首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of [1,2-13C2]acetate in rat brain was studied by in vivo and in vitro 13C NMR spectroscopy, in particular by taking advantage of the homonuclear 13C-13C spin coupling patterns. Well nourished rats were infused with [1,2-13C2]acetate or [1-13C]acetate in the jugular vein, and the in situ kinetics of 13C labeling during the infusion period was followed by 13C NMR techniques. The in vivo 13C NMR spectra showed signals from (i) the C-1 carbon of [1,2-13C2] acetate or [1-13C]acetate, (ii) 13CO3H-, and (iii) the natural abundance 13C carbons of sufficiently mobile fatty acids. Methanol/HCl/perchloric acid extracts of the brains were prepared and were further analyzed by high resolution 13C NMR. The homonuclear 13C-13C spin coupling patterns after infusion of [1,2-13C2]acetate showed very different isotopomer populations in glutamate, glutamine, and gamma-aminobutyric acid. Analyzing the relative proportions of these isotopomers revealed (i) two different glutamate compartments in the rat brain characterized by the presence and absence, respectively, of glutamine synthase activity, (ii) two different tricarboxylic acid cycles, one preferentially metabolizing [(1,2-13C2]acetate, the other mainly using unlabeled acetyl-coenzyme A, (iii) a hitherto unknown cerebral pyruvate recycling system associated with the tricarboxylic acid cycle, metabolizing primarily unlabeled acetyl-coenzyme A, and (iv) a predominant production of gamma-aminobutyric acid in the glutamate compartment lacking glutamine synthase.  相似文献   

2.
The fate of the C1 and C2 of glucose-derived acetyl residues was examined in rat pancreatic islets. The production of 14CO2 from D-[2-14C]glucose exceeded that from D-[6-14C]glucose, in the same manner as the oxidation of [1-14C]acetate exceeded that of [2-14C]acetate. The difference in 14CO2 output from D-[2-14C]glucose and D-[6-14C]glucose was matched by complementary differences in the generation of 14C-labeled acidic metabolites and amino acids. Even the production of 14C-labeled L-lactate was somewhat higher in the case of D-[6-14C]glucose than D-[2-14C]glucose. The ratio between D-[2-14C]glucose and D-[6-14C]glucose oxidation progressively decreased at increasing concentrations of the hexose (2.8, 7.0, and 16.7 mM), was higher after 30 than 120 min incubation, and was decreased in the presence of a nonmetabolized analogue of L-leucine. These findings are consistent with the view that the difference between D-[6-14C]glucose and D-[2-14C]glucose oxidation is mainly attributable to the inflow into the Krebs cycle of unlabeled metabolites generated from endogenous nutrients, this being compensated by the exit of partially labeled metabolites from the same cycle. The present results also indicate that the oxidation of glucose-derived acetyl residues relative to their generation in the reaction catalyzed by pyruvate dehydrogenase is higher than that estimated from the ratio between D-[6-14C]glucose and D-[3,4-14C]glucose conversion to 14CO2.  相似文献   

3.
—The incorporation of [2-14C]mevalonate into nonsaponifiable lipids by rat brain homogenates is inhibited by phenolic acids derived from tyrosine. The phenyl acids derived from phenylalanine are inhibitory only at very high concentrations compared with phenolic acids. The brain is more sensitive to inhibition by the phenolic acids than the liver. These studies indicate a possible role for phenolic acids in the impairment of cerebral sterol metabolism in phenylketonuria.  相似文献   

4.
Effect of phenylalanine on protein synthesis in the developing rat brain   总被引:12,自引:7,他引:5  
1. Inhibition of the rate of incorporation of [(35)S]methionine into protein by phenylalanine was more effective in 18-day-old than in 8-day-old or adult rat brain. 2. Among the subcellular fractions incorporation of [(35)S]methionine into myelin proteins was most inhibited in 18-day-old rat brain. 3. Transport of [(35)S]methionine and [(14)C]leucine into the brain acid-soluble pool was significantly decreased in 18-day-old rats by phenylalanine (2mg/g body wt.). The decrease of the two amino acids in the acid-soluble pool equalled the inhibition of their rate of incorporation into the protein. 4. Under identical conditions, entry of [(14)C]glycine into the brain acid-soluble pool and incorporation into protein and uptake of [(14)C]acetate into lipid was not affected by phenylalanine. 5. It is proposed that decreased myelin synthesis seen in hyperphenylalaninaemia or phenylketonuria may be due to alteration of the free amino acid pool in the brain during the vulnerable period of brain development. Amyelination may be one of many causes of mental retardation seen in phenylketonuria.  相似文献   

5.
A radiochemical method for assaying pyruvate dehydrogenase complex and acetyl-coenzyme A synthetase is described, using [2-14C]pyruvate and [1-14C]acetate, respectively, as radiolabeled precursors. The assay is based on nonenzymatic O-acylation of excess dithioerythritol (DTE) by enzymatically formed acetyl-coenzyme A. [1-14C]Acetyl-DTE is easily extracted from the incubation mixture by organic solvents and separated from the unreacted labeled substrates.  相似文献   

6.
High rates of light-dependent fatty acid synthesis from acetate were measured in isolated chloroplasts that were permeabilized to varying extents by resuspension in hypotonic reaction medium. The reactions in hypotonic medium unsupplemented with cofactors were linear with time and were directly proportional to chlorophyll concentration, suggesting that the enzymes and cofactors of fatty acid synthesis remained tightly integrated and thylakoid associated within disrupted chloroplasts. Permeabilized chloroplasts expanded to at least twice the volume of intact chloroplasts, lost about 50% of their stromal proteins in the medium, and metabolized exogenous nucleotides. However, neither acetyl-coenzyme A (CoA) nor malonyl-CoA inhibited fatty acid synthesis from acetate; nor were [1-14C]acetyl-CoA and [14C]malonyl-CoA significantly incorporated into fatty acids. Fatty acid synthesis from acetate was independent of added cofactors but was totally light dependent. Changes in the products of fatty acid synthesis were consistent with the loss of endogenous glycerol-3-phosphate from permeabilized chloroplasts. However, in appropriately supplemented medium, the products of acetate incorporation by spinach (Spinacia oleracea) chloroplasts were similar when reactions were carried out in either isotonic or hypotonic medium. Taken together, the results of this study suggest that the enzymes of fatty acid synthesis with chloroplasts are organized into a multienzyme assembly that channels acetate into long-chain fatty acids, glycerides, and CoA esters.  相似文献   

7.
Glucose metabolism by Lactobacillus divergens   总被引:3,自引:0,他引:3  
Earlier studies on the fermentation of D-[1-14C]- and D-[3,4-14C]glucose by Lactobacillus divergens showed that lactate was the major fermentation product and that it was probably produced by glycolysis. It was therefore recommend that L. divergens be reclassified as a homofermentative organism. In the present investigation, products of D-[1-14C]-,D-[2-14C]- and D-[3,4-14C]glucose fermented by L. divergens were isolated, and their specific radioactivities and the distribution patterns of radioactivity in their C-atoms were determined. The positional labelling patterns of the fermentation products, their specific radioactivities and their concentrations confirmed that glucose is degraded via the glycolytic pathway. Some secondary decarboxylation/dissimilation of pyruvate to acetate, formate and CO2 was also observed. These results provide conclusive proof that L. divergens is indeed a homofermentative organism. Results obtained with D-[U-14C]glucose showed that approximately three-quarters of the lactate but less than 10% each of the formate and acetate were produced from glucose. The remainder was presumably derived to a varying degree from endogenous non-glucose sources such as fructose and/or amino acids.  相似文献   

8.
1. The concentration of carbamylcholine, bombesin, pancreozymin, pentagastrin and secretin evoking a similar 4--5-fold maximal increase in amylase secretion from rat pancreatic fragments were 3.10(-6), 10(-7), 10(-8), 3.10(-6), and 3.10(-6) M, respectively. The maximal concentration of vasoactive intestinal peptide tested (3.10(-6) M) increased amylase secretion by 250%. The six secretagogues could be separated into two groups according to their effects on lipid metabolism and ATP levels. 2. When used at their optimal concentrations, carbamylcholine, bombesin, pancreozymin, and pentagastrin lowered pancreatic ATP levels by 18-26% and increased net release of free fatty acids by 68-105%. 3. The effects of 3.10(-6) M carbamylcholine and 10(-8) M pancreozymin on the metabolism of 3H2O, D-[U-14C]glucose and [1-14C]acetate were similar; the incorporation of radioactivity in the fatty acid moiety of glycerolipids decreased by 20--50% whereas the incorporation of 3H from 3H2O and of 14C from [U-14C]glucose increased by 20--35% in the glycerol moiety. In addition, the oxidation of [U-14C]glucose, [1-14C]acetate and [1-14C]palmitate to 14CO2 increased by 15--32% while the esterification of [1-14C]palmitate, [1-14C]-linoleate, and [1-14C]arachidonate was inhibited by 14--23%. The spectrum of fatty acids labeled with [1-14C]acetate indicated an inhibition of the malonic acid pathway whereas the elongation of polyenoic fatty acids was unaltered.  相似文献   

9.
1. A method was devised for the determination of the specific radioactivity of the acetyl moiety of acetylcholine synthesized from various (14)C-labelled substrates. 2. The precursor for the acetyl moiety of acetylcholine was studied in slices of striatum and cerebral cortex from rat and guinea-pig brain. Incorporation of radioactivity into acetylcholine was determined after incubating the slices in the presence of [2-(14)C]acetate, [(14)C]bicarbonate, [1,5-(14)C]citrate, dl-[1- or 5-(14)C]glutamate or [1- or 2-(14)C]pyruvate. 3. After incubation for 1h, acetylcholine was accumulated significantly in both striatum slices (4.1nmol/mg of protein) and cerebral-cortex slices (0.57nmol/mg of protein) from the rat. Final concentrations were about 11 and 5 times respectively the initial values. 4. With slices from rat striatum, rat cerebral cortex and guinea-pig cerebral cortex, the specific radioactivity of acetylcholine derived from [2-(14)C]pyruvate was very high, reaching approx. 30, 20 and 6% respectively of the initial specific radioactivity of added pyruvate in the medium. With the striatum slices this high value was reached after incubation for 15min. Incorporation of radioactivity from [2-(14)C]acetate was only 1.25, 5.3 and 19.7% of that from [2-(14)C]pyruvate in rat striatum, rat cerebral-cortex and guinea-pig cerebral-cortex slices respectively. A small but definite incorporation was found from [5-(14)C]glutamate. No incorporation was found from the other substrates. The findings suggest that pyruvate is the most important precursor for the synthesis of the acetyl moiety of acetylcholine in brain slices. 5. The specific radioactivity of acetylcholine relative to that of citrate when [2-(14)C]pyruvate was used compared with that obtained when [2-(14)C]acetate was used. A marked difference was found in all slices, suggesting metabolic compartmentation of the acetyl-CoA pool.  相似文献   

10.
A radiochemical method for the estimation of choline acetyltransferase   总被引:11,自引:8,他引:3  
1. A radiochemical method for the estimation of choline acetyltransferase (choline acetylase) has been devised which involves the formation of labelled acetylcholine from labelled acetate. 2. [1-(14)C]Acetate and coenzyme A are pre-incubated in the presence of non-rate-limiting concentrations of acetyl-coenzyme A synthetase to give [1-(14)C]acetyl-coenzyme A, which then reacts with choline in the presence of the acetyltransferase to give [(14)C]acetylcholine. 3. Any [(14)C]-acetyl-coenzyme A remaining at the end of the reaction is destroyed by the addition of excess of hydroxylamine, and [(14)C]acetylcholine is freed from other labelled compounds by precipitation with sodium tetraphenylborate (Kalignost). 4. The washed precipitate is dissolved in acetonitrile-benzyl alcohol and estimated by scintillation counting. 5. Advantages over other methods are discussed.  相似文献   

11.
—The oxidation to CO2 and the incorporation of [U-14C]glucose and [U-14C]acetate into lipids by cortex slices from rat brain during the postnatal period were investigated. The oxidation of [U-14C]glucose was low in 2-day-old rat brain, and increased by about two-fold during the 2nd and 3rd postnatal weeks. The oxidation of [U-14C]acetate was increased markedly in the second postnatal week, but decreased to rates observed in 2-day-old rat brain at the time of weaning. Both labeled substrates were readily incorporated into non-saponifiable lipids and fatty acids by brain slices from 2-day-old rat. Their rates of incorporation and the days on which maximum rates occurred were different, however, maximum incorporation of [U-14C]glucose and [U-14]acetate into lipid fractions being observed on about the 7th and 12th postanatal days, respectively. The metabolic compartmentation in the utilization of these substrates for lipogenesis is suggested. The activities of glucose-6-phosphate dehydrogenase, cytosolic NADP-malate dehydrogenase, cytosolic NADP-isocitrate dehydrogenase, ATP-citrate lyase and acetyl CoA carboxylase were measured in rat brain during the postnatal period. All enzymes followed somewhat different courses of development; the activity of acetyl CoA carboxylase was, however, the lowest among other key enzymes in the biosynthetic pathway, and its developmental pattern paralleled closely the fatty acid synthesis from [U-14C]glucose. It is suggested that acetyl CoA carboxylase is a rate-limiting step in the synthesis de novo of fatty acids in developing rat brain.  相似文献   

12.
Cationic amino acids were recently found to stimulate amylase release from rat parotid cells. The possible relevance of their oxidative catabolism to such a secretory stimulation was investigated. D-Glucose, which was efficiently metabolized in parotid cells and which augmented O2 uptake above basal value, failed to affect basal or stimulated amylase release. L-Arginine, L-lysine and L-histidine failed to stimulate the oxidation of either exogenous D-[6-14C]glucose or endogenous nutrients in cells pre-labelled with [U-14C]palmitate or L-[U-14C]glutamine. The oxidation of L-[U-14C]arginine, L-[U-14C]ornithine, L-[U-14C]lysine and L-[U-14C]histidine, all tested at a 10 mM concentration, was much lower than that of D-[U-14C]glucose (5.6 mM). These findings argue against the view that the stimulation of amylase release by cationic amino acids would be related to their role as a source of energy in the parotid cells.  相似文献   

13.
Transport and metabolism of acetate in rat brain cortex in vitro   总被引:5,自引:4,他引:1  
1. [1-(14)C]Acetate undergoes metabolism when incubated aerobically at 37 degrees in the presence of rat brain-cortex slices, forming (14)CO(2) and (14)C-labelled amino acids (glutamate, glutamine, aspartate and relatively small quantities of gamma-aminobutyrate). In the absence of glucose the yield of (14)C-labelled aspartate exceeds that of (14)C-labelled glutamate and glutamine. The addition of glucose brings about a doubling of the rate of formation of (14)CO(2) and a greatly increased yield of (14)C-labelled glutamate or glutamine, whereas that of (14)C-labelled aspartate is diminished. 2. The addition of potassium chloride (100mm) to the incubation medium causes an increased rate of (14)CO(2) formation in the presence or absence of glucose and an increased rate of utilization of acetate. 3. The addition of 2,4-dinitrophenol (0.1mm) suppresses the rate of utilization of [1-(14)C]acetate. 4. The presence of ouabain (10mum) suppresses the rate of formation of (14)CO(2) from [1-(14)C]acetate and the rate of acetate utilization. Acetate conversion into carbon dioxide in the rat brain cortex is both Na(+)- and K(+)-dependent and controlled by operation of the active sodium-transport process. Only the Na(+)-stimulated rate is suppressed by ouabain. 5. Sodium fluoroacetate (1mm) decreases the rate of (14)CO(2) evolution from [1-(14)C]acetate in the presence of rat brain cortex without affecting the respiratory rate. The results are consistent with the conclusion that fluoroacetate competes with, or blocks, a transport carrier for acetate, so that in its presence only the passive diffusion rate of acetate takes place. 6. The presence of sodium propionate or sodium butyrate suppresses the utilization of [1-(14)C]acetate in rat brain cortex and leads to a concentration ratio (tissue/medium) of [1-(14)C]-acetate greater than unity. 7. The presence of NH(4) (+) diminishes acetate utilization, this being attributed to a diminished ATP concentration. Glycine is also inhibitory. It is concluded that acetate transport into the brain is carrier-mediated and dependent on the operation of the sodium pump.  相似文献   

14.
The branched-chain 2-oxo acids which accumulate in maple-syrup-urine disease inhibited the production of acetylcholine and of lipids, proteins, nucleic acids and of CO2. in sliced adult rat brains incubated with [U-14C] glucose. Inhibition of the biosynthetic reactions was proportional to the inhibition of CO2 production, even though the flux of radioactivity into the biosynthetic products was less than 2% of that to CO2. The oxo acids reduced the production of 14CO2, from [U-14C] glucose and from [2-14C]pyruvic acid more than from [1-14C]pyruvic acid in sliced brains. They inhibited the solubilized oxoglutarate dehydrogenase complex more than they did the solubilized pyruvate dehydrogenase complex. Valine and isoleucine, which also accumulate in maple-syrup-urine disease, inhibited pyruvate kinase from rat brain allosterically. Quantitative comparison of the effects of the disease metabolites on cell-free systems with their effects on fluxes in intact cells indicated that the inhibition of oxoglutarate dehydrogenase appeared to be functionally significant. The residual activities of the other enzymes studied were adequate to support the normal flux of carbohydrates. The oxo acids were effective at concentrations within the range reported to occur in patients with maple-syrup-urine disease. The effects on biosyntheses including that of acetylcholine would be expected to impair brain development and function and could be important in the development of brain disease in the patients. In contrast to the results with metabolites from maple-syrup-urine disease, metabolites which accumulate in phenylketonuria (phenylalanine and 2-oxo-3-phenylpropionic acid) did not inhibit carbohydrate utilization or the biosynthetic reactions studied, under the conditions of these experiments.  相似文献   

15.
Fatty Acid Oxidation and Ketogenesis by Astrocytes in Primary Culture   总被引:3,自引:2,他引:1  
The oxidation of the fatty acids octanoate and palmitate to CO2 and the ketone bodies acetoacetate and D-(-)-3-hydroxybutyrate was examined in astrocytes that were prepared from cortex of 2-day-old rat brain and grown in primary culture to confluence. Accumulation of acetoacetate (by mass) in the culture medium of astrocytes incubated with octanoate (0.3-0.5 mM) was 50-90 nmol C2 units h-1 mg of protein-1. A similar rate was obtained using radiolabeled tracer methodology with [1-14C]octanoate as labeled substrate. The results from the radiolabeled tracer studies using [1-14C]- and [7-14C]octanoate and [1-14C]-, [13-14C]-, and [15-14C]palmitate indicated that a substantial proportion of the omega-terminal four-carbon unit of these fatty acids bypassed the beta-ketothiolase step of the beta-oxidation pathway and the 3-hydroxy-3-methylglutaryl (HMG)-CoA cycle of the classic ketogenic pathway. The [14C]acetoacetate formed from the 1-14C-labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. By contrast, the [14C]acetoacetate formed from (omega-1)-labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1, whereas that formed from the (omega-3)-labeled fatty acid contained 20% of the label at carbon 3 and 80% at carbon 1. These results indicate that acetoacetate is primarily formed either by the action of 3-oxo-acid-CoA transferase (EC 2.8.3.5) or acetoacetyl-CoA deacylase (EC 3.1.2.11) or both on acetoacetyl-CoA and not by the action of the mitochondrial HMG-CoA cycle involving HMG-CoA lyase (EC 4.1.3.4), which was readily detected, and HMG-CoA synthase (EC 4.1.3.5), which was barely measurable.  相似文献   

16.
Isolated brain capillaries from 2-month-old rats were incubated for 2 h in the presence of [3-14C]acetoacetate, D-3-hydroxy[3-14C]butyrate, [U-14C]glucose, [1-14C]acetate or [1-14C]butyrate. Labelled CO2 was collected as an index of oxidative metabolism and incorporation of label precursors into lipids was determined. The rate of CO2 production from glucose was slightly higher than from the other substrates. Interestingly, acetoacetate was oxidized at nearly the same rate as glucose. This shows that ketone bodies could be used as a source of energy by brain capillaries. Radiolabelled substrates were also used for the synthesis of lipids, which was suppressed by the addition of albumin. The incorporation of [U-14C]glucose in total lipids was 10-times higher than that from other precursors. However, glucose labelled almost exclusively the glycerol backbone of phospholipids, especially of phosphatidylcholine. Ketone bodies as well as glucose were incorporated mainly into phospholipids, whereas acetate and butyrate were mainly incorporated into neutral lipids. The contribution to fatty acid synthesis of various substrates was in the following order: butyrate greater than or equal to acetate greater than ketone bodies greater than or equal to glucose. All precursors except glucose were used for sterol synthesis. Glucose produced almost exclusively the glycerol backbone of phospholipids.  相似文献   

17.
Rat brain was recently found to contain polyenoic very-long-chain fatty acids (VLCFA) belonging to the n-3 and n-6 series with four, five and six double bonds and even-carbon chain lengths from 24 to 38 [Robinson, Johnson & Poulos (1990) Biochem. J. 265, 763-767]. In the present paper, the metabolism in vivo of hexacosatetraenoic acid (C26:4,n-6) was studied in neonatal rat brain. Rats were injected intracerebrally with [1-14C]C26:4,n-6 and the labelled metabolites were examined after 4 h. Radioactivity was detected mainly in non-esterified fatty acids, with smaller amounts in other neutral lipids and phospholipids. Radiolabelled fatty acid products included C28-36 tetraenoic and C26-28 pentaenoic VLCFA formed by elongation and desaturation of the substrate, and C14-24 saturated, C16-24 monoenoic, C18-24 dienoic, C18-22 trienoic and C20-24 tetraenoic fatty acids formed from released [1-14C]acetate either by synthesis de novo or by elongation of endogenous fatty acids. The data suggest that polyenoic VLCFA are synthesized in brain from shorter-chain precursor fatty acids and undergo beta-oxidation.  相似文献   

18.
Glial cells play a pivotal role in brain fatty acid metabolism and membrane biogenesis. However, the potential regulation of lipogenesis and cholesterologenesis by fatty acids in glial cells has been barely investigated. Here, we show that physiologically relevant concentrations of various saturated, monounsaturated, and polyunsaturated fatty acids significantly reduce [1-(14)C]acetate incorporation into fatty acids and cholesterol in C6 cells. Oleic acid was the most effective at depressing lipogenesis and cholesterologenesis; a decreased label incorporation into cellular palmitic, stearic, and oleic acids was detected, suggesting that an enzymatic step(s) of de novo fatty acid biosynthesis was affected. To clarify this issue, the activities of acetyl-coenzyme A carboxylase (ACC) and FAS were determined with an in situ digitonin-permeabilized cell assay after incubation of C6 cells with fatty acids. ACC activity was strongly reduced ( approximately 80%) by oleic acid, whereas no significant change in FAS activity was observed. Oleic acid also reduced the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). The inhibition of ACC and HMGCR activities is corroborated by the decreases in ACC and HMGCR mRNA abundance and protein levels. The downregulation of ACC and HMGCR activities and expression by oleic acid could contribute to the reduced lipogenesis and cholesterologenesis.  相似文献   

19.
Purified rat liver lysosomes ('tritosomes') were prepared from rats injected with Triton WR-1339. 2. The water space of tritosomes, measured by using [3H]water and [14C]sucrose, was 2.15 +/- 0.72 microliter/mg of protein (mean +/- S.E.M., n = 12). 3. Tritosomes, when compared with a crude preparation of normal lysosomes by an indirect method of study, showed sugar specificity but decreased stereospecificity of sugar uptake. 4. At 125 mM the relative rates of net uptake of D-[14C]ribose, D-[14C]- or D-[3H]glucose and 2-deoxy-D-[3H]glucose were the same as that inferred from the indirect study. 5. The entry of D-[3H]glucose into tritosomes showed concentration-dependence suggestive of saturation, with a Km of 48 +/- 18 mM (4). 6. D- and L-glucose, D-ribose, 2-deoxy-D-glucose and D-mannose competed with D-[14C]glucose or D-[14C]ribose for uptake. 7. Cytochalasin B inhibited D-[3H]glucose uptake. 8. Uptake of 1 mM-L-[14C]glucose was slower than for 1 mM-D-[14C]glucose. 9. It is concluded that a facilitated-diffusion transport system is present in purified rat liver lysosomes.  相似文献   

20.
1. The range of fatty acids formed by preparations of ultrasonically ruptured avocado mesocarp plastids was dependent on the substrate. Whereas [1-14C]palmitate and [14C]oleate were the major products obtained from [-14C]acetate and [1-14C]acetyl-CoA, the principal product from [2-14C]malonyl-CoA was [14-C]stearate. 2. Ultracentrifugation of the ruptured plastids at 105000g gave a supernatant that formed mainly stearate from [2-14C]malonyl-CoA and to a lesser extent from [1-14C]acetate. The incorporation of [1-14C]acetate into stearate by this fraction was inhibited by avidin. 3. The 105000g precipitate of the disrupted plastids incorporated [1-14C]acetate into a mixture of fatty acids that contained largely [14C]plamitate and [14C]oleate. The formation of [14C]palmitate and [14C]oleate by disrupted plastids was unaffected by avidin. 4. The soluble fatty acid synthetase was precipitated from the 105000g supernatant in the 35-65%-saturated-(NH4)2SO4 fraction and showed an absolute requirement for acyl-carrier protein. 5. Both fractions synthesized fatty acids de novo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号