首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the model organism E. coli, recombination mediated by the related XerC and XerD recombinases complexed with the FtsK translocase at specialized dif sites, resolves dimeric chromosomes into free monomers to allow efficient chromosome segregation at cell division. Computational genome analysis of Helicobacter pylori, a slow growing gastric pathogen, identified just one chromosomal xer gene (xerH) and its cognate dif site (difH). Here we show that recombination between directly repeated difH sites requires XerH, FtsK but not XerT, the TnPZ transposon associated recombinase. xerH inactivation was not lethal, but resulted in increased DNA per cell, suggesting defective chromosome segregation. The xerH mutant also failed to colonize mice, and was more susceptible to UV and ciprofloxacin, which induce DNA breakage, and thereby recombination and chromosome dimer formation. xerH inactivation and overexpression each led to a DNA segregation defect, suggesting a role for Xer recombination in regulation of replication. In addition to chromosome dimer resolution and based on the absence of genes for topoisomerase IV (parC, parE) in H. pylori, we speculate that XerH may contribute to chromosome decatenation, although possible involvement of H. pylori's DNA gyrase and topoisomerase III homologue are also considered. Further analyses of this system should contribute to general understanding of and possibly therapy development for H. pylori, which causes peptic ulcers and gastric cancer; for the closely related, diarrheagenic Campylobacter species; and for unrelated slow growing pathogens that lack topoisomerase IV, such as Mycobacterium tuberculosis.  相似文献   

2.
Chromosome dimers, which frequently form in Escherichia coli, are resolved by the combined action of two tyrosine recombinases, XerC and XerD, acting at a specific site on the chromosome, dif, together with the cell division protein FtsK. The C-terminal domain of FtsK (FtsK(C)) is a DNA translocase implicated in helping synapsis of the dif sites and in locally promoting XerD strand exchanges after synapse formation. Here we show that FtsK(C) ATPase activity is directly involved in the local activation of Xer recombination at dif, by using an intermolecular recombination assay that prevents significant DNA translocation, and we confirm that FtsK acts before Holliday junction formation. We show that activation only occurs with a DNA segment adjacent to the XerD-binding site of dif. Only one such DNA extension is required. Taken together, our data suggest that FtsK needs to contact the XerD recombinase to switch its activity on using ATP hydrolysis.  相似文献   

3.
Aussel L  Barre FX  Aroyo M  Stasiak A  Stasiak AZ  Sherratt D 《Cell》2002,108(2):195-205
FtsK acts at the bacterial division septum to couple chromosome segregation with cell division. We demonstrate that a truncated FtsK derivative, FtsK(50C), uses ATP hydrolysis to translocate along duplex DNA as a multimer in vitro, consistent with FtsK having an in vivo role in pumping DNA through the closing division septum. FtsK(50C) also promotes a complete Xer recombination reaction between dif sites by switching the state of activity of the XerCD recombinases so that XerD makes the first pair of strand exchanges to form Holliday junctions that are then resolved by XerC. The reaction between directly repeated dif sites in circular DNA leads to the formation of uncatenated circles and is equivalent to the formation of chromosome monomers from dimers.  相似文献   

4.
In bacteria with circular chromosomes, homologous recombination events can lead to the formation of chromosome dimers. In Escherichia coli, chromosome dimers are resolved by the addition of a crossover by two tyrosine recombinases, XerC and XerD, at a specific site on the chromosome, dif. Recombination depends on a direct contact between XerD and a cell division protein, FtsK, which functions as a hexameric double stranded DNA translocase. Here, we have investigated how the structure and composition of DNA interferes with Xer recombination activation by FtsK. XerC and XerD each cleave a specific strand on dif, the top and bottom strand, respectively. We found that the integrity and nature of eight bottom-strand nucleotides and three top-strand nucleotides immediately adjacent to the XerD-binding site of dif are crucial for recombination. These nucleotides are probably not implicated in FtsK translocation since FtsK could translocate on single stranded DNA in both the 5′–3′ and 3′–5′ orientation along a few nucleotides. We propose that they are required to stabilize FtsK in the vicinity of dif for recombination to occur because the FtsK–XerD interaction is too transient or too weak in itself to allow for XerD catalysis.  相似文献   

5.
Chromosome dimers in Escherichia coli are resolved at the dif locus by two recombinases, XerC and XerD, and the septum-anchored FtsK protein. Chromosome dimer resolution (CDR) is subject to strong spatiotemporal control: it takes place at the time of cell division, and it requires the dif resolution site to be located at the junction between the two polarized chromosome arms or replichores. Failure of CDR results in trapping of DNA by the septum and RecABCD recombination (terminal recombination). We had proposed that dif sites of a dimer are first moved to the septum by mechanisms based on local polarity and that normally CDR then occurs as the septum closes. To determine whether FtsK plays a role in the mobilization process, as well as in the recombination reaction, we characterized terminal recombination in an ftsK mutant. The frequency of recombination at various points in the terminus region of the chromosome was measured and compared with the recombination frequency on a xerC mutant chromosome with respect to intensity, the region affected, and response to polarity distortion. The use of a prophage excision assay, which allows variation of the site of recombination and interference with local polarity, allowed us to find that cooperating FtsK-dependent and -independent processes localize dif at the septum and that DNA mobilization by FtsK is oriented by the polarity probably due to skewed sequence motifs of the mobilized material.  相似文献   

6.
Homologous recombination between circular chromosomes generates dimers that cannot be segregated at cell division. Escherichia coli Xer site-specific recombination converts chromosomal and plasmid dimers to monomers. Two recombinases, XerC and XerD, act at the E. coli chromosomal recombination site, dif, and at related sites in plasmids. We demonstrate that Xer recombination at plasmid dif sites occurs efficiently only when FtsK is present and under conditions that allow chromosomal dimer formation, whereas recombination at the plasmid sites cer and psi is independent of these factors. We propose that the chromosome dimer- and FtsK-dependent process that activates Xer recombination at plasmid dif also activates Xer recombination at chromosomal dif. The defects in chromosome segregation that result from mutation of the FtsK C-terminus are attributable to the failure of Xer recombination to resolve chromosome dimers to monomers. Conditions that lead to FtsK-independent Xer recombination support the hypothesis that FtsK acts on Holliday junction Xer recombination intermediates.  相似文献   

7.
The replication terminus region of the Escherichia coli chromosome encodes a locus, dif, that is required for normal chromosome segregation at cell division. dif is a substrate for site-specific recombination catalysed by the related chromosomally encoded recombinases XerC and XerD. It has been proposed that this recombination converts chromosome multimers formed by homologous recombination back to monomers in order that they can be segregated prior to cell division. Strains mutant in dif, xerC or xerD share a characteristic phenotype, containing a variable fraction of filamentous cells with aberrantly positioned and sized nucleoids. We show that the only DNA sequences required for wild-type dif function in the terminus region of the chromosome are contained within 33 bp known to bind XerC and XerD and that putative active site residues of the Xer recombinases are required for normal chromosome segregation. We have also shown that recombination by the loxP/Cre system of bacteriophage P1 will suppress the phenotype of a dif deletion strain when loxP is inserted in the terminus region. Suppression of the dif deletion phenotype did not occur when either dif/Xer or loxP/Cre recombination acted at other positions in the chromosome close to oriC or within lacZ, indicating that site-specific recombination must occur within the replication terminus region in order to allow normal chromosome segregation.  相似文献   

8.
Bacteria with circular chromosomes have evolved systems that ensure multimeric chromosomes, formed by homologous recombination between sister chromosomes during DNA replication, are resolved to monomers prior to cell division. The chromosome dimer resolution process in Escherichia coli is mediated by two tyrosine family site-specific recombinases, XerC and XerD, and requires septal localization of the division protein FtsK. The Xer recombinases act near the terminus of chromosome replication at a site known as dif (Ecdif). In Bacillus subtilis the RipX and CodV site-specific recombinases have been implicated in an analogous reaction. We present here genetic and biochemical evidence that a 28-bp sequence of DNA (Bsdif), lying 6 degrees counterclockwise from the B. subtilis terminus of replication (172 degrees ), is the site at which RipX and CodV catalyze site-specific recombination reactions required for normal chromosome partitioning. Bsdif in vivo recombination did not require the B. subtilis FtsK homologues, SpoIIIE and YtpT. We also show that the presence or absence of the B. subtilis SPbeta-bacteriophage, and in particular its yopP gene product, appears to strongly modulate the extent of the partitioning defects seen in codV strains and, to a lesser extent, those seen in ripX and dif strains.  相似文献   

9.
Bacterial chromosomes are organized in replichores of opposite sequence polarity. This conserved feature suggests a role in chromosome dynamics. Indeed, sequence polarity controls resolution of chromosome dimers in Escherichia coli. Chromosome dimers form by homologous recombination between sister chromosomes. They are resolved by the combined action of two tyrosine recombinases, XerC and XerD, acting at a specific chromosomal site, dif, and a DNA translocase, FtsK, which is anchored at the division septum and sorts chromosomal DNA to daughter cells. Evidences suggest that DNA motifs oriented from the replication origin towards dif provide FtsK with the necessary information to faithfully distribute chromosomal DNA to either side of the septum, thereby bringing the dif sites together at the end of this process. However, the nature of the DNA motifs acting as FtsK orienting polar sequences (KOPS) was unknown. Using genetics, bioinformatics and biochemistry, we have identified a family of DNA motifs in the E. coli chromosome with KOPS activity.  相似文献   

10.
In Escherichia coli, chromosome dimers are generated by recombination between circular sister chromosomes. Dimers are lethal unless resolved by a system that involves the XerC, XerD and FtsK proteins acting at a site (dif) in the terminus region. Resolution fails if dif is moved from its normal position. To analyse this positional requirement, dif was transplaced to a variety of positions, and deletions and inversions of portions of the dif region were constructed. Resolution occurs only when dif is located at the convergence of multiple, oppositely polarized DNA sequence elements, inferred to lie in the terminus region. These polar elements may position dif at the cell septum and be general features of chromosome organization with a role in nucleoid dynamics.  相似文献   

11.
Successful segregation of circular chromosomes in Escherichia coli requires that dimeric replicons, produced by homologous recombination, are converted to monomers prior to cell division. The Xer site-specific recombination system uses two related tyrosine recombinases, XerC and XerD, to catalyze resolution of circular dimers at the chromosomal site, dif. A 33-base pair DNA fragment containing the 28-base pair minimal dif site is sufficient for the recombinases to mediate both inter- and intramolecular site-specific recombination in vivo. We show that Xer-mediated intermolecular recombination in vitro between nicked linear dif "suicide" substrates and supercoiled plasmid DNA containing dif is initiated by XerC. Furthermore, on the appropriate substrate, the nicked Holliday junction intermediate formed by XerC is converted to a linear product by a subsequent single XerD-mediated strand exchange. We also demonstrate that a XerC homologue from Pseudomonas aeruginosa stimulates strand cleavage by XerD on a nicked linear substrate and promotes initiation of strand exchange by XerD in an intermolecular reaction between linear and supercoiled DNA, thereby reversing the normal order of strand exchanges.  相似文献   

12.
In Escherichia coli, chromosome dimers are resolved to monomers by the addition of a single cross-over at a specific locus on the chromosome, dif. Recombination is performed by two tyrosine recombinases, XerC and XerD, and requires the action of an additional protein, FtsK. We show that Haemophilus influenzae FtsK activates recombination by H. influenzae XerCD at H. influenzae dif. However, it cannot activate recombination by E. coli XerCD. Reciprocally, E. coli FtsK cannot activate recombination by the H. influenzae recombinases at H. influenzae dif. We took advantage of this species specificity to gain further insight into the mechanism of activation of Xer recombination at dif by FtsK. We mapped the region of FtsK implicated in species specificity to the extreme 140-amino-acid C-terminal residues of the protein. Our results suggest that FtsK interacts directly with XerCD in order to activate recombination at dif.  相似文献   

13.
Studies of the site-specific recombinase Cre suggest a key role for interactions between the C-terminus of the protein and a region located about 30 residues from the C-terminus in linking in a cyclical manner the four recombinase monomers present in a recombination complex, and in controlling the catalytic activity of each monomer. By extrapolating the Cre DNA recombinase structure to the related site-specific recombinases XerC and XerD, it is predicted that the extreme C-termini of XerC and XerD interact with alpha-helix M in XerD and the equivalent region of XerC respectively. Consequently, XerC and XerD recombinases deleted for C-terminal residues, and mutated XerD proteins containing single amino acid substitutions in alphaM or in the C-terminal residues were analysed. Deletion of C-terminal residues of XerD has no measurable effect on co-operative interactions with XerC in DNA-binding assays to the recombination site dif, whereas deletion of 5 or 10 residues of XerC reduces co-operativity with XerD some 20-fold. Co-operative interactions between pairs of truncated proteins during dif DNA binding are reduced 20- to 30-fold. All of the XerD mutants, except one, were catalytically proficient in vitro; nevertheless, many failed to mediate a recombination reaction on supercoiled plasmid in vivo or in vitro, implying that the ability to form a productive recombination complex and/or mediate a controlled recombination reaction is impaired.  相似文献   

14.
Successful bacterial circular chromosome segregation requires that any dimeric chromosomes, which arise by crossing over during homologous recombination, are converted to monomers. Resolution of dimers to monomers requires the action of the XerCD site-specific recombinase at dif in the chromosome replication terminus region. This reaction requires the DNA translocase, FtsK(C), which activates dimer resolution by catalysing an ATP hydrolysis-dependent switch in the catalytic state of the nucleoprotein recombination complex. We show that a 62-amino-acid fragment of FtsK(C) interacts directly with the XerD C-terminus in order to stimulate the cleavage by XerD of BSN, a dif-DNA suicide substrate containing a nick in the 'bottom' strand. The resulting recombinase-DNA covalent complex can undergo strand exchange with intact duplex dif in the absence of ATP. FtsK(C)-mediated stimulation of BSN cleavage by XerD requires synaptic complex formation. Mutational impairment of the XerD-FtsK(C) interaction leads to reduction in the in vitro stimulation of BSN cleavage by XerD and a concomitant deficiency in the resolution of chromosomal dimers at dif in vivo, although other XerD functions are not affected.  相似文献   

15.
XerC and XerD are members of the tyrosine recombinase family and mediate site-specific recombination that contributes to the stability of circular chromosomes in bacteria by resolving plasmid multimers and chromosome dimers to monomers prior to cell division. Homologues of xerC/xerD genes have been found in many bacteria, and in the lactococci and streptococci, a single recombinase called XerS can perform the functions of XerC and XerD. The xerS gene of Streptococcus suis was cloned, overexpressed and purified as a maltose-binding protein (MBP) fusion. The purified MBP-XerS fusion showed specific DNA-binding activity to both halves of the dif site of S.?suis, and covalent protein-DNA complexes were also detected with dif site suicide substrates. These substrates were also cleaved in a specific fashion by MBP-XerS, generating cleavage products separated by an 11-bp spacer region, unlike the traditional 6-8-bp spacer observed in most tyrosine recombinases. Furthermore, xerS mutants of S.?suis showed significant growth and morphological changes.  相似文献   

16.
The Xer site-specific recombination system of Escherichia coli is involved in the stable inheritance of circular replicons. Multimeric replicons, produced by homologous recombination, are converted to monomers by the action of two related recombinases XerC and XerD. Site-specific recombination at a locus, dif, within the chromosomal replication terminus region is thought to convert dimeric chromosomes to monomers, which can then be segregated prior to cell division. The recombinases XerC and XerD bind cooperatively to dif, where they catalyse recombination. Chemical modification of specific bases and the phosphate-sugar backbone within dif was used to investigate the requirements for binding of the recombinases. Site-directed mutagenesis was then used to alter bases implicated in recombinase binding. Characterization of these mutants by in vitro recombinase binding and in vivo recombination, has demonstrated that the cooperative interactions between XerC and XerD can partially overcome DNA alterations that should interfere with specific recombinase-dif interactions.  相似文献   

17.
We studied the segregation of the replication terminus of the Escherichia coli chromosome by time-lapse and still photomicroscopy. The replicated termini lie together at the cell centre. They rapidly segregate away from each other immediately before cell division. At fast growth rate, the copies move progressively and quickly toward the centres of the new-born cells. At slow growth rate, the termini usually remain near the inner cell pole and migrate to the cell centre in the middle of the cell cycle. A terminus domain of about 160kb, roughly centred on the dif recombination site, segregated as a unit at cell division. Sequences outside this domain segregated before division, giving two separate foci in predivision cells. Resolution of chromosome dimers via the terminus dif site requires the XerC recombinase and an activity of the FtsK protein that is thought to align the dif sequences at the cell centre. We found that anchoring of the termini at the cell centre and proper segregation at cell division occurred normally in the absence of recombination via the XerC recombinase. Anchoring and proper segregation were, however, frequently disrupted when the C-terminal domain of FtsK was truncated.  相似文献   

18.
The FtsK translocase pumps dsDNA directionally at ~5 kb/s and facilitates chromosome unlinking by activating XerCD site-specific recombination at dif, located in the replication terminus of the Escherichia coli chromosome. We show directly that the γ regulatory subdomain of FtsK activates XerD catalytic activity to generate Holliday junction intermediates that can then be resolved by XerC. Furthermore, we demonstrate that γ can activate XerCD-dif recombination in the absence of the translocase domain, when it is fused to XerCD, or added in isolation. In these cases the recombination products are topologically complex and would impair chromosome unlinking. We propose that FtsK translocation and activation of unlinking are normally coupled, with the translocation being essential for ensuring that the products of recombination are topologically unlinked, an essential feature of the role of FtsK in chromosome segregation.  相似文献   

19.
CTXphi is a filamentous bacteriophage that encodes cholera toxin and integrates site-specifically into the larger of the two Vibrio cholerae chromosomes. The CTXphi genome lacks an integrase; instead, its integration depends on the chromosome-encoded tyrosine recombinases XerC and XerD. During integration, recombination occurs between regions of homology in CTXphi and the V. cholerae chromosome. Here, we define the elements on the phage genome (attP) and bacterial chromosome (attB) required for CTXphi integration. attB is a short sequence composed of one binding site for XerC and XerD spanning the site of recombination. Together, XerC and XerD bind to two sites within attP. While one XerC/D binding site in attP spans the core recombination region, the other site is approximately 80 bp away. Although integration occurs at the core XerC/D binding site in attP, the second site is required for CTXphi integration, suggesting it performs an architectural role in the integration reaction. In vitro cleavage reactions showed that XerC and XerD are capable of cleaving attB and attP sequences; however, additional cellular processes such as DNA replication or Holliday junction resolution by a host resolvase may contribute to integration in vivo.  相似文献   

20.
The Bacillus subtilis ripX gene encodes a protein that has 37 and 44% identity with the XerC and XerD site-specific recombinases of Escherichia coli. XerC and XerD are hypothesized to act in concert at the dif site to resolve dimeric chromosomes formed by recombination during replication. Cultures of ripX mutants contained a subpopulation of unequal-size cells held together in long chains. The chains included anucleate cells and cells with aberrantly dense or diffuse nucleoids, indicating a chromosome partitioning failure. This result is consistent with RipX having a role in the resolution of chromosome dimers in B. subtilis. Spores contain a single uninitiated chromosome, and analysis of germinated, outgrowing spores showed that the placement of FtsZ rings and septa is affected in ripX strains by the first division after the initiation of germination. The introduction of a recA mutation into ripX strains resulted in only slight modifications of the ripX phenotype, suggesting that chromosome dimers can form in a RecA-independent manner in B. subtilis. In addition to RipX, the CodV protein of B. subtilis shows extensive similarity to XerC and XerD. The RipX and CodV proteins were shown to bind in vitro to DNA containing the E. coli dif site. Together they functioned efficiently in vitro to catalyze site-specific cleavage of an artificial Holliday junction containing a dif site. Inactivation of codV alone did not cause a discernible change in phenotype, and it is speculated that RipX can substitute for CodV in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号