首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p-Hydroxyphenyl compounds [3-(p-hydroxyphenyl)propionic acid, p-hydroxyphenethyl alcohol, hordenine, p-ethylphenol, 3-(p-hydroxyphenyl)-1-propanol, p-n-propylphenol, and p-hydroxyphenyllactic acid] were recently found to be excellent fluorogenic substrates for the horseradish peroxidase-mediated reaction with hydrogen peroxide. A very rapid and sensitive method for the fluorometric assays of hydrogen peroxide and the peroxidase was established by using 3-(p-hydroxyphenyl)propionic acid as the best of these substrates; hydrogen peroxide can be assayed precisely in amounts as small as 0.1 nmol, with peroxidase activity as low as 7.8 μU.  相似文献   

2.
The enzymes of hydrogen peroxide metabolism have been investigated in the cestodes H. diminuta and M. expansa. Neither catalase, lipoxygenase, glutathione peroxidase, NADH peroxidase nor NADPH peroxidase could be detected in homogenates of either species. However, both H. diminuta and M. expansa possessed a peroxidase which had a high affinity for reduced cytochrome c. The peroxidase was characterized by substrate and inhibitor studies and cell fractionation showed the enzyme to be located in the mitochondrial membrane fraction. The peroxidase could act as a substitute for catalase, by destroying metabolic hydrogen peroxide. Appreciable superoxide dismutase activity was found in M. expansa and H. diminuta and it is possible that this enzyme is the source of helminth hydrogen peroxide.  相似文献   

3.
The flavin-dependent enzyme pyranose oxidase catalyses the oxidation of several pyranose sugars at position C-2. In a second reaction step, oxygen is reduced to hydrogen peroxide. POx is of interest for biocatalytic carbohydrate oxidations, yet it was found that the enzyme is rapidly inactivated under turnover conditions. We studied pyranose oxidase from Trametes multicolor (TmPOx) inactivated either during glucose oxidation or by exogenous hydrogen peroxide using mass spectrometry. MALDI-MS experiments of proteolytic fragments of inactivated TmPOx showed several peptides with a mass increase of 16 or 32 Da indicating oxidation of certain amino acids. Most of these fragments contain at least one methionine residue, which most likely is oxidised by hydrogen peroxide. One peptide fragment that did not contain any amino acid residue that is likely to be oxidised by hydrogen peroxide (DAFSYGAVQQSIDSR) was studied in detail by LC-ESI-MS/MS, which showed a +16 Da mass increase for Phe454. We propose that oxidation of Phe454, which is located at the flexible active-site loop of TmPOx, is the first and main step in the inactivation of TmPOx by hydrogen peroxide. Oxidation of methionine residues might then further contribute to the complete inactivation of the enzyme.  相似文献   

4.
Arthromyces ramosus peroxidase (ARP) was successfully modified with a synthetic surfactant for one-electron oxidation reaction of a hydrophobic substrate in toluene. Although UV–visible absorption spectrum of surfactant–ARP complex in toluene showed slight red shift of Soret band compared to that in water, the complex can catalyze oxidation reaction of o-phenylenediamine (o-PDA) with hydrogen peroxide. It appeared that thermodynamic water activity in the reaction system has dominant effect on either the catalytic activity or the stability in the catalytic cycle. Steady-state kinetics under the optimal condition revealed that the specific constant (kcat/Km) of ARP complex for o-PDA was 2 orders of magnitude lower than that in aqueous media, while only 13-fold lower for hydrogen peroxide. The reduction of catalytic activity caused by altering the reaction media from water to toluene was found to be mainly due to the low specific constant of ARP complex for o-PDA rather than hydrogen peroxide.  相似文献   

5.
The effect of two strains of the phytopathogenic fungus Septoria nodorum Berk. of different virulence on the intensity of local generation of hydrogen peroxide in common wheat leaves and the role of oxidoreductases in this process was studied. Differences in the pattern of hydrogen peroxide production in wheat plants infected with high- and low-virulence pathogen strains have been found. The low-virulent S. nodorum strain caused a long-term hydrogen peroxide (H2O2) generation in the infection zone, whereas the inoculation of leaves with the highly virulent strain resulted in a transient short-term increase in the H2O2 concentration at the initial moment of contact between the plant and the fungus. It was shown that the low level of H2O2 production by plant cells at the initial stages of pathogenesis facilitates S. nodorum growth and development. The decrease in the H2O2 concentration induced by the highly virulent S. nodorum strain is determined by inhibition of the oxalate oxidase activity in plant tissues and by the ability of the fungus to actively synthesize an extracellular catalase. The pattern of hydrogen peroxide generation at the initial stages of septoriosis may serve as an index of virulence of S. nodorum population.  相似文献   

6.
This work describes a new electrochemical sensor for hydrogen peroxide based on tin pentacyanonitrosylferrate (SnPCNF)-modified carbon ceramic electrode (CCE). The modified electrode was constructed by using a sol-gel technique involving two steps: construction of CCE containing metallic tin (Sn) powder and then electrochemical creation of SnPCNF film on the surface of CCE. The modified electrode was characterized by energy-dispersive X-ray, Fourier transform infrared, scanning electron microscopy, and cyclic voltammetry (CV) techniques. The charge transfer coefficient (α) and charge transfer rate constant (ks) for the modifying film were calculated. The electrocatalytic activity of the modified electrode toward the reduction of hydrogen peroxide was studied by CV and chronoamperometry. A linear calibration curve was obtained over the hydrogen peroxide concentration range of 0.5 to 69.4 μM using a hydrodynamic amperometric technique. The limit of detection (for a signal-to-noise ratio of 3) and sensitivity were found to be 92 nM and 0.89 μA/μM, respectively. Furthermore, the diffusion coefficient of hydrogen peroxide (D) and catalytic rate constant (kcat) were calculated.  相似文献   

7.
We constructed and characterized a Xanthomonas campestris pv. phaseoli oxyR mutant. The mutant was hypersensitive to H2O2 and menadione killing and had reduced aerobic plating efficiency. The oxidants’ induction of the catalase and ahpC genes was also abolished in the mutant. Analysis of the adaptive responses showed that hydrogen peroxide-induced protection against hydrogen peroxide was lost, while menadione-induced protection against hydrogen peroxide was retained in the oxyR mutant. These results show that X. campestris pv. phaseoli oxyR is essential to peroxide adaptation and revealed the existence of a novel superoxide-inducible peroxide protection system that is independent of OxyR.  相似文献   

8.
Wolbachia mediates antiviral protection in insect hosts and is being developed as a potential biocontrol agent to reduce the spread of insect-vectored viruses. Definition of the molecular mechanism that generates protection is important for understanding the tripartite interaction between host insect, Wolbachia, and virus. Elevated oxidative stress was previously reported for a mosquito line experimentally infected with Wolbachia, suggesting that oxidative stress is important for Wolbachia-mediated antiviral protection. However, Wolbachia experimentally introduced into mosquitoes impacts a range of host fitness traits, some of which are unrelated to antiviral protection. To explore whether elevated oxidative stress is associated with antiviral protection in Wolbachia-infected insects, we analyzed oxidative stress of five Wolbachia-infected Drosophila lines. In flies infected with protective Wolbachia strains, hydrogen peroxide concentrations were 1.25- to 2-fold higher than those in paired fly lines cured of Wolbachia infection. In contrast, there was no difference in the hydrogen peroxide concentrations in flies infected with nonprotective Wolbachia strains compared to flies cured of Wolbachia infection. Using a Drosophila mutant that produces increased levels of hydrogen peroxide, we investigated whether flies with high levels of endogenous reactive oxygen species had altered responses to virus infection and found that flies with high levels of endogenous hydrogen peroxide were less susceptible to virus-induced mortality. Taken together, these results suggest that elevated oxidative stress correlates with Wolbachia-mediated antiviral protection in natural Drosophila hosts.  相似文献   

9.
The effect of hydrogen peroxide (10?9–10?1 M) on the mycelial growth of the fungi Alternaria alternata, Cladosporium cladosporioides, Mucor hiemalis, and Paecilomyces lilacinus has been studied. The growth of fungi isolated from habitats with a background level of radioactive contamination was stopped by H2O2 concentrations equal to 10?3 and 10?2 M, whereas the growth of fungi that were isolated from habitats with high levels of radioactive contamination was only arrested by 10?1 M H2O2. The response of the different fungi to hydrogen peroxide was of three types: (1) a constant growth rate of fungal hyphae at H2O2 concentrations between 10?9 and 10?4 M and a decrease in this rate at 10?3 M H2O2, (2) a gradual decrease in the growth rate as the H2O2 concentration was increased, and (3) an increase in the growth rate as the H2O2 concentration was increased from 10?6 to 10?5 M. The melanin-containing species A. alternata and C. cladosporioides exhibited all three types of growth response to hydrogen peroxide, whereas the light-pigmented species M. hiemalis and P. lilacinus showed only the first type of growth response. A concentration of hydrogen peroxide equal to 10?1 M was found to be lethal to all of the fungi studied. The most resistant to hydrogen peroxide was found to be the strain A. alternata 56, isolated from the exclusion zone of the Chernobyl Nuclear Power Plant.  相似文献   

10.
11.
12.
Urea hydrogen peroxide (UHP) at a concentration of 30 to 32 mmol/liter reduced the numbers of five Lactobacillus spp. (Lactobacillus plantarum, L. paracasei, Lactobacillus sp. strain 3, L. rhamnosus, and L. fermentum) from ~107 to ~102 CFU/ml in a 2-h preincubation at 30°C of normal-gravity wheat mash at ~21 g of dissolved solids per ml containing normal levels of suspended grain particles. Fermentation was completed 36 h after inoculation of Saccharomyces cerevisiae in the presence of UHP, even when wheat mash was deliberately contaminated (infected) with L. paracasei at ~107 CFU/ml. There were no significant differences in the maximum ethanol produced between treatments when urea hydrogen peroxide was used to kill the bacteria and controls (in which no bacteria were added). However, the presence of L. paracasei at ~107 CFU/ml without added agent resulted in a 5.84% reduction in the maximum ethanol produced compared to the control. The bactericidal activity of UHP is greatly affected by the presence of particulate matter. In fact, only 2 mmol of urea hydrogen peroxide per liter was required for disinfection when mashes had little or no particulate matter present. No significant differences were observed in the decomposition of hydrogen peroxide in normal-gravity wheat mash at 30°C whether the bactericidal agent was added as H2O2 or as urea hydrogen peroxide. NADH peroxidase activity (involved in degrading H2O2) increased significantly (P = 0.05) in the presence of 0.75 mM hydrogen peroxide (sublethal level) in all five strains of lactobacilli tested but did not persist in cells regrown in the absence of H2O2. H2O2-resistant mutants were not expected or found when lethal levels of H2O2 or UHP were used. Contaminating lactobacilli can be effectively managed by UHP, a compound which when used at ca. 30 mmol/liter happens to provide near-optimum levels of assimilable nitrogen and oxygen that aid in vigorous fermentation performance by yeast.  相似文献   

13.
After cold treatment of seedlings of winter wheat (Triticum aestivum L.), levels of hydrogen peroxide in the leaves were measured. The concentration of hydrogen peroxide increased to about three times the control level within a few minutes, and returned to the normal level in 15 to 20 minutes. The elevated level of hydrogen peroxide was found to be equivalent to 1.5 micromoles per gram fresh weight tissues of leaves.  相似文献   

14.
It has been shown that the experimental results obtained by Morgulis in a study of the decomposition of hydrogen peroxide by liver catalase at 20°C. and in the presence of an excess of a relatively high concentration of peroxide are quantitatively accounted for by the following mechanisms. 1. The rate of formation of oxygen is independent of the peroxide concentration provided this is greater than about 0.10 M. 2. The rate of decomposition of the peroxide is proportional at any time to the concentration of catalase present. 3. The catalase undergoes spontaneous monomolecular decomposition during the reaction. This inactivation is independent of the concentration of catalase and inversely proportional to the original concentration of peroxide up to 0.4 M. In very high concentrations of peroxide the inactivation rate increases. 4. The following equation can be derived from the above assumptions and has been found to fit the experiments accurately. See PDF for Equation in which x is the amount of oxygen liberated at the time t, A is the total amount of oxygen liberated (not the total amount available), and K is the inactivation constant of the enzyme.  相似文献   

15.
Sunlight inactivation of Escherichia coli has previously been shown to accelerate in the presence of oxygen, exogenously added hydrogen peroxide, and bioavailable forms of exogenously added iron. In this study, mutants unable to effectively scavenge hydrogen peroxide or superoxide were found to be more sensitive to polychromatic simulated sunlight (without UVB wavelengths) than wild-type cells, while wild-type cells grown under low-iron conditions were less sensitive than cells grown in the presence of abundant iron. Furthermore, prior exposure to simulated sunlight was found to sensitize cells to subsequent hydrogen peroxide exposure in the dark, but this effect was attenuated for cells grown with low iron. Mutants deficient in recombination DNA repair were sensitized to simulated sunlight (without UVB wavelengths), but growth in the presence of iron chelators reduced the degree of sensitization conferred by this mutation. These findings support the hypothesis that hydrogen peroxide, superoxide, and intracellular iron all participate in the photoinactivation of E. coli and further suggest that the inactivation rate of enteric bacteria in the environment may be strongly dependent on iron availability and growth conditions.  相似文献   

16.
Maria Mubarakshina 《BBA》2006,1757(11):1496-1503
Hydrogen peroxide production in isolated pea thylakoids was studied in the presence of cytochrome c to prevent disproportionation of superoxide radicals outside of the thylakoid membranes. The comparison of cytochrome c reduction with accompanying oxygen uptake revealed that hydrogen peroxide was produced within the thylakoid. The proportion of electrons from water oxidation participating in this hydrogen peroxide production increased with increasing light intensity, and at a light intensity of 630 μmol quanta m− 2 s− 1 it reached 60% of all electrons entering the electron transport chain. Neither the presence of a superoxide dismutase inhibitor, potassium cyanide or sodium azide, in the thylakoid suspension, nor unstacking of the thylakoids appreciably affected the partitioning of electrons to hydrogen peroxide production. Also, osmolarity-induced changes in the thylakoid lumen volume, as well as variation of the lumen pH induced by the presence of Gramicidin D, had negligible effects on such partitioning. The flow of electrons participating in lumen hydrogen peroxide production was found to be near 10% of the total electron flow from water. It is concluded that a considerable amount of hydrogen peroxide is generated inside thylakoid membranes, and a possible mechanism, as well as the significance, of this process are discussed.  相似文献   

17.
The ligninolytic system of the basidiomycete Ceriporiopsis subvermispora is composed of manganese peroxidase (MnP) and laccase. In this work, the source of extracellular hydrogen peroxide required for MnP activity was investigated. Our attention was focused on the possibility that hydrogen peroxide might be generated by MnP itself through the oxidation of organic acids secreted by the fungus. Both oxalate and glyoxylate were found in the extracellular fluid of C. subvermispora cultures grown in chemically defined media, where MnP is also secreted. The in vivo oxidation of oxalate was measured; 14CO2 evolution was monitored after addition of exogenous [14C]oxalate to cultures at constant specific activity. In standard cultures, evolution of CO2 from oxalate was maximal at day 6, although the MnP titers were highest at day 12, the oxalate concentration was maximal (2.5 mM) at day 10, and the glyoxylate concentration was maximal (0.24 mM) at day 5. However, in cultures containing low nitrogen levels, in which the pH is more stable, a better correlation between MnP titers and mineralization of oxalate was observed. Both MnP activity and oxidation of [14C]oxalate were negligible in cultures lacking Mn(II). In vitro assays confirmed that Mn(II)-dependent oxidation of [14C]oxalate by MnP occurs and that this reaction is stimulated by glyoxylate at the concentrations found in cultures. In addition, both organic acids supported phenol red oxidation by MnP without added hydrogen peroxide, and glyoxylate was more reactive than oxalate in this reaction. Based on these results, a model is proposed for the extracellular production of hydrogen peroxide by C. subvermispora.  相似文献   

18.
19.
The positioning of peroxisomes in a cell is a regulated process that is closely associated with their functions. Using this feature of the peroxisomal positioning as a criterion, we identified three Arabidopsis thaliana mutants (peroxisome unusual positioning1 [peup1], peup2, and peup4) that contain aggregated peroxisomes. We found that the PEUP1, PEUP2, and PEUP4 were identical to Autophagy-related2 (ATG2), ATG18a, and ATG7, respectively, which are involved in the autophagic system. The number of peroxisomes was increased and the peroxisomal proteins were highly accumulated in the peup1 mutant, suggesting that peroxisome degradation by autophagy (pexophagy) is deficient in the peup1 mutant. These aggregated peroxisomes contained high levels of inactive catalase and were more oxidative than those of the wild type, indicating that peroxisome aggregates comprise damaged peroxisomes. In addition, peroxisome aggregation was induced in wild-type plants by exogenous application of hydrogen peroxide. The cat2 mutant also contained peroxisome aggregates. These findings demonstrate that hydrogen peroxide as a result of catalase inactivation is the inducer of peroxisome aggregation. Furthermore, an autophagosome marker, ATG8, frequently colocalized with peroxisome aggregates, indicating that peroxisomes damaged by hydrogen peroxide are selectively degraded by autophagy in the wild type. Our data provide evidence that autophagy is crucial for quality control mechanisms for peroxisomes in Arabidopsis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号