首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although recent advances in gel electrophoresis and mass spectrometry have greatly facilitated separation, purification, and identification of proteins, significant challenges remain in relation to phosphoprotein analysis. Here we introduce a powerful method for analysis of protein phosphorylation in which phosphorylation sites are labeled with guanidinoethanethiol (GET) by beta-elimination/Michael addition prior to proteolysis and mass spectrometry (MS) analysis. This technique is especially useful in conjunction with gel-based technology in that all of the processes involved, including GET labeling, washing, and phosphospecific enzymatic hydrolysis, can be carried out in excised gel slices, thereby minimizing sample loss and contamination. The novel GET tag, which has a highly basic guanidine group, increases the peak intensities for the GET-labeled tryptic peptides by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. In addition, phosphospecific proteolytic cleavage occurs at guanidinoethylcysteine (Gec) residue, which is arginine-mimic formed by GET tagging of phosphorylated serine residues. Thus, GET tagging is especially useful in analysis of long tryptic phosphopeptides. To illustrate the utility of the in-gel GET tagging and digestion approach, we used it to precisely analyze the phosphorylation sites of human glutathione S-transferase P1 (GSTP1), an enzyme involved in phase II metabolism of many carcinogens and anticancer drugs. The in-gel GET tagging/digestion technique significantly enhances the analytical potential of gel electrophoresis/MS in studies of proteome phosphorylation.  相似文献   

2.
The diverse proteome of an organism arises from such events as single nucleotide substitutions at the DNA level, different RNA processing, and dynamic enzymatic post-translational modifications. This minireview focuses on the measurement of intact proteins to describe the diversity found in proteomes. The field of biological mass spectrometry has steadily advanced, enabling improvements in the characterization of single proteins to proteins derived from cells or tissues. In this minireview, we discuss the basic technology for "top-down" intact protein analysis. Furthermore, examples of studies involved with the qualitative and quantitative analysis of full-length polypeptides are provided.  相似文献   

3.
4.
The focus of this systematic review is to give an overview of the current status of clinical protein profiling studies using MALDI and SELDI MS platforms in the search for ovarian cancer biomarkers. A total of 34 profiling studies were qualified for inclusion in the review. Comparative analysis of published discriminatory peaks to peaks found in an original MALDI MS protein profiling study was made to address the key question of reproducibility across studies. An overlap was found despite substantial heterogeneity between studies relating to study design, biological material, pre-analytical treatment, and data analysis. About 47% of the peaks reported to be associated to ovarian cancer were also represented in our experimental study, and 34% of these redetected peaks also showed a significant difference between cases and controls in our study. Thus, despite known problems related to reproducibility an overlap in peaks between clinical studies was demonstrated, which indicate convergence toward a set of common discriminating, reproducible peaks for ovarian cancer. The potential of the discriminating protein peaks for clinical use as ovarian cancer biomarkers will be discussed and evaluated. This article is part of a Special Issue entitled: Proteomics: The clinical link.  相似文献   

5.
Benzoyloxysuccinimide and its d5-labeled version, which react with amino groups in the N-termini and lysine side chains in proteins, were synthesized and applied to quantitative analysis of peptides and a commercially available protein in combination with a MALDI mass spectrometer.  相似文献   

6.
In the present study, the inhibition of human glutathione S-transferase P1-1 (GSTP1-1) by the flavonoid quercetin has been investigated. The results show a time- and concentration-dependent inhibition of GSTP1-1 by quercetin. GSTP1-1 activity is completely inhibited upon 1 h incubation with 100 microM quercetin or 2 h incubation with 25 microM quercetin, whereas 1 and 10 microM quercetin inhibit GSTP1-1 activity to a significant extent reaching a maximum of 25 and 42% inhibition respectively after 2 h. Co-incubation with tyrosinase greatly enhances the rate of inactivation, whereas co-incubation with ascorbic acid or glutathione prevents this inhibition. Addition of glutathione upon complete inactivation of GSTP1-1 partially restores the activity. Inhibition studies with the GSTP1-1 mutants C47S, C101S and the double mutant C47S/C101S showed that cysteine 47 is the key residue in the interaction between quercetin and GSTP1-1. HPLC and LC-MS analysis of trypsin digested GSTP1-1 inhibited by quercetin did not show formation of a covalent bond between Cys 47 residue of the peptide fragment 45-54 and quercetin. It was demonstrated that the inability to detect the covalent quercetin-peptide adduct using LC-MS is due to the reversible nature of the adduct-formation in combination with rapid and preferential dimerization of the peptide fragment once liberated from the protein. Nevertheless, the results of the present study indicate that quinone-type oxidation products of quercetin likely act as specific active site inhibitors of GSTP1-1 by binding to cysteine 47.  相似文献   

7.
HSA has been shown to react with many organic toxicants to form adducts that are useful biomarkers for exposure. Albumin isolation is an important first step for the analysis of these protein-toxicant adducts. We tested several approaches to isolate albumin from serum treated with an electrophilic organic toxicant known to form adducts with albumin, i.e., sulfur mustard agent (HD) (2,2'-dichloroethyl sulfide), in order to evaluate these techniques as purification methods. To select the most efficient isolation strategy, methods were evaluated using gel electrophoresis, total protein quantitation, and peptide-adduct identification by MS. Results suggest that the albumin-rich fractions obtained can be used to identify exposure by quantitating the albumin adducts to electrophilic organic toxicants such as HD. The HiTrap Blue HP albumin isolation system appears to display the most promising results for purifying albumin to detect HD-adducts, exhibiting high purification efficiency, satisfactory albumin recovery, promising specificity, and a higher loading capacity for serum.  相似文献   

8.
The development of tools for the analysis of global gene expression is vital for the optimal exploitation of the data on parasite genomes that are now being generated in abundance. Recent advances in two-dimensional electrophoresis (2-DE), mass spectrometry and bioinformatics have greatly enhanced the possibilities for mapping and characterisation of protein populations. We have employed these developments in a proteomics approach for the analysis of proteins expressed in the tachyzoite stage of Toxoplasma gondii. Over 1000 polypeptides were reproducibly separated by high-resolution 2-DE using the pH ranges 4-7 and 6-11. Further separations using narrow range gels suggest that at least 3000-4000 polypeptides should be resolvable by 2-DE using multiple single pH unit gels. Mass spectrometry was used to characterise a variety of protein spots on the 2-DE gels. Peptide mass fingerprints, acquired by matrix-assisted laser desorption/ionisation-(MALDI) mass spectrometry, enabled unambiguous protein identifications to be made where full gene sequence information was available. However, interpretation of peptide mass fingerprint data using the T. gondii expressed sequence tag (EST) database was less reliable. Peptide fragmentation data, acquired by post-source decay mass spectrometry, proved a more successful strategy for the putative identification of proteins using the T. gondii EST database and protein databases from other organisms. In some instances, several protein spots appeared to be encoded by the same gene, indicating that post-translational modification and/or alternative splicing events may be a common feature of functional gene expression in T. gondii. The data demonstrate that proteomic analyses are now viable for T. gondii and other protozoa for which there are good EST databases, even in the absence of complete genome sequence. Moreover, proteomics is of great value in interpreting and annotating EST databases.  相似文献   

9.
Glutathione-S-transferase class Omega (GSTO 1-1) belongs to a new subfamily of GSTs, which is identical with human monomethylarsonic acid (MMA(V)) reductase, the rate limiting enzyme for biotransformation of inorganic arsenic, environmental carcinogen. Recombinant GSTO 1-1 variants (Ala140Asp and Thr217Asn) were functionally characterized using representative substrates. No significant difference was observed in GST activity towards 1-chloro-2,4-dinitrobenzene, whereas thioltransferase activity was decreased to 75% (Ala140Asp) and 40% (Thr217Asn) of the wild-type GSTO 1-1. For MMA(V) reductase activity, the Ala140Asp variant exhibited similar kinetics to wild type, while the Thr217Asn variant had lower V(max) (56%) and K(m) (64%) values than the wild-type enzyme. The different activities of the enzyme variants may influence both the intracellular thiol status and arsenic biotransformation. This can help explain the variation between individuals in their susceptibility to oxidative stress and inorganic arsenic.  相似文献   

10.
Analysis of protein glycosylation by mass spectrometry   总被引:1,自引:0,他引:1  
There is a growing pharmaceutical market for protein-based drugs for use in therapy and diagnosis. The rapid developments in molecular and cell biology have resulted in production of expression systems for manufacturing of recombinant proteins and monoclonal antibodies. These proteins are glycosylated when expressed in cell systems with glycosylation ability. For glycoproteins intended for therapeutic administration it is important to have knowledge about the structure of the carbohydrate side chains to avoid cell systems that produce structures, which in humans can cause undesired reactions, e.g., immunological and unfavorable serum clearance rate. Structural analysis of glycoprotein oligosaccharides requires sophisticated instruments like mass spectrometers and nuclear magnetic resonance spectrometers. However, before the structural analysis can be conducted, the carbohydrate chains have to be released from the protein and purified to homogeneity, and this is often the most time-consuming step. Mass spectrometry has played and still plays an important role in analysis of protein glycosylation. The superior sensitivity compared to other spectroscopic methods is its main asset. Structural analysis of carbohydrates faces several problems, however, due to the chemical nature of the constituent monosaccharide residues. For oligosaccharides or glycoconjugates, the structural information from mass spectrometry is essentially limited to monosaccharide sequence, molecular weight, and only in exceptional cases glycosidic linkage positions can be obtained. In order to completely establish an oligosaccharide structure, several other structural parameters have to be determined, e.g., linkage positions, anomeric configuration and identification of the monosaccharide building blocks. One way to address some of these problems is to work on chemical pretreatment of the glycoconjugate, to specifically modify the carbohydrate chain. In order to introduce specific modifications, we have used periodate oxidation and trifluoroacetolysis with the objective of determining glycosidic linkage positions by mass spectrometry.  相似文献   

11.
Many essential cellular functions such as growth rate, motility, and metabolic activity are linked to reversible protein phosphorylation, since they are controlled by signaling cascades based mainly on phosphorylation/dephosphorylation events. Quantification of global or site-specific protein phosphorylation is not straightforward with standard proteomic techniques. The coupling of capillary liquid chromatography (microLC) with ICP-MS (inductively coupled plasma-mass spectrometry) is a method which allows a quantitative screening of protein extracts for their phosphorus and sulfur content, and thus provides access to the protein phosphorylation degree. In extension of a recent pilot study, we analyzed protein extracts from the model organisms Arabidopsis thaliana and Chlamydomonas reinhardtii as representatives for multicellular and unicellular green photosynthetically active organisms. The results indicate that the average protein phosphorylation level of the algae C. reinhardtii is higher than that of A. thaliana. Both the average phosphorylation levels were found to be between the extreme values determined so far for prokaryotes (C. glutamicum, lowest levels) and eukaryotes (Mus musculus, highest levels). Tissue samples of A. thaliana representing different stages of plant development showed varying levels of protein phosphorylation indicating a different adjustment of the kinase/phosphatase system. We also utilized the microLC-ICP-MS technology to estimate the efficiency of a novel phosphoprotein enrichment method based on aluminum hydroxide, since the enrichment of phosphorylated species is often an essential step for their molecular characterization.  相似文献   

12.
Equine myelin basic protein (MBP) has been isolated from spinal cord and shown to consist of a number of components (charge isomers) by alkaline-urea gel electrophoresis. Mass analyses of several of these components showed that each was posttranslationally modified and some have been identified. Component 1, the most cationic charge isomer, was sequenced by a combination of liquid chromatography and mass spectrometry of peptides obtained by proteolytic digestion. At 172 residues it is slightly larger than the bovine (169) and the human (170). A major difference between bovine and equine sequences was the replacement of AQGH (bovine residues 76-79) by SRDG (equine). A number of other replacements involving single amino acids were also found. Methylated arginine (residue 108 equine) was found as both the mono- and the dimethylated derivative and represents the first MS/MS evidence for this modification in any MBP.  相似文献   

13.
Acyl-adenylates and acyl-CoA thioesters of bile acids (BAs) are reactive acyl-linked metabolites that have been shown to undergo transacylation-type reactions with the thiol group of glutathione (GSH), leading to the formation of thioester-linked GSH conjugates. In the current study, we examined the transformation of cholyl-adenylate (CA-AMP) and cholyl-coenzyme A thioester (CA-CoA) into a cholyl-S-acyl GSH (CA-GSH) conjugate by rat hepatic glutathione S-transferase (GST). The reaction product was analyzed by liquid chromatography (LC)/electrospray ionization (ESI)-linear ion trap mass spectrometry (MS). The GST-catalyzed formation of CA-GSH occurred with both CA-AMP and CA-CoA. Ursodeoxycholic acid, lithocholic acid, and 2,2,4,4-2H4-labeled lithocholic acid were administered orally to biliary fistula rats, and their corresponding GSH conjugates were identified in bile by LC/ESI-MS2. These in vitro and in vivo studies confirm a new mode of BA conjugation in which BAs are transformed into their GSH conjugates via their acyl-linked intermediary metabolites by the catalytic action of GST in the liver, and the GSH conjugates are then excreted into the bile.  相似文献   

14.
Many chitinase genes have been cloned and sequenced from prokaryotes and eukaryotes but overexpression of chitinases in Escherichia coli cells was less reported. ChiCH and ChiCW of Bacillus cereus 28-9 belong to two distinct groups based on their amino acid sequences of catalytic domains, and in addition, domain structures of two enzymes are different. In this study, we established an ideal method for high-level expression of chitinases in E. coli as glutathione-S-transferase fusion proteins using pGEX-6P-1 vector. Both ChiCH and ChiCW were successfully highly expressed in E. coli cells as soluble GST-chitinase fusion proteins, and recombinant native ChiCH and ChiCW could be purified after cleavage with PreScission protease to remove GST tag. Purified chitinases were used for biochemical characterization of kinetics, hydrolysis products, and binding activities. The results indicate that ChiCW is an endo-chitinase and effectively hydrolyzes chitin and chito-multimers to chito-oligomers and the end product chitobiose, and ChiCH is an exo-chitinase and degrades chito-oligomers to produce chitobiose. Furthermore, due to higher affinity of ChiCW toward colloidal chitin than Avicel, C-terminal domain of ChiCW should be classified as a chitin-binding domain not a cellulose-binding domain although that was revealed as a cellulose-binding domain by conserved domain analysis. Therefore, the method of high-level expression of chitinases is helpful to studies and applications of chitinases.  相似文献   

15.
Eimeria tenella is a parasite of great importance as a disease causing agent in the poultry industry. Until recently, biological studies have focused on specific proteins, some of which play an important role in the parasite life cycle. Post-genomic studies will make it possible to understand the complexity of the parasites and their interactions with host cells. Here we present a systematic reference map of the proteins from E. tenella sporozoites. The proteins expressed at the sporozoite stage were resolved between isoelectric points 3-10 and 4-7. They were systematically identified using mass spectrometry and 16 known Eimeria sporozoite proteins were identified on two-dimensional maps. Peptide fragmentation data from mass spectrometry were compared to single and consensus expression sequence tags in databases and to the E. tenella genome (not annotated). Among the set of unknown proteins analysed, 12 new assignments were proposed on the basis of similarities with Apicomplexa proteins. In order to define sporozoite proteins as potential targets for coccidiosis therapy, proteins were studied according to their relative abundance and immunogenicity in the sporozoite. Immunoblots of sporozoite 2D maps with chicken sera were performed and approximately 50 proteins were defined as antigens. It was shown that abundance and immunogenicity are not related in the sporozoite stage. Perspectives of gene prediction and completion of the genome annotation by a proteomic approach is discussed.  相似文献   

16.
Cytochrome c and glutathione (GSH) are two important biomolecules that regulate many cellular processes. The reaction of cytochrome c with GSH involves radical oxygen species and exhibits significant complexity. In the present work, the reaction of cytochrome c with GSH in water was characterized using mass spectrometry. The results show for the first time that the reaction generates multiple products including apocytochrome c in oxidized and reduced forms, glutathionylated apocytochrome c, GSH-modified cytochrome c, and oxidized and hydroxylated species. The reaction is O(2) dependent and is rapid in water at neutral pH and 37 degrees C. The reaction involves the cleavage of thioether linkages between the heme and apocytochrome c. Evidence for the role of H(2)O(2) and other oxygen radicals in this reaction is also provided.  相似文献   

17.

Background

Synovial fluid (SF) is a dynamic reservoir for proteins originating from the synovial membrane, cartilage, and plasma, and may therefore reflect the pathophysiological conditions that give rise to arthritis. Our goal was to identify and quantify protein mediators of psoriatic arthritis (PsA) in SF.

Methods

Age and gender-matched pooled SF samples from 10 PsA and 10 controls [early osteoarthritis (OA)], were subjected to label-free quantitative proteomics using liquid chromatography coupled to mass spectrometry (LC-MS/MS), to identify differentially expressed proteins based on the ratios of the extracted ion current of each protein between the two groups. Pathway analysis and public database searches were conducted to ensure these proteins held relevance to PsA. Multiplexed selected reaction monitoring (SRM) assays were then utilized to confirm the elevated proteins in the discovery samples and in an independent set of samples from patients with PsA and controls.

Results

We determined that 137 proteins were differentially expressed between PsA and control SF, and 44 were upregulated. The pathways associated with these proteins were acute-phase response signalling, granulocyte adhesion and diapedesis, and production of nitric oxide and reactive oxygen species in macrophages. The expression of 12 proteins was subsequently quantified using SRM assays.

Conclusions

Our in-depth proteomic analysis of the PSA SF proteome identified 12 proteins which were significantly elevated in PsA SF compared to early OA SF. These proteins may be linked to the pathogenesis of PsA, as well serve as putative biomarkers and/or therapeutic targets for this disease.  相似文献   

18.
The quantization of glycated isoforms of hemoglobin has been increasingly used in clinical practice in recent years. Glycated hemoglobin is currently considered the most important measurement for long-term control of the glycemic state and it has become a reference tool for the management of diabetes. Glutathionylated hemoglobin is an increasingly clinically relevant covalent adduct of glutathione with beta chain of the globin and its concentration has been correlated with oxidative stress. We have developed an innovative technique based on linear mode matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for quantitative analysis of hemoglobin species. This method was applied to the quantification of glycated and glutathionylated hemoglobin. A rigorous comparison was pursued to evaluate the analytical performances in quantifying glycated hemoglobin in comparison to an established high-performance liquid chromatography method. Our results indicated a complete equivalence between the two methods. The same analysis enabled the quantitative determination of the glutathionylated hemoglobin fraction. This isoform was investigated in an adult Italian population (184 individuals, 101 males and 83 females), indicating a bimodal distribution of this species. In fact 65.22% of screened individuals had glutathionylated hemoglobin levels lower than 0.50% while 34.78% had glutathionylated hemoglobin levels higher than 0.50%. A semiautomatic robotic procedure was developed for fast analysis of a large number of samples. This is the first report of a quantitative application of linear MALDI-TOF mass spectrometry for the determination of glutathionylated hemoglobin in blood samples. This method allows fast screening of this hemoglobin isoform, therefore opening the route to explore its specificity and sensitivity as a molecular biomarker.  相似文献   

19.
Glutathione-S-transferases (GST) catalyze the conjugation of electrophilic compounds to glutathione, thus playing a key role in cell survival and tumor chemoresistance. Cyclopentenone prostaglandins (cyPG) are electrophilic eicosanoids that display potent antiproliferative properties, through multiple mechanisms not completely elucidated. Here we show that the cyPG 15-deoxy-Delta(12,14)-PGJ2 (15d-PGJ2) binds to GSTP1-1 covalently, as demonstrated by mass spectrometry and by the use of biotinylated 15d-PGJ2. Moreover, cyPG inactivate GSTP1-1 irreversibly. The presence of the cyclopentenone moiety is important for these effects. Covalent interactions also occur in cells, in which 15d-PGJ2 binds to endogenous GSTP1-1, irreversibly reduces GST free-thiol content and inhibits GST activity. Protein delivery of GSTP1-1 improves cell survival upon serum deprivation whereas 15d-PGJ2-treated GSTP1-1 displays a reduced protective effect. These results show the first evidence for the formation of stable adducts between cyPG and GSTP1-1 and may offer new perspectives for the development of irreversible GST inhibitors as anticancer agents.  相似文献   

20.
Due to the limited applicability of conventional protein identification methods to the proteomes of organisms with unsequenced genomes, researchers have developed approaches to identify proteins using mass spectrometry and sequence similarity database searches. Both the integration of mass spectrometry with bioinformatics and genomic sequencing drive the expanding organismal scope of proteomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号