首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G-protein oncogenes in acromegaly.   总被引:1,自引:0,他引:1  
A Spada  L Vallar 《Hormone research》1992,38(1-2):90-93
G-proteins belong to a family of proteins which share the common properties of GTP binding and hydrolysis. Heterotrimeric G-proteins are composed of alpha-, beta- and gamma-subunits. The alpha-subunit which differs from one G-protein to another contains the GDP/GTP binding site and has intrinsic GTPase activity. The receptor occupancy causes displacement of bound GDP by GTP, dissociation of free beta gamma-dimer and alpha-GTP complex, interaction of the activated alpha-GTP complex with intracellular effectors, such as enzymes and ion channels. The turn off of the reaction is due to the GTPase activity which causes the hydrolysis of GTP to GDP. G-proteins are essential for transferring hormonal signals from cell surface receptors to intracellular effectors. Since G-proteins generate intracellular effectors involved in cell growth, G-protein genes have the propensity to be converted into oncogenes. In fact, mutations in the alpha-subunit of Gs (the G-protein involved in the activation of adenylyl cyclase) have been demonstrated in 40% of human GH secreting pituitary adenomas. Single amino acid substitutions replacing Arg 201 with either Cys or His or Gln 227 with either Arg or Leu cause constitutive activation of adenylyl cyclase by inhibiting GTPase (gsp oncogene). The same mutations were identified in about 10% of thyroid adenomas and in the McCune-Albright syndrome.  相似文献   

2.
G-proteins in the signal-transduction pathways of Dictyostelium discoideum   总被引:6,自引:0,他引:6  
The functional interaction of surface cAMP receptors with effector enzymes via G-proteins was investigated in Dictyostelium discoideum. Several experimental conditions were used to investigate signal transduction, such as reduced temperatures, use of down-regulated cells and of mutants. The results are presented as a model describing the complex interaction between multiple forms of the surface cAMP receptor and different G-proteins that are responsible for the generation of the second messengers, cAMP, cGMP, InsP3 and Ca2+.  相似文献   

3.
The complexion of the adenylate cyclase system and in particular, the regulation of G-proteins was examined in 3T3-L1 cells during differentiation from a fibroblast-like to an adipocyte-like phenotype. Gs alpha (the identified regulatory component of hormone-sensitive adenylate cyclase that mediates stimulation), measured by cholera toxin-catalyzed ADP-ribosylation, increased by approximately 6-fold from day 0 to day 8. Gs alpha, measured by functional reconstitution, increased in specific activity by approximately 3-fold from day 0 to day 8. Both Gi alpha (the G-protein with alpha-subunit Mr 40,000-41,000 whose function is in part the mediation of inhibition of adenylate cyclase) and Go alpha (the highly abundant G-protein first isolated from bovine brain whose effector system remains to be established) measured by pertussis toxin-catalyzed ADP-ribosylation increased by approximately 4-fold over this same period. 3T3-L1 cells possess beta-subunits of G-proteins displaying Mr = 36,000 (beta 36) and Mr = 35,000 (beta 35). The increase in the beta 35 as well as beta 36 subunits was approximately 2-fold. Using quantitative immunoblotting techniques and specific antisera, the total amount of beta-subunits was determined to be 150 as compared to 70 pmol/mg of membrane protein, while the amount of Go alpha was 40 and 10 pmol/mg of membrane protein in adipocytes and fibroblasts, respectively. Since Go alpha is the most abundant G-protein alpha-subunit observed to date in both phenotypes, the overall ratio of beta- to alpha-subunits of G-proteins appears to decrease from approximately 4.7 in fibroblasts to 2.5 in adipocytes. These data suggest that in differentiation not only is the complexion of G-proteins altered but more importantly, the relative amounts of alpha- to beta-subunits are regulated.  相似文献   

4.
Transducin, the guanine nucleotide-binding regulatory protein in rod outer segments, is a heterotrimer consisting of alpha-, beta-, and gamma-subunits. Activation of the photoreceptor, rhodopsin, by light, results in activation of transducin which cleaves to form transducin alpha. GTP and a complex of beta gamma-subunits. We have investigated the point(s) of contact between the subunits of transducin by analyzing for the formation of intersubunit disulfide bond(s) in the presence of copper phenanthroline. The formation of a new species with an apparent molecular mass of 43 kDa was observed which had resulted from the formation of a disulfide bond between the beta- and gamma-subunits. The amino acid residues participating in the disulfide bond were identified as Cys-25 in the beta-subunit and Cys-36 and/or Cys-37 in the gamma-subunit. Thus, these cysteine residues and, probably, some of the adjacent amino acid residues form a point of contact between the beta- and gamma-subunits of transducin in the stable complex.  相似文献   

5.
It is firmly established that the activation of many heptahelical receptors by extracellular agonists leads to the activation of effectors such as phospholipase Cbeta (PLCbeta), the subsequent production of inositol-1,4,5-trisphosphate (IP3), and a resultant increase in intracellular free Ca2+. Heterotrimeric G-proteins have a critical role in transducing the signal from the heptahelical receptor to PLCbeta and in determining the specificity and duration of the cellular responses. There remain, however, a number of areas of uncertainty regarding the exact mechanisms involved in regulating G-protein-mediated receptor-effector coupling in different cell types. For example, the molecular identity of the G-protein involved and the degree of isoform specificity among G-proteins of the same family and their receptors remains unclear. It is also not known in many cell types whether it is the alpha- or the betagamma-subunits of these G-proteins that activate PLCbeta. In order to address these issues, we have used replication-deficient adenoviruses as a tool to deliver, into intact epithelial cells, transgenes coding for proteins involved in G-protein-coupled receptor signaling pathways.  相似文献   

6.
Heterotrimeric G-proteins at the plasma membrane serve as switches between heptahelical receptors and intracellular signal cascades. Likewise endomembrane associated G-proteins may transduce signals from intracellular compartments provided they consist of a functional trimer. Using quantitative immunoelectron microscopy we found heterotrimeric G-protein subunits Galpha2, Galpha(q/11), Gbeta2 and Gbeta5 to reside on secretory granules in chromaffin cells of rat adrenal glands.Thus rat chromaffin granules are equipped with functional G-proteins that consist of a specific alpha-, beta- and probably gamma-subunit combination. Serotonin uptake into a crude rat chromaffin granule preparation was inhibited by activated Galphao2 (10 nM) to nearly the same extent as by GMppNp (50 microM) whereas GDPbetaS was ineffective. The data support the idea that vesicular G-proteins directly regulate the transmitter content of secretory vesicles. In this respect Galphao2 appears to be the main regulator of vesicular momoamine transporter activity.  相似文献   

7.
The light-detecting system of retinal rod outer segments is regulated by a guanyl nucleotide binding (G) protein, transducin, which is composed of alpha-, beta-, and gamma-subunits. Transducin couples rhodopsin to the intracellular effector enzyme, a cGMP phosphodiesterase. The beta gamma complex (T beta gamma) is required for the alpha-subunit (T alpha) to interact effectively with the photon receptor rhodopsin. It is not clear, however, whether T beta gamma binds directly to rhodopsin or promotes T alpha binding to rhodopsin only by binding to T alpha. We have found that serum from rabbits immunized with T beta gamma contained a population of antibodies that were reactive against rhodopsin. These antibodies could be separated from T beta gamma antibodies by absorbing the latter on immobilized transducin. Binding of purified rhodopsin antibodies was inhibited by T beta gamma, suggesting that the rhodopsin antibodies and T beta gamma bound to the same site on rhodopsin. We propose that the rhodopsin antibodies act both as antiidiotypic antibodies against the idiotypic T beta gamma antibodies and as antibodies against rhodopsin. This hypothesis is consistent with the conclusion that T beta gamma interacts directly with the receptor. It is probable that in an analogous way, G beta gamma interacts directly with receptors of the adenylate cyclase system.  相似文献   

8.
The role of the beta gamma-subunits in the interaction of G-proteins was examined with beta 1-adrenoceptors purified from turkey erythrocytes and pure beta gamma-subunits prepared from turkey erythrocytes and bovine brain. On a non-denaturing polyacrylamide gel, the mobility of beta gamma-subunits was increased when incubated with beta 1-adrenoceptor and the beta 1-adrenergic agonist 1-(-)-isoproterenol, whereas on incubation with the antagonist 1-alprenolol the mobility was unchanged. Furthermore, the beta 1-adrenoceptor was retarded on a Sephadex G-50 column equilibrated with beta gamma-subunits and agonist. No retardation occurred in the presence of antagonist. These data suggest a direct interaction of activated beta 1-adrenoceptors with isolated beta gamma-subunits of G-proteins.  相似文献   

9.
Heterotrimeric guanine nucleotide-binding proteins (G-proteins) can be categorized into molecularly divergent groups by their differential sensitivity to pertussis toxin. Receptors specifically use either pertussis toxin-sensitive or-insensitive G-proteins to couple to specific effectors. Receptor stimulation of phospholipase C, however, is pertussis toxin sensitive in some systems and pertussis toxin insensitive in others. We studied the coupling of receptors to phospholipase C by expressing receptors from both systems into a single cell, the Xenopus oocyte. [Arg8]Vassopressin (AVP) receptors from liver and cholecystokinin-8(sulfated) (CCK) receptors from brain were expressed in oocytes by intracellular injection of RNA. Both receptors stimulated a Ca2+-dependent Cl- current which can also be evoked by intracellular injection of inositol 1,4,5-tris-phosphate. Hence, receptor stimulation of phospholipase C was measured as the evoked Ca2+-dependent Cl- current. The liver AVP receptor, which is known to stimulate phospholipase C in a pertussis toxin-insensitive manner (Lynch, C. J., Prpic, V., Blackmore, P. F., and Exton, J. H. (1986) Mol. Pharmacol. 29, 196-203), was found to stimulate phospholipase C through a pertussis toxin-sensitive pathway in the Xenopus oocyte. The CCK receptor from brain stimulated phospholipase C through a pertussis toxin-insensitive pathway. Both AVP and CCK stimulation of phospholipase C were attenuated by the intracellular injection of excess G-protein beta gamma subunits. Neither pertussis toxin treatment nor intracellular injection of beta gamma subunits affected any steps subsequent to inositol 1,4,5-tris-phosphate production. From these data we conclude that both the pertussis toxin-sensitive and -insensitive pathways for receptor coupling to phospholipase C are transduced by heterotrimeric G-proteins. We also find that there is a lack of coupling fidelity of receptors to G-proteins in stimulation of phospholipase C which can be influenced by the membrane environment.  相似文献   

10.
Attachment of heterotrimeric G-proteins to the inner face of the plasma membrane is fundamental to their role as signal transducers by allowing interaction with both receptors and effectors. Certain G-protein alpha subunits are anchored to the membrane by covalent myristoylation. The beta gamma complex is required for G-protein interaction with receptors and is independently membrane associated through an unknown mechanism. A series of carboxyl-terminal modifications including isoprenylation which may contribute to membrane attachment has been identified recently in G-protein gamma subunits. Expression and membrane targeting of beta and gamma subunits were examined in COS cells. The expression of either subunit was found to require cotransfection with both beta and gamma cDNAs. Mutation of the carboxyl-terminal cysteine residue of gamma shown to undergo isoprenylation and carboxymethyl-esterification preserved beta gamma expression but blocked isoprenylation and membrane attachment. These results implicate the carboxyl-terminal processing of G-protein gamma subunits and beta coexpression as necessary and sufficient for membrane targeting of the beta gamma complex.  相似文献   

11.
Activator of G-protein signaling 3 (AGS3) has a modular domain structure consisting of seven tetratricopeptide repeats (TPRs) and four G-protein regulatory (GPR) motifs. Each GPR motif binds to the alpha subunit of Gi/Go (Gialpha > Goalpha) stabilizing the GDP-bound conformation of Galpha and apparently competing with Gbetagamma for GalphaGDP binding. As an initial approach to identify regulatory mechanisms for AGS3-G-protein interactions, a yeast two-hybrid screen was initiated using the TPR and linker region of AGS3 as bait. This screen identified the serine/threonine kinase LKB1, which is involved in the regulation of cell cycle progression and polarity. Protein interaction assays in mammalian systems using transfected cells or brain lysate indicated the regulated formation of a protein complex consisting of LKB1, AGS3, and G-proteins. The interaction between AGS3 and LKB1 was also observed with orthologous proteins in Drosophila where both proteins are involved in cell polarity. LKB1 immunoprecipitates from COS7 cells transfected with LKB1 phosphorylated the GPR domains of AGS3 and the related protein LGN but not the AGS3-TPR domain. GPR domain phosphorylation was completely blocked by a consensus GPR motif peptide, and placement of a phosphate moiety within a consensus GPR motif reduced the ability of the peptide to interact with G-proteins. These data suggest that phosphorylation of GPR domains may be a general mechanism regulating the interaction of GPR-containing proteins with G-proteins. Such a mechanism may be of particular note in regard to localized signal processing in the plasma membrane involving G-protein subunits and/or intracellular functions regulated by heterotrimeric G-proteins that occur independently of a typical G-protein-coupled receptor.  相似文献   

12.
Skeletal-muscle phosphorylase kinase is a hexadecameric oligomer composed of equivalent amounts of four different subunits, (alpha beta gamma delta)4. The delta-subunit, which is calmodulin, functions as an integral subunit of the oligomer, and the gamma-subunit is catalytic. To learn more about intersubunit contacts within the hexadecamer and about the roles of individual subunits, we induced partial dissociation of the holoenzyme with low concentrations of urea. In the absence of Ca2+ the quaternary structure of phosphorylase kinase is very sensitive to urea over a narrow concentration range. Gel-filtration chromatography in the presence of progressively increasing concentrations of urea indicates that between 1.15 M- and 1.35 M-urea the delta-subunit dissociates, allowing extensive formation of complexes larger than the native enzyme that contain equivalent amounts of alpha-, beta- and gamma-subunits. As the urea concentration is increased to 2 M and 3 M, nearly all of the enzyme aggregates to the heavy species devoid of delta-subunit. Addition of Ca2+, which is known to block dissociation of the delta-subunit [Shenolikar, Cohen, Cohen, Nairn & Perry (1979) Eur. J. Biochem. 100, 329-337], also blocks aggregation of the enzyme induced by the low concentrations of urea. These results suggest that in native phosphorylase kinase the delta-subunit, in addition to activating the catalytic subunit and conferring upon it Ca2(+)-sensitivity, may also serve a structural role in preventing aggregation of the alpha-, beta- and gamma-subunits, thus limiting to four the number of alpha beta gamma delta protomers that associate under standard conditions. In gel-filtration chromatography with urea a protein peak containing equivalent amounts of alpha- and gamma-subunits is also observed, as is a peak containing only beta-subunits. Increasing concentrations of urea have a biphasic effect on the activity of the holoenzyme, being stimulatory up to 1 M and then inhibitory. The concentration-dependence of urea in the inhibitory phase parallels its ability to induce dissociation of the delta-subunit.  相似文献   

13.
The epithelial Na+ channel (ENaC) is a tetramer of two alpha-, one beta-, and one gamma-subunit, but little is known about its assembly and processing. Because co-expression of mouse ENaC subunits with three different carboxyl-terminal epitope tags produced an amiloride-sensitive sodium current in oocytes, these tagged subunits were expressed in both Chinese hamster ovary or Madin-Darby canine kidney type 1 epithelial cells for further study. When expressed alone alpha-(95 kDa), beta-(96 kDa), and gamma-subunits (93 kDa) each produced a single band on SDS gels by immunoblotting. However, co-expression of alphabetagammaENaC subunits revealed a second band for each subunit (65 kDa for alpha, 110 kDa for beta, and 75 kDa for gamma) that exhibited N-glycans that had been processed to complex type based on sensitivity to treatment with neuraminidase, resistance to cleavage by endoglycosidase H, and GalNAc-independent labeling with [3H]Gal in glycosylation-defective Chinese hamster ovary cells (ldlD). The smaller size of the processed alpha- and gamma-subunits is also consistent with proteolytic cleavage. By using alpha- and gamma-subunits with epitope tags at both the amino and carboxyl termini, proteolytic processing of the alpha- and gamma-subunits was confirmed by isolation of an additional epitope-tagged fragment from the amino terminus (30 kDa for alpha and 18 kDa for gamma) consistent with cleavage within the extracellular loop. The fragments remain stably associated with the channel as shown by immunoblotting of co-immunoprecipitates, suggesting that proteolytic cleavage represents maturation rather than degradation of the channel.  相似文献   

14.
The peptide hormone somatostatin controlling functions of CNS and peripheral organs and tissues realizes its regulatory effects via five types of somatostatin receptors (SomR) coupled to heterotrimeric G-proteins. Targets of the hormone action are the enzymes generating second messengers (adenylyl cyclase, phospholipase C, phosphatidylinositol-3-kinase), phosphotyrosine phosphatases, ion channels. The review summarizes and analyzes literature data and results of our studies on molecular mechanisms of transduction of the somatostatin signal into the cell, selectivity of interaction of SomR with heterotrimeric G-proteins and intracellular effectors as well as on effect of SomR oligomerization on their functional activity.  相似文献   

15.
When a mixture of bovine brain G-proteins (Gi/o) was loaded onto an octyl sepharose column in the presence of AlF4-, alpha-subunits of molecular weights 39 kDa and the 41 kDa were eluted separately, followed by the appearance of two distinct peaks containing beta gamma-subunits (beta gamma-I, beta gamma-II). Both beta gamma-I and beta gamma-II possessed identical beta-subunits but different gamma-subunits. The molecular weights of the two gamma-subunits determined by SDS-polyacrylamide gel electrophoresis both in the presence and absence of urea were 4.5 kDa (gamma-I) and 5.0 kDa (gamma-II). Tests indicated that the two isolated gamma-subunits are intact and have not undergone proteolysis. The amino acid composition of gamma-I appeared to be distinct from that of gamma-II. Therefore, this method is a simple procedure for isolating beta gamma-I and beta gamma-II.  相似文献   

16.
Shpakov AO 《Tsitologiia》2002,44(2):195-202
The heterodimer p85/p110 and p101/p120 gamma phosphatidylinositol-3-kinases (PI3K) are important effector proteins in the signal transduction in a cell. beta gamma-subunits of heterotrimetic G-proteins are some of the main regulators of PI3K functional activity. Molecular determinants in the molecules of PI3K which may be responsible for coupling with beta gamma-dimer, remain obscure. The aim of this work was to identify the determinants of the basis of a comparative analysis of primary structures of PI3K and other beta gamma-binding proteins (adenylyl cyclases of the different types, G-protein-coupled receptor kinases, phospholypase C beta). The obtained data enables us to make some conclusions. In p85/p110 PI3K, beta gamma-binding determinants are located mainly in its regulatory subunit (BCR-domain, inter-SH2-domain). However, the interaction between beta gamma and catalytic domain of the catalytic p-110 subunit is also possible. In p101/p120 gamma PI3K, beta gamma-binding regions are located only in the catalytic p120 gamma-subunit of the enzyme, i.e. in its middle part and C-terminal catalytic domain regions of 436-502, 791-822 and 911-1000). In spite of the fact that potential beta gamma-binding regions are localized in different loci of PI3K subunits, they can form a compact beta gamma-binding surface in the process of its molecule folding, similar by as in other beta gamma-binding proteins.  相似文献   

17.
The guanine nucleotide-binding proteins (G proteins) are heterotrimers composed of alpha-, beta-, and gamma-subunits, and each of the constituent subunits has been reported to exhibit a molecular heterogeneity. The beta- and gamma-subunits form a functional unit that does not separate under physiological conditions and interact with various alpha-subunits that appear to mainly regulate specific effectors. We thus purified the beta gamma-complex of G proteins from bovine brain membranes and found that there were chromatographically multiple forms of beta gamma-subunits which could be reassociated with various alpha-subunits. The major findings observed with the purified proteins were summarized as follows. (a) The constituent beta gamma-subunits in the brain membrane G proteins appeared to be divided into two groups in their elution profiles from a hydrophobic column. (b) Each of the two groups contained at least five different components of beta gamma-subunits upon analyzing by a high-resolution, anion-exchange column. (c) Distribution of the heterogeneous beta gamma-subunits was not identical among various trimeric G proteins such as Gi, G0, and Gs. (d) The heterogeneous beta gamma-components were able to interact with a specific alpha-subunit resulting in the alpha beta gamma-trimer that served as the substrate of pertussis toxin-catalyzed ADP-ribosylation. (e) However, the apparent abilities of some beta gamma-subunits to support the toxin-induced modification were significantly different in a special comparison between the two beta gamma-groups that were eluted from the hydrophobic column. These results indicated that there were multiple forms of beta gamma-subunits associating with the specific alpha-subunit of a trimeric G protein and that some of those had different affinities for various alpha-subunits in terms of their tight associations. A possible role of the heterogeneity in beta gamma-subunits is also discussed in terms of G protein-mediated signal transductions.  相似文献   

18.
The wide distribution of corticotrophin-releasing hormone (CRH) receptors in brain and periphery appear to be important in integrating the responses of the brain, endocrine and immune systems to physiological, psychological and immunological stimuli. The type 1 receptors are highly expressed throughout the cerebral cortex, a region involved in cognitive function and modulation of stress responses, where they are coupled to the adenylyl cyclase system. Using techniques that analyse receptor-mediated guanine-nucleotide binding protein (G-proteins) activation, we recently demonstrated that expressed type 1alpha CRH receptors are capable of activating multiple G-proteins, which suggests that CRH can regulate multiple signalling pathways. In an effort to characterize the intracellular signals generated by CRH in the rat cerebral cortex we sought to identify G-proteins activated by CRH in a physiological membrane environment. Rat cerebral cortical membrane suspensions were analysed for the ability of CRH to stimulate incorporation of [alpha-32P]-GTP-gamma-azidoanilide to various G-protein alpha-chains. Our results show that CRH receptors are coupled to and activate at least five different G-proteins (Gs, Gi, Gq/11, Go and Gz) with subsequent stimulation of at least two intracellular signalling cascades. In addition, the photoaffinity experiments indicated that the CRH receptors preferentially activate the 45 kDa form of the Gs alpha-protein. This data may help elucidate the intracellular signalling pathways mediating the multiple actions of CRH especially under different physiological conditions.  相似文献   

19.
17beta-estradiol and 1,25-dihydroxyvitamin D(3)()(calcitriol) rapidly increase (< 5 sec) the concentration of intracellular calcium by mobilizing Ca(2+) from the endoplasmic reticulum and forming inositol 1,4,5-trisphosphate (InsP(3)) and diacylglycerol. Calcitriol increases InsP(3) formation via activation of phospholipase C (PLC)-beta1 linked to a pertussis toxin (PTX)-insensitive G-protein, and estradiol via activation of PLC-beta2 linked to a PTX-sensitive G-protein. Since PLC are effectors of different subunits of various G-proteins, we looked for and identified several G-subunits (Galpha(q/11), Galphas, Galphai, Gbeta and Ggamma) in female rat osteoblasts using Western immunoblotting. The action of calcitriol on InsP(3) formation and Ca(2+) mobilization in Fura-2-loaded confluent osteoblasts involved Galpha(q/11). The membrane effects of estradiol involved Gbetagamma; subunits, and principally Gbeta subunits, but not alpha-subunits. These results may provide additional evidence for membrane receptors of steroid hormones. Since PLC-beta1 is the target effector of Galpha(q/11), whereas PLC-beta2 is only activated by betagamma subunits, this specificity may help to generate membrane receptor-specific responses in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号