required for growth at high temperature (42 degrees C) and are members of the heat shock regulon. Using a genetic approach, we examined the requirement for these gene products for bacterial growth at low temperature (17 to 30 degrees C). To do this, we constructed various groES groEL heterodiploid derivative strains. By inactivating one of the groE operons by a polar insertion, it was shown by bacteriophage P1 transduction that at least one of the groE genes was essential for growth at low temperature. Further P1 transduction experiments with strains that were heterodiploid for only one of the groE genes demonstrated that both groE gene products were required for growth at low temperature, which suggested a fundamental role for the groE proteins in E. coli growth and physiology.  相似文献   

6.
7.
In contrast to other bacterial species, mycobacteria were thus far considered to contain groEL and groES genes that are present on separate loci on their chromosomes, Here, by screening a Mycobacterium leprae lambda gt11 expression library with serum from an Ethiopian lepromatous leprosy patient, two DNA clones were isolated that contain a groEL gene arranged in an operon with a groES gene. The complete DNA sequence of this groESL operon was determined. The predicted amino acid sequences of the GroES and GroEL proteins encoded by this operon are 85-90% and 59-61% homologous to the sequences from previously characterized mycobacterial GroES and GroEL proteins. Southern blotting analyses with M. leprae groES- and groEL-specific probes demonstrate that similar groESL homologous DNA is present in the genomes of other mycobacteria, including Mycobacterium tuberculosis. This strongly suggests that mycobacteria contain a groESL operon in addition to a separately arranged second groEL gene. Using five T-cell clones from two leprosy patients as probes, expression of the M. leprae GroES protein in Escherichia coli after heat shock was demonstrated. Four of these clones recognized the same M. leprae-specific GroES-derived peptide in a DR2-restricted fashion. No expression of the groEL gene from this operon was detected in E. coli after heat shock, as tested with a panel of T-cell clones and monoclonal antibodies reactive to previously described GroEL proteins of mycobacteria.  相似文献   

8.
目的:了解不同种型布鲁菌间的基因差异及基因的获得与缺失情况。方法:采用生物信息学方法比较分析已测序的10株布鲁菌基因水平的差异,分析它们的核心基因组与泛基因组,对得到的差异基因用PCR验证其在19株不同生物型标准菌株中的分布情况。结果:不同种型布鲁菌在基因水平上存在较大差异,差异基因主要位于Ⅱ号染色体上;根据差异基因,鉴定了42个差异区段,这些差异区段在19株不同生物型标准菌株中存在差异分布。结论:布鲁菌在进化过程中分别获得或失去了不同的基因区段,从而适应不同的宿主环境。  相似文献   

9.
10.
The genus Brucella is divided into six species; of these, B. melitensis and B. abortus are pathogenic to humans, and B. ovis and B. neotomae are nonpathogenic to humans. The definition of gene loss and acquisition is essential for understanding Brucella's ecology, evolutionary history, and host relationships. A DNA microarray containing unique genes of B. melitensis Type strain 16MT and B. abortus 9-941 was constructed and used to determine the gene contents of the representative strains of Brucella. Phylogenetic relationships were inferred from sequences of housekeeping genes. Gene loss and acquisition of different Brucella species were inferred. A total of 214 genes were found to be differentially distributed, and 173 of them were clustered into 15 genomic islands (GIs). Evidence of horizontal gene transfer was observed for 10 GIs. Phylogenetic analysis indicated that the 19 strains formed five clades, and some of the GIs had been lost or acquired independently among the different lineages. The derivation of Brucella lineages is concomitant with the parallel loss or acquisition of GIs, indicating a complex interaction between various Brucella species and hosts.  相似文献   

11.
The Escherichia coli groEL and groES gene products are essential for both phage morphogenesis and bacterial growth. Although the gene products have been identified, their exact roles in these processes are not known. We have isolated mutations in the groEL gene that suppress defects in the groES gene. These intergenic suppressors were shown to map in the groEL gene by a variety of genetic and biochemical analyses. These results suggest that the two morphogenetic gene products interact in vivo and help to explain why mutations in either gene exhibit the same phenotype with respect to lambda head assembly and bacterial growth.  相似文献   

12.
Protein sequences from characterized type III secretion (TTS) systems were used as probes in silico to identify several TTS gene homologs in the genome sequence of Brucella suis biovar 1 strain 1330. Four of the genes, named flhB, fliP, fliR, and fliF on the basis of greatest homologies to known flagellar apparatus proteins, were targeted in PCR and hybridization assays to determine their distribution among other Brucella nomen species and biovars. The results indicated that flhB, fliP, fliR and fliF are present in Brucella melitensis, Brucella ovis, and Brucella suis biovars 1, 2 and 3. Similar homologos have been reported previously in Brucella abortus. Using RT-PCR assays, we were unable to detect any expression of these genes. It is not yet known whether the genes are the cryptic remnants of a flagellar system or are actively involved in a process contributing to pathogenicity or previously undetected motility, but they are distributed widely in Brucella and merit further study to determine their role.  相似文献   

13.
The heat shock response of the groESL operon of Agrobacterium tumefaciens was studied at the RNA level. The operon was found to be activated under heat shock conditions and transcribed as a polycistronic mRNA that contains the groES and groEL genes. After activation, the polycistronic mRNA appeared to be cleaved between the groES and groEL genes and formed two monocistronic mRNAs. The groES cleavage product appeared to be unstable and subjected to degradation, while the groEL cleavage product appeared to be stable and became the major mRNA representing the groESL operon after long periods of growth at a high temperature. The polycistronic mRNA containing the groES and groEL genes was the major mRNA representing the groESL operon at a low temperature, and it reappeared when the cells were returned to the lower growth temperature after heat shock induction. These findings indicate that the cleavage event is part of the heat shock regulation of the groESL operon in A. tumefaciens.  相似文献   

14.
15.
Brucella species are gram-negative bacteria which belong to alpha-Proteobacteria family. These organisms are zoonotic pathogens that induce abortion and sterility in domestic mammals and chronic infections in humans known as Malta fever. The virulence of Brucella is dependent upon its ability to enter and colonize the cells in which it multiplies. The genetic basis of this aspect is poorly understood. Signature-tagged mutagenesis (STM) was used to identify potential Brucella virulence factors. PCR amplification has been used in place of DNA hybridization to identify the STM-generated attenuated mutants. A library of 288 Brucella melitensis 16M tagged mini-Tn5 Km2 mutants, in 24 pools, was screened for its ability to colonize spleen, lymph nodes and liver of goats at three weeks post-i.v. infection. This comparative screening identified 7 mutants (approximately 5%) which were not recovered from the output pool in goats. Some genes were known virulence genes involved in biosynthesis of LPS (lpsA gene) or in intracellular survival (the virB operon). Other mutants included ones which had a disrupted gene homologous to flgF, a gene coding for the basal-body rod of the flagellar apparatus, and another with a disruption in a gene homologous to ppk which is involved in the biosynthesis of inorganic polyphosphate (PolyP) from ATP. Other genes identified encoded factors involved in DNA metabolism and oxidoreduction metabolism. Using STM and the caprine host for screening, potential virulence determinants in B. melitensis have been identified.  相似文献   

16.
17.
Brucella abortus arginase and ornithine cyclodeaminase genes have been cloned and sequenced. These gene sequences are located in the same operon and occur in the same order as the homologous genes in Agrobacterium tumefaciens Ti C58 plasmid. The nucleotide sequences of the two genes have 72% and 65% identity to the respective Ti plasmid genes. Both genes are present in a single copy, and expression of arginase is regulated in response to arginine.  相似文献   

18.
19.
[背景]布鲁菌病是由布鲁菌感染引起的一种人兽共患传染病,对畜牧业发展和人类健康有着巨大的威胁。利用新型报告基因NanoLuc荧光素酶构建一种可以检测布鲁菌基因启动子活性的质粒,对于研究布鲁菌毒力基因的调控表达具有重要意义。[目的]制备NanoLuc荧光素酶多克隆抗体,构建一种基于NanoLuc荧光素酶报告布鲁菌基因启动子活性的质粒,并通过测定bcsp31基因启动子和virB启动子活性验证该方法的可行性。[方法]构建NanoLuc荧光素酶原核表达载体pET-Nluc,纯化蛋白免疫新西兰大白兔制备多克隆抗体;以广宿主质粒pBBR1MCS为骨架,构建质粒pNluc、pBcsp31-Nluc和pVirB-Nluc,通过电转化构建S2308(Nluc)、S2308(Bcsp31-Nluc)和S2308(VirB-Nluc)重组菌株,在体外培养条件下测定bcsp31基因启动子和virB启动子活性;比较分析virB启动子在胞内感染条件下和体外培养条件下的活性。[结果]通过原核表达获得NanoLuc荧光素酶重组蛋白,并制备得到效价高于1:100 000的多克隆抗体;成功构建pNluc、pBcsp31-Nluc和pVirB-Nluc质粒以及S2308(Nluc)、S2308(Bcsp31-Nluc)和S2308(VirB-Nluc)重组菌株;体外培养条件下测定bcsp31基因启动子和virB启动子活性,结果显示pNluc质粒可以精确报告其活性;测定virB启动子在胞内诱导条件下和体外培养条件下的活性,结果显示virB启动子活性在胞内感染条件下明显增强。[结论]构建了基于NanoLuc荧光素酶报告布鲁菌基因启动子活性的质粒,并验证其可以精确反映布鲁菌基因启动子活性,为研究布鲁菌毒力基因以及揭示其致病机制奠定了基础。  相似文献   

20.
The Escherichia coli groE chaperonins   总被引:11,自引:0,他引:11  
The E.coli groES and groEL genes have been shown to form an operon, to be essential for E. coli viability, and to belong to the so-called heat-shock class of genes whose expression is regulated by the intracellular levels of sigma factor sigma 32. Both groE chaperonin proteins possess a seven-fold axis of symmetry, groES being composed of seven identical subunits of 97 amino acids each, and groEL of fourteen identical subunits of 548 amino acids each. The two groE chaperonins interact intimately as judged by both genetic and biochemical criteria. This interaction has been shown to be required for both bacteriophage morphogenesis and bacterial growth. The groEL chaperonin has been shown to bind to a number of incomplete or unfolded polypeptides in vitro. Such binding may prevent misfolding and promote rapid intra- or intermolecular folding of polypeptides in vivo. The proposed role of the groES chaperonin is to displace the polypeptides bound to groEL, thus effectively promoting the recycling of groEL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号