首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(L-lactic acid) (PLA)-degrading Amycolatopsis sp. strains K104-1 and K104-2 were isolated by screening 300 soil samples for the ability to form clear zones on the PLA-emulsified mineral agar plates. Both of the strains assimilated >90% of emulsified 0.1% (wt/vol) PLA within 8 days under aerobic conditions. A novel PLA depolymerase with a molecular weight of 24,000 was purified to homogeneity from the culture supernatant of strain K104-1. The purified enzyme degraded high-molecular-weight PLA in emulsion and in solid film, ultimately forming lactic acid. The optimum pH for the enzyme activity was 9.5, and the optimum temperature was 55 to 60 degrees C. The PLA depolymerase also degraded casein and fibrin but did not hydrolyze collagen type I, triolein, tributyrin, poly(beta-hydroxybutyrate), or poly(epsilon-caprolactone). The PLA-degrading and caseinolytic activities of the enzyme were inhibited by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride but were not significantly affected by soybean trypsin inhibitor, N-tosyl-L-lysyl chloromethyl ketone, N-tosyl-L-phenylalanyl chloromethyl ketone, and Streptomyces subtilisin inhibitor. Thus, Amycolatopsis sp. strain K104-1 excretes the unique PLA-degrading and fibrinolytic serine enzyme, utilizing extracellular polylactide as a sole carbon source.  相似文献   

2.
Polylactide or poly(l-lactic acid) (PLA) is a commercially promising material for use as a renewable and biodegradable plastic. Three novel PLA-degrading enzymes, named PLAase I, II and III, were purified to homogeneity from the culture supernatant of an effective PLA-degrading bacterium, Amycolatopsis orientalis ssp. orientalis. The molecular masses of these three PLAases as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 24.0, 19.5 and 18.0 kDa, with the pH optima being 9.5, 10.5 and 9.5, respectively. The optimal temperature for the enzyme activities was 50-60 degrees C. All the purified enzymes could degrade high-molecular-weight PLA film as well as casein, and the PLA-degrading activities were strongly inhibited by serine protease inhibitors such as phenylmethylsulfonyl fluoride and aprotinin, but were not susceptive to chymostatin and pepstatin. Taken together, these data demonstrated that A. orientalis ssp. orientalis produces multiple serine-like proteases to utilize extracellular polylactide as a sole carbon source.  相似文献   

3.
The isolation of poly-(L-lactide) (PLA)-degrading microorganisms was investigated. A PLA-degrading actinomycete, strain No. 3118, was isolated and tentatively identified as a member of the genus Amycolatopsis. The optimum conditions for degradation of PLA were 43 degrees C at about pH 7 in a mineral salt medium with a low concentration of organic nutrients (0.002% yeast extract). The original shape of PLA film (Mw=2.3x10(5) after sterilization, 20 &mgr;m thick) disappeared within 2 weeks. Lactic acid was detected after the film was incubated with culture supernatant.  相似文献   

4.
Efficient production of poly(l-lactide)(PLA)-degrading enzyme was achieved by addition of 0.1% (w/v) silk fibroin powder into a liquid culture medium of an actinomycete, Amycolatopsis orientalis, without other complex nitrogen sources, such as yeast extract and peptone. Scaled-up production of the enzyme in a 5-l jar fermenter showed the possibility of producing this enzyme on an industrial scale at low production cost. The extracellular PLA-degrading enzyme showed potent degrading activity, which is effective for biological recycling of PLA, i.e., 2,000 mg/l of PLA powder was completely degraded within 8 h at 40°C using 20 mg/l purified enzyme. An optically active l-lactic acid with 600 mg/l was obtained as degradation product of PLA without undesirable racemization.  相似文献   

5.
Out of 25 Amycolatopsis strains, 15 formed clear zones on agar plate emulsified with poly(L-lactide) (PLA), suggesting a large distribution of PLA degraders within this genus. The clear zones were also observed with other polyesters and silk fibroin plates. In liquid cultures of PLA degraders, there were strains with and without ability to assimilate degradation products like L-lactic acid.  相似文献   

6.
This study aims to find the optimal medium and conditions for polylactic acid (PLA)-degrading enzyme production by Amycolatopsis sp. SCM_MK2-4. Screening of the most effective components in the enzyme production medium by Plackett–Burman design revealed that the silk cocoon and PLA film were the most significant variables enhancing the PLA-degrading enzyme production. After an response surface methodology, a maximum amount of PLA-degrading enzyme activity at 0.74?U?mL?1 was predicted and successfully validated at 95% after 0.39% (w/v) silk cocoon and 1.62% (w/v) PLA film were applied to the basal medium. The optimal initial pH value, temperature, and inoculum size were evaluated by a method considering one-factor-at-a-time. The values were recorded at an initial pH in the range of 7.5–9.0, a temperature of 30–32°C, and an inoculum size of 4–10%. The highest activity of approximately 0.95?U?mL?1 was achieved after 4 days of cultivation using the optimized medium and under optimized conditions in a shake flask. Upscaling to the use of a 3-L stirred tank fermenter was found to be successful with a PLA-degrading activity of 5.53?U?mL?1; which represents a 51-fold increase in the activity compared with that obtained from the nonoptimized medium and conditions in the shake flask.  相似文献   

7.
The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLA-degrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at 46° C. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLA-degrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer.  相似文献   

8.
The fermentation process for a poly (L-lactide) (PLA)-degrading enzyme production by a newly isolate of thermophilic PLA-degrading Actinomadura sp. T16-1 was investigated. The strain produced 33.9 U/mL of enzyme activity after cultivation at 50°C under shaking of 150 rpm for 96 h in a medium consisting of (w/v) 0.05% PLA film, 0.2% gelatin, 0.4% (NH4)2SO4, 0.4% K2HPO4, 0.2 % KH2PO4, and 0.02% MgSO4 · 7H2O. The optimal concentration of PLA film and gelatin obtained by response surface methodology (RSM) for the highest production of PLA-degrading enzyme was 0.035% (w/v) and 0.238% (w/v), respectively. Under these conditions, the model predicted 40.4 U/mL of PLA-degrading activity and the verification of the optimization showed 44.6 U/mL of PLA-degrading enzymatic activity in the flasks experiment. The maximum PLA-degrading activity reached 150 U/mL within 72 h cultivation in the 3-L airlift fermenter.  相似文献   

9.
Biodegradability and biodegradation of poly(lactide)   总被引:3,自引:0,他引:3  
Poly(lactide) (PLA) has been developed and made commercially available in recent years. One of the major tasks to be taken before the widespread application of PLA is the fundamental understanding of its biodegradation mechanisms. This paper provides a short overview on the biodegradability and biodegradation of PLA. Emphasis is focused mainly on microbial and enzymatic degradation. Most of the PLA-degrading microorganisms phylogenetically belong to the family of Pseudonocardiaceae and related genera such as Amycolatopsis, Lentzea, Kibdelosporangium, Streptoalloteichus, and Saccharothrix. Several proteinous materials such as silk fibroin, elastin, gelatin, and some peptides and amino acids were found to stimulate the production of enzymes from PLA-degrading microorganisms. In addition to proteinase K from Tritirachium album, subtilisin, a microbial serine protease and some mammalian serine proteases such as α-chymotrypsin, trypsin, and elastase could also degrade PLA.  相似文献   

10.
Many poly(lactic acid) (PLA)-degrading microorganisms have been isolated from the natural environment by culture-based methods, but there is no study about unculturable PLA-degrading microorganisms. In this study, we constructed a metagenomic library consisting of the DNA extracted from PLA disks buried in compost. We identified three PLA-degrading genes encoding lipase or hydrolase. The purified enzymes degraded not only PLA, but also various aliphatic polyesters, tributyrin, and p-nitrophenyl esters. From their substrate specificities, the PLA depolymerases were classified into an esterase rather than a lipase. Among the PLA depolymerases, PlaM4 exhibited thermophilic properties; that is, it showed the highest activity at 70 degrees C and was stable even after incubation for 1 h at 50 degrees C. PlaM4 had absorption and degradation activities for solid PLA at 60 degrees C, which indicates that the enzyme can effectively degrade PLA in a high-temperature environment. On the other hand, the enzyme classification based on amino acid sequences showed that the other PLA depolymerases, PlaM7 and PlaM9, were not classified into known lipases or esterases. This is the first report on the identification and characterization of PLA depolymerase from a metagenome.  相似文献   

11.
Poly(L-lactide) degradation by Saccharothrix waywayandensis   总被引:1,自引:0,他引:1  
Poly(l-lactide) (PLA) was degraded by more than 95 mg from 100 mg PLA film by an actinomycete, Saccharothrix waywayandensis, growing in 100 ml liquid culture containing 0.1% (w/v) gelatin. In addition to degrading PLA, this strain assimilated the major degradation product of PLA, l-lactic acid.  相似文献   

12.
从污泥中筛选出1株对聚乳酸(poly—L—lacticacid,PLA)具有降解活力的细菌DSL09,该菌株对PLA的乳化液、粉末及薄膜都具有降解作用。通过形态学、16SrDNA比对及生理生化特性的分析,鉴定该菌株属于芽胞杆菌属(Bacillus sp.)。为提高该菌株对PLA的降解活力,对其进行了紫外诱变,获得了稳定遗传的突变株DSL09-60b,该突变株的PLA降解活性提高至原始菌株的1.5倍。对该突变株产PLA降解酶的发酵条件进行了优化,经测定DSL09-60b在初始培养基pH为8.0、0.5%酪蛋白为诱导物、接种量6%(体积比)的条件下37℃培养54h时发酵液酶活性最高。  相似文献   

13.
Poly(l-lactide) degradation by Kibdelosporangium aridum   总被引:3,自引:0,他引:3  
A new poly(L-lactide) (PLA)-degrading actinomycete, Kibdelosporangium aridum, degraded more than 97 mg out of 100 mg added high molecular weight PLA film (Mn: 3.4 x 10(5)) within 14 d in liquid culture. L-Lactic acid, the monomeric degradation product of PLA, was totally assimilated by the strain. In solid culture, many distinct grooves formed by the morphology of filamentous microorganisms on the surface of a PLA film were observed by scanning electron microscopy.  相似文献   

14.
Large numbers of actinomycetes provisionally assigned to the genus Amycolatopsis were isolated from soil samples using a dilution plate procedure and three novel media designed to be selective for members of this genus. A set of genus-specific oligonucleotide primers developed for the rapid identification of unknown Amycolatopsis strains was used to determine whether representative strains taken from the selective isolation plates produced the diagnostic amplification product. The 175 isolates which tested positive were assigned to major, minor and single-membered colour-groups. Representatives of the major colour-groups had a profile of chemical and morphological properties consistent with their assignment to the genus Amycolatopsis; strains taken to represent most of these taxa formed distinct phyletic lines in the Amycolatopsis 16S rRNA gene tree. Many of the representative isolates were closely related to either Amycolatopsis mediterranei or to Amycolatopsis orientalis or formed new evolutionary lines in either the Amycolatopsis orientalis or Amycolatopsis methanolica 16S rRNA subclades. It is evident that the genus Amycolatopsis is grossly underspeciated.  相似文献   

15.
A new method employing extremely high frequencies (EHFs) is proposed for the selective isolation of actinomycetes from soil. The pretreatment of soil suspensions with EHF wavelengths of 5.6 and 7.1 mm led to a nonselective isolation of actinomycetes. At the same time, the irradiation of soil suspensions within wavelength bands of 3.8-5.8 and 8-11.5 mm considerably augmented the total number of isolated actinomycetes and increased the fraction of the isolated rare genera by 2 and 7 times, respectively. The rare actinomycete genera were represented by Actinomadura, Microtetraspora, Nonomuraea, Micromonospora, Amycolatopsis, Pseudonocardia, Saccharotrix, and Streptosporangium.  相似文献   

16.
A variety of isolation procedures were carried out to study the involvement of bacteria in the colonisation and biodeterioration of Spanish caves with paleolithic rock art (Altamira and Tito Bustillo). The applied techniques mainly aimed to isolate heterotrophic bacteria such as streptomycetes, nocardioform and coryneform actinomycetes, and other gram-positive and gram-negative bacteria. The results demonstrated that actinomycetes were the most abundant gram-positive bacteria in the caves. Actinomycetes revealed a great taxonomic diversity with the predominant isolates belonging to the genus Streptomyces. Members of the genera Nocardia, Rhodococcus, Nocardioides, Amycolatopsis, Saccharothrix, Brevibacterium, Microbacterium, and coccoid actinomycetes (family Micrococcaceae) were also found.  相似文献   

17.
不同放线菌属的化学与分子分类   总被引:5,自引:0,他引:5  
随着科学的发展与新技术在分类学中不断地应用,放线菌分类学已从经典的形态分类转向化学分类(细胞壁化学组份,磷酸类脂,枝菌酸及甲基萘醌等).现在有些国家又开展了分子分类.本实验室自80年代始开展了放线菌化学分类,建立了上述化学指征的分析方法.自90年代起,又开展了分子分类,DNA-DNA杂交、23S rRNA寡核甘酸序列分析.近来,许多人用16S rRNA部分序列区分微生物不同的基因种.作者选用了23S rRNA部分序列区分放线菌的不同属种.现将研究结果简报如下:1 材料和方法1.1菌种菌株10,13,23,C_(43),350,41,53,4650及N分离自云南省土壤中.C_(51)及3306来自日本微生物菌种保藏中心.  相似文献   

18.
Li  Yu. V.  Terekhova  L. P.  Gapochka  M. G. 《Microbiology》2002,71(1):105-108
A new method employing extremely high frequencies (EHFs) is proposed for the selective isolation of actinomycetes from soil. The pretreatment of soil suspensions with EHF wavelengths of 5.6 and 7.1 mm led to a nonselective isolation of actinomycetes. At the same time, the irradiation of soil suspensions within wavelength bands of 3.8–5.8 and 8–11.5 mm considerably augmented the total number of isolated actinomycetes and increased the fraction of the isolated rare genera by 2 and 7 times, respectively. The rare actinomycete genera were represented by Actinomadura, Microtetraspora, Nonomuraea, Micromonospora, Amycolatopsis, Pseudonocardia, Saccharotrix, and Streptosporangium.  相似文献   

19.
20.
Polylactide Degradation by an Amycolatopsis sp   总被引:1,自引:0,他引:1       下载免费PDF全文
By applying the plate count and clear-zone methods, it was confirmed that polylactide (PLA)-degrading microorganisms are sparsely distributed in soil environments. An Amycolatopsis isolate was successfully isolated. Microbial degradation of PLA film was demonstrated; i.e., about 60% of the 100-mg film initially added was degraded by the strain after 14 days of liquid culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号