首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chick skin slices were incubated with [35S]methionine and labeled apoA-I was immunoprecipitated from incubation medium and tissue homogenate. ApoA-I accounted for approximately 13 and 2.5% of radioactive medium and cell proteins, respectively. After ultracentrifugation of the medium, 55% of labeled apoA-I was found as a constituent of lipoproteins (d less than 1.210 g/ml) and 45% in a lipid-poor form (1.210-1.260 g/ml). To ascertain whether this large proportion of lipid-poor apoA-I was due to a dissociation of this peptide from medium lipoproteins during ultracentrifugation, labeled incubation medium was applied to an anti-chick apoA-I immunoaffinity column. The material bound to the column was analyzed by nondenaturing polyacrylamide gradient gel electrophoresis and found to contain three subpopulations of lipoproteins with a particle size of 12, 11, and 9 nm, respectively. The radioactivity of these subpopulations accounted for 82% of total radioactive medium apoA-I. ApoA-I was localized by immunohistochemistry in the viable cells of the epidermis and in the stratum corneum. Rat skin slices were found to synthesize and secrete apoE but no apoA-I. ApoA-I and apoE secreted by chick and rat skin, respectively, may play a role in the secretion of lipids from the differentiating keratinocytes and thus contribute to the formation of the hydrophobic barrier of the skin.  相似文献   

2.
3.
Apolipoprotein A-I (apoA-I) is the major protein constituent of plasma high density lipoproteins (HDL). To examine apoA-I processing and secretion, the human apoA-I gene (2.2-kilobase PstI-PstI fragment) linked to the mouse metallothionein promoter was transfected by electroporation into NIH 3T3 fibroblasts along with the plasmid pSV2 neo, which confers neomycin resistance. Transfected cells were selected for neomycin resistance and screened for the ability to produce apoA-I by enzyme-linked immunosorbent assay. In the absence of lipids in the medium, selected 3T3 cells secreted apoA-I, mainly in the proprotein form, at density greater than 1.25 g/ml. Following incubation of cells with lipids, and subsequent washing with lipid-free medium, apoA-I was recovered in the HDL region (1.063-1.21 g/ml) as well as in the 1.21 g/ml infranatant. Examination of the HDL fraction by electron microscopy revealed round particles, 10-21 nm in diameter. These data indicate that human apoA-I secreted by transfected 3T3 fibroblasts can assemble into lipoprotein particles under the appropriate conditions.  相似文献   

4.
Regulation of surfactant-like particle secretion by Caco-2 cells   总被引:1,自引:0,他引:1  
Surfactant-like particle (SLP) is a phosphatidylcholine (PC)-rich membrane produced in the small intestine, and its secretion is increased by fat feeding. In Caco-2 cells known to produce SLP, preincubation with [(3)H]palmitate labelled the SLP and was used as a marker for newly secreted membrane. SLP-associated PC and protein (d=1.07-1.08 g/ml in a linear non-equilibrium NaBr gradient) were secreted in parallel with triacylglycerols (TG) and at a rate about twice the control rate in response to feeding cells with an oleate/egg PC mixture. Cholesterol and apolipoprotein A-I identified only a small peak corresponding to high-density lipoprotein (HDL), but the largest peak corresponded with SLP (d=1.07-1.08). Palmitate incorporation into PC showed a similar small peak migrating at the density of HDL, but most labelled PC secreted from the cells was due to SLP. PC secretion, alkaline phosphatase activity, and newly synthesized immunoprecipitated SLP proteins from conditioned serum-free media migrated together at a density of >/=1.21 g/ml in a lipoprotein NaBr step gradient, and represented SLP. Glycerol incorporated into TG migrated at a peak density of 1.12 g/ml, consistent with HDL secretion from cells incubated in serum-free media. These data confirm that the secreted PC in SLP is distinct from lipoprotein particles. Incorporation of [(3)H]palmitate into the PC fraction of either whole cell homogenate or isolated brush border membranes was not affected by oleate/egg PC feeding. Both Pluronic L-81, an inhibitor of chylomicron secretion, and BMS-197636-02, a microsomal triglyceride transfer protein inhibitor, blocked the secretion of both TG and PC. Elevation of intracellular cAMP levels that stimulate surfactant secretion from type II pneumocytes caused a 50% reduction in SLP and TG secretion from Caco-2 cells. These results confirm the SLP response to fat feeding found in vivo, further supporting a role for SLP in TG secretion from the enterocyte, and show that the regulation of SLP secretion differs from that of pulmonary surfactant.  相似文献   

5.
We have studied apolipoprotein synthesis, intracellular modification and secretion by primary adult rat hepatocyte cultures using continuous pulse or pulse chase labeling with [35S]methionine, immunoprecipitation and two-dimensional isoelectric focusing/polyacrylamide gel electrophoresis. The flotation properties of the newly secreted apolipoproteins were studied by discontinuous density gradient ultracentrifugation and one- and two-dimensional polyacrylamide gel electrophoresis. These studies showed that rat hepatocyte apoE is modified intracellularly to produce minor isoproteins that differ in size and charge. One of these minor isoproteins represents a monosialated apoE form (apoE3s1). Similarly, apoCIII is modified intracellularly to produce a disialated apoCIII form (apoCIIIs2), whereas newly synthesized apoA-I and apoA-IV are not glycosylated and overlap on two-dimensional gels with the proapoA-I and the plasma apoA-IV form, respectively. Both unmodified and modified apolipoproteins are secreted into the medium. Separation of secreted apolipoproteins by density gradient ultracentrifugation has shown that 50% of apoE, 80% of apoA-I, and more than 90% of apoA-IV and apoCIII are secreted in a lipid-poor form, whereas apoB-100 and apoB-48 are 100% associated with lipids. ApoB-100 floats in the VLDL and IDL regions, whereas apoB-48 is found in all lipoprotein fractions. ApoE and small amounts of apoA-I, apoA-IV and apoCIII float in the HDL region. Small amounts of apoE and apoCIII are also found in the VLDL and IDL regions, and apoE in the LDL region. Ultracentrifugation of nascent lipoproteins in the presence of rat serum promoted flotation of apoA-I and apoA-IV in the HDL fraction and resulted in increased flotation and distribution of apoE and apoCs in VLDL, IDL and LDL regions. These observations are consistent with the hypothesis that intracellular assembly of lipoproteins involves apoB-48 and apoB-100 forms, whereas a large portion of apoA-I, apoCIII and apoA-IV can be secreted in a lipid-poor form, which associates extracellularly with preexisting lipoproteins.  相似文献   

6.
HDL (high-density lipoproteins) remove cell cholesterol and protect from atherosclerosis. The major HDL protein is apoA-I (apolipoprotein A-I). Most plasma apoA-I circulates in lipoproteins, yet ~5% forms monomeric lipid-poor/free species. This metabolically active species is a primary cholesterol acceptor and is central to HDL biogenesis. Structural properties of lipid-poor apoA-I are unclear due to difficulties in isolating this transient species. We used thermal denaturation of human HDL to produce lipid-poor apoA-I. Analysis of the isolated lipid-poor fraction showed a protein/lipid weight ratio of 3:1, with apoA-I, PC (phosphatidylcholine) and CE (cholesterol ester) at approximate molar ratios of 1:8:1. Compared with lipid-free apoA-I, lipid-poor apoA-I showed slightly altered secondary structure and aromatic packing, reduced thermodynamic stability, lower self-associating propensity, increased adsorption to phospholipid surface and comparable ability to remodel phospholipids and form reconstituted HDL. Lipid-poor apoA-I can be formed by heating of either plasma or reconstituted HDL. We propose the first structural model of lipid-poor apoA-I which corroborates its distinct biophysical properties and postulates the lipid-induced ordering of the labile C-terminal region. In summary, HDL heating produces folded functional monomolecular lipid-poor apoA-I that is distinct from lipid-free apoA-I. Increased adsorption to phospholipid surface and reduced C-terminal disorder may help direct lipid-poor apoA-I towards HDL biogenesis.  相似文献   

7.
Confluent monolayers of the human hepatoblastoma-derived cell line, Hep G2, were incubated in serum-free medium. Conditioned medium was ultracentrifugally separated into d less than 1.063 g/ml and d 1.063-1.20 g/ml fractions since very little VLDL was observed. The d less than 1.063 g/ml fraction was examined by electron microscopy; it contained particles of 24.5 +/- 2.3 nm diameter, similar in size to plasma LDL; a similar size was demonstrated by nondenaturing gradient gel electrophoresis. These particles possessed apoB-100 only. The d less than 1.063 g/ml fraction had a lipid composition unlike that of plasma LDL; unesterified cholesterol was elevated, there was relatively little cholesteryl ester, and triglyceride was the major core lipid. The d 1.063-1.20 g/ml fraction was heterogeneous in size and morphology. Electron microscopy revealed discoidal particles (14.9 +/- 3.2 nm long axis and 4.5 +/- 0.2 nm short axis) as well as small spherical ones (7.6 +/- 1.4 nm diameter). Nondenaturing gradient gel electrophoresis consistently showed the presence of peaks at 13.4 11.9, 9.7, and 7.4 nm. The latter peak was conspicuous and probably corresponded to the small spherical structures seen by electron microscopy. Unlike plasma HDL, Hep G2 d 1.063-1.20 g/ml lipoproteins contained little or no stainable material in the (HDL3a)gge region by gradient gel electrophoresis. Hep G2 d 1.063-1.20 g/ml lipoproteins differed significantly in composition from their plasma counterparts; unesterified cholesterol and phospholipid were elevated and the mole ratio of unesterified cholesterol to phospholipid was 0.8. Cholesteryl ester content was extremely low. ApoA-I was the major apolipoprotein, while apoE was the next most abundant protein; small quantities of apoA-II and apoCs were also present. Immunoblot analysis of the d 1.063-1.20 g/ml fraction after gradient gel electrophoresis showed that apoE was localized in the larger pore region of the gel (apparent diameter greater than 12.2 nm); the apoA-I distribution in this fraction was very broad (7.1-12.2 nm), and included a distinct band at 7.4 nm. Immunoblotting after gradient gel electrophoresis of concentrated medium revealed that a significant fraction of apoA-I in the uncentrifuged medium was in a lipid-poor or lipid-free form. This cell line may be a useful model for investigating the metabolism of newly formed HDL.  相似文献   

8.
A unique class of lipid-poor high-density lipoprotein, pre-beta1 HDL, has been identified and shown to have distinct functional characteristics associated with intravascular cholesterol transport. In this study we have characterized the structure/function properties of poorly lipidated HDL particles and the factors that mediate their conversion into multimolecular lipoprotein particles. Studies were undertaken with homogeneous recombinant HDL particles (LpA-I) containing apolipoprotein (apo) A-I and various amounts of palmitoyloleoylphosphatidylcholine (PC) and cholesterol. Complexation of apoA-I with small amounts of PC and cholesterol results in the formation of discrete lipoprotein structures that have a hydrated diameter of about 6 nm but contain only one molecule of apoA-I (Lp1A-I). While the molecular charge and alpha-helix content of apoA-I are unaffected by lipidation, the thermodynamic stability of the protein is reduced significantly (from 2.4 to 0.9 kcal/mol of apoA-I). Evaluation of apoA-I conformation by competitive radioimmunoassay with monoclonal antibodies shows that addition of small amounts of PC and cholesterol to apoA-I significantly increases the immunoreactivity of a number of domains over the entire molecule. Increasing the ratio of PC:apoA-I to 10:1 in the Lp1A-I complex is associated with increases in the alpha-helix content and stability of apoA-I. However, incorporation of 10-15 mol of PC destabilizes the Lp1A-I complex and promotes the formation of more thermodynamically stable (1.8 kcal/mol of apoA-I) bimolecular structures (Lp2A-I) that are approximately 8 nm in diameter. The formation of an Lp2A-I particle is associated with an increased immunoreactivity of most of the epitopes studied, with the exception of one central domain (residues 98-121), which becomes significantly less exposed. This structural change parallels a significant increase in the net negative charge on the complex. Characterization of the ability of these lipoproteins to act as substrates for lecithin:cholesterol acyltransferase (LCAT) shows that unstable Lp1A-I complexes stimulate a higher rate of cholesterol esterification by LCAT than the small but more stable Lp2A-I particles (Vmax values are 5.8 and 0.3 nmol of free cholesterol esterified/h, respectively). The ability of LCAT to interact with lipid-poor apoA-I suggests that LCAT does not need to bind to the lipid interface on an HDL particle but that LCAT may directly interact with apoA-I. The data suggests that lipid-poor HDL particles may be metabolically reactive particles because they are thermodynamically unstable.  相似文献   

9.
Whereas hepatocytes secrete the major human plasma high density lipoproteins (HDL)-protein, apo A-I, as lipid-free and lipidated species, the biogenic itineraries of apo A-II and apo E are unknown. Human plasma and HepG2 cell-derived apo A-II and apo E occur as monomers, homodimers and heterodimers. Dimerization of apo A-II, which is more lipophilic than apo A-I, is catalyzed by lipid surfaces. Thus, we hypothesized that lipidation of intracellular and secreted apo A-II exceeds that of apo A-I, and once lipidated, apo A-II dimerizes. Fractionation of HepG2 cell lysate and media by size exclusion chromatography showed that intracellular apo A-II and apo E are fully lipidated and occur on nascent HDL and VLDL respectively, while only 45% of intracellular apo A-I is lipidated. Secreted apo A-II and apo E occur on small HDL and on LDL and large HDL respectively. HDL particles containing both apo A-II and apo A-I form only after secretion from both HepG2 and Huh7 hepatoma cells. Apo A-II dimerizes intracellularly while intracellular apo E is monomeric but after secretion associates with HDL and subsequently dimerizes. Thus, HDL apolipoproteins A-I, A-II and E have distinct intracellular and post-secretory pathways of hepatic lipidation and dimerization in the process of HDL formation. These early forms of HDL are expected to follow different apolipoprotein-specific pathways through plasma remodeling and reverse cholesterol transport.  相似文献   

10.
The mechanism for the assembly of HDL with cellular lipid by ABCA1 and helical apolipoprotein was investigated in hepatocytes. Both HepG2 cells and mouse primary culture hepatocytes produced HDL with apolipoprotein A-I (apoA-I) whether endogenously synthesized or exogenously provided. Probucol, an ABCA1 inactivator, inhibited these reactions, as well as the reversible binding of apoA-I to HepG2. Primary cultured hepatocytes of ABCA1-deficient mice also lacked HDL production regardless of the presence of exogenous apoA-I. HepG2 cells secreted apoA-I into the medium even when ABCA1 was inactivated by probucol, but it was all in a free form as HDL production was inhibited. When a lipid-free apoA-I-specific monoclonal antibody, 725-1E2, was present in the culture medium, production of HDL was suppressed, whether with endogenous or exogenously added apoA-I, and the antibody did not influence HDL already produced by HepG2 cells. We conclude that the main mechanism for HDL assembly by endogenous apoA-I in HepG2 cells is an autocrine-like reaction in which apoA-I is secreted and then interacts with cellular ABCA1 to generate HDL.  相似文献   

11.
Lipoprotein secretion by Caco-2 cells, a human intestinal cell line, was studied in cells grown on inserts containing a Millipore filter (0.45 micron), separating secretory products from the apical and basolateral membranes into separate chambers. Under these conditions, as observed by electron microscopy, the cells formed a monolayer of columnar epithelial cells with microvilli on the apical surface and tight junctions between cells. The electrical resistances of the cell monolayers were 250-500 ohms/cm2. Both 14C-labeled lipids and 35S-labeled proteins were used to assess lipoprotein secretion. After a 24-hr incubation with [14C]oleic acid, 60-80% of the secreted triglyceride (TG) was in the basolateral chamber; 40% of the TG was present in the d less than 1.006 g/ml (chylomicron + VLDL) fraction and 50% in the 1.006 less than d less than 1.063 g/ml (LDL) fraction. After a 4-hr incubation with [35S]methionine, apolipoproteins were found to be major secretory products with 75-100% secreted to the basolateral chamber. Apolipoproteins B-100, B-48, E, A-I, A-IV, and C-III were identified by immunoprecipitation. The d less than 1.006 g/ml fraction was found to contain all of the major apolipoproteins, while the LDL fraction contained primarily apoB-100 and apoE; the HDL (1.063 less than d less than 1.21 g/ml) fraction principally contained apoA-I and apoA-IV. Mn-heparin precipitated all of the [35S]methionine-labeled apoB-100 and B-48 and a majority of the other apolipoproteins, and 80% of the [14C]oleic acid-labeled triglyceride, but only 15% of the phospholipid, demonstrating that Caco-2 cells secrete triglyceride-rich lipoproteins containing apoB. Secretion of lipoproteins was dependent on the lipid content of the medium; prior incubation with lipoprotein-depleted serum specifically reduced the secretion of lipoproteins, while addition of both LDL and oleic acid to the medium maintained the level of apoB-100, B-48, and A-IV secretion to that observed in the control cultures.  相似文献   

12.
Alpha-tocopherol (alpha-TOH) is associated with plasma lipoproteins and accumulates in cell membranes throughout the body, suggesting that lipoproteins play a role in transporting alpha-TOH between tissues. Here we show that secretion of alpha-TOH from cultured cells is mediated in part by ABCA1, an ATP-binding cassette protein that transports cellular cholesterol and phospholipids to lipid-poor high density lipoprotein (HDL) apolipoproteins such as apoA-I. Treatment of human fibroblasts and murine RAW264 macrophages with cholesterol and/or 8-bromo-cyclic AMP, which induces ABCA1 expression, enhanced apoA-I-mediated alpha-TOH efflux. ApoA-I lacked the ability to remove alpha-TOH from Tangier disease fibroblasts that have a nonfunctional ABCA1. BHK cells that lack an active ABCA1 pathway markedly increased secretion of alpha-TOH to apoA-I when forced to express ABCA1. ABCA1 also mediated a fraction of the alpha-TOH efflux promoted by lipid-containing HDL particles, indicating that HDL promotes alpha-TOH efflux by both ABCA1-dependent and -independent processes. Exposing apoA-I to ABCA1-expressing cells did not enhance its ability to remove alpha-TOH from cells lacking ABCA1, consistent with this transporter participating directly in the translocation of alpha-TOH to apolipoproteins. These studies provide evidence that ABCA1 mediates secretion of cellular alpha-TOH into the HDL metabolic pathway, a process that may facilitate vitamin transport between tissues and influence lipid oxidation.  相似文献   

13.
Intestinal apolipoprotein synthesis and secretion in the suckling pig   总被引:1,自引:0,他引:1  
The present studies report characterization of intestinal apolipoprotein (apoLp) synthesis and secretion in the suckling pig. Lipoproteins (d less than 1.006 g/ml) from mesenteric lymph were found to contain both apoB-100 and B-48, in addition to apoA-IV, E, A-I, and Cs. Lymph low density lipoproteins (LDL) and high density lipoproteins (HDL) contained mainly apoB-100 and apoA-I, respectively. Analysis of core cholesteryl ester fatty acid composition suggested filtration from plasma as the major source of lymph LDL and HDL. Dual radioisotope labeling of intestinal and hepatic apoLps in lymph, as well as immunoprecipitation of radiolabeled intestinal mucosa, demonstrated intestinal synthesis of apoB-48, A-IV, and A-I. There was no evidence for apoB-100 synthesis by intestinal mucosa. By contrast, piglet liver synthesized apoB-100, E, A-I, and Cs, but not apoB-48. Newly synthesized intracellular intestinal apoA-I was mainly (basic) isoform 1 (pI 5.58), while lymph and plasma HDL apoA-I were predominantly isoform 3 (pI 5.33), mature apoA-I. Lymph apoB (P less than 0.001) and apoA-I (P less than 0.04) mass output increased significantly during lipid absorption. Studies were subsequently conducted in fasting, fat-fed, bile-diverted, and sham-operated animals to determine the role of both dietary and biliary lipid in regulating intestinal apoLp biosynthesis. Proximal and distal small intestinal loops were pulse-radiolabeled with [3H]leucine, and apoB-48 and A-I were immunoprecipitated from cytosolic supernatants. Although a proximal to distal gradient in intestinal synthesis rates for both apoB and A-I was noted in all groups, the acute absorption of dietary lipid did not significantly increase apoB or A-I synthesis in either location. Complete removal of biliary lipid for 48 hr did not alter synthesis rates in jejunum or ileum. These studies suggest that mesenteric lymph apoLps in the suckling pig are derived both by filtration from plasma and by direct secretion from the intestine. Physiologic regulation of intestinal apoA-I and B-48 synthesis rates appears to be independent of luminal lipid availability.  相似文献   

14.
The synthesis and secretion of apolipoprotein A-I (apoA-I) in response to the treatment with estrogen were investigated in the chicken hepatoma cell line, LMH-2A. Exposure of these cells to exogenous estrogen for up to 48 h results in a decrease of apoA-I production, as evident from Western blotting, immunoprecipitation, and immunofluorescence experiments. Likewise, the secretion of apoA-I is also decreased in estrogen-treated cells when compared to controls. However, under both conditions, the disappearance of the apoprotein from the cells occurs very rapidly and with similar kinetics. The bulk of apoA-I secreted from LMH-2A cells is recovered on lipoprotein particles with a buoyant density of > or =1.10 g/ml, corresponding to HDL and heavy LDL. Interestingly, apoA-I is detectable on apoB-containing lipoproteins by sequential immunoprecipitation, suggesting that the two apoproteins co-reside at least on a subfraction of the secreted particles, or that apoB- and apoA-I-containing particles interact. These interactions are more pronounced in estrogen-treated cells, most likely due to the dramatic estrogen-mediated induction of apoB synthesis and secretion.  相似文献   

15.
The high density lipoproteins (HDL) in human plasma are classified on the basis of apolipoprotein composition into those containing apolipoprotein (apo) A-I but not apoA-II, (A-I)HDL, and those containing both apoA-I and apoA-II, (A-I/A-II)HDL. Cholesteryl ester transfer protein (CETP) transfers core lipids between HDL and other lipoproteins. It also remodels (A-I)HDL into large and small particles in a process that generates lipid-poor, pre-beta-migrating apoA-I. Lipid-poor apoA-I is the initial acceptor of cellular cholesterol and phospholipids in reverse cholesterol transport. The aim of this study is to determine whether lipid-poor apoA-I is also formed when (A-I/A-II)rHDL are remodeled by CETP. Spherical reconstituted HDL that were identical in size had comparable lipid/apolipoprotein ratios and either contained apoA-I only, (A-I)rHDL, or (A-I/A-II)rHDL were incubated for 0-24 h with CETP and Intralipid(R). At 6 h, the apoA-I content of the (A-I)rHDL had decreased by 25% and there was a concomitant formation of lipid-poor apoA-I. By 24 h, all of the (A-I)rHDL were remodeled into large and small particles. CETP remodeled approximately 32% (A-I/A-II)rHDL into small but not large particles. Lipid-poor apoA-I did not dissociate from the (A-I/A-II)rHDL. The reasons for these differences were investigated. The binding of monoclonal antibodies to three epitopes in the C-terminal domain of apoA-I was decreased in (A-I/A-II)rHDL compared with (A-I)rHDL. When the (A-I/A-II)rHDL were incubated with Gdn-HCl at pH 8.0, the apoA-I unfolded by 15% compared with 100% for the apoA-I in (A-I)rHDL. When these incubations were repeated at pH 4.0 and 2.0, the apoA-I in the (A-I)rHDL and the (A-I/A-II)rHDL unfolded completely. These results are consistent with salt bridges between apoA-II and the C-terminal domain of apoA-I, enhancing the stability of apoA-I in (A-I/A-II)rHDL and possibly contributing to the reduced remodeling and absence of lipid poor apoA-I in the (A-I/A-II)rHDL incubations.  相似文献   

16.
To better understand the role of LCAT in HDL metabolism, we compared HDL subpopulations in subjects with homozygous (n = 11) and heterozygous (n = 11) LCAT deficiency with controls (n = 22). Distribution and concentrations of apolipoprotein A-I (apoA-I)-, apoA-II-, apoA-IV-, apoC-I-, apoC-III-, and apoE-containing HDL subpopulations were assessed. Compared with controls, homozygotes and heterozygotes had lower LCAT masses (-77% and -13%), and LCAT activities (-99% and -39%), respectively. In homozygotes, the majority of apoA-I was found in small, disc-shaped, poorly lipidated prebeta-1 and alpha-4 HDL particles, and some apoA-I was found in larger, lipid-poor, discoidal HDL particles with alpha-mobility. No apoC-I-containing HDL was noted, and all apoA-II and apoC-III was detected in lipid-poor, prebeta-mobility particles. ApoE-containing particles were more disperse than normal. ApoA-IV-containing particles were normal. Heterozygotes had profiles similar to controls, except that apoC-III was found only in small HDL with prebeta-mobility. Our data are consistent with the concepts that LCAT activity: 1) is essential for developing large, spherical, apoA-I-containing HDL and for the formation of normal-sized apoC-I and apoC-III HDL; and 2) has little affect on the conversion of prebeta-1 into alpha-4 HDL, only slight effects on apoE HDL, and no effect on apoA-IV HDL particles.  相似文献   

17.
Cavigiolio G  Shao B  Geier EG  Ren G  Heinecke JW  Oda MN 《Biochemistry》2008,47(16):4770-4779
High-density lipoprotein (HDL) mediates reverse cholesterol transport (RCT), wherein excess cholesterol is conveyed from peripheral tissues to the liver and steroidogenic organs. During this process HDL continually transitions between subclass sizes, each with unique biological activities. For instance, RCT is initiated by the interaction of lipid-free/lipid-poor apolipoprotein A-I (apoA-I) with ABCA1, a membrane-associated lipid transporter, to form nascent HDL. Because nearly all circulating apoA-I is lipid-bound, the source of lipid-free/lipid-poor apoA-I is unclear. Lecithin:cholesterol acyltransferase (LCAT) then drives the conversion of nascent HDL to spherical HDL by catalyzing cholesterol esterification, an essential step in RCT. To investigate the relationship between HDL particle size and events critical to RCT such as LCAT activation and lipid-free apoA-I production for ABCA1 interaction, we reconstituted five subclasses of HDL particles (rHDL of 7.8, 8.4, 9.6, 12.2, and 17.0 nm in diameter, respectively) using various molar ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, free cholesterol, and apoA-I. Kinetic analyses of this comprehensive array of rHDL particles suggest that apoA-I stoichiometry in rHDL is a critical factor governing LCAT activation. Electron microscopy revealed specific morphological differences in the HDL subclasses that may affect functionality. Furthermore, stability measurements demonstrated that the previously uncharacterized 8.4 nm rHDL particles rapidly convert to 7.8 nm particles, concomitant with the dissociation of lipid-free/lipid-poor apoA-I. Thus, lipid-free/lipid-poor apoA-I generated by the remodeling of HDL may be an essential intermediate in RCT and HDL's in vivo maturation.  相似文献   

18.
Murine lipoproteins were separated into nine subfractions by a density gradient ultracentrifugal procedure. They were characterized by electrophoretic, immunological, chemical, and morphological analyses, and their protein moieties were defined according to charge, molecular weight, and isoelectric point. HDL predominated (approximately 500 mg/dl serum), the mode of its distribution being situated in the d 1.09-1.10 g/ml (F 1.21 approximately 4) region. Chemical analysis showed subfractions of d 1.085-1.136 g/ml to resemble human HDL3 closely, including the presence of apoA-I (Mr 25,000-27,000) as their major apolipoprotein. An apoA-II-like protein, of Mr 8400 (in monomeric form), was also tentatively identified. In electrophoretic mobility and chemical composition, the d 1.060-1.085 g/ml subfraction (approximately 10% of total HDL) was distinct and akin to human HDL2. ApoA-I represented approximately 60% of its complement of low molecular weight apoproteins. The density range used for separation of human HDL2 (d 1.066-1.100 g/ml) by gradient ultracentrifugation is inadequate in the mouse, and the d 1.060-1.085 g/ml interval is more appropriate. The 1.063 g/ml boundary for separation of mouse LDL from HDL was unsuitable. Immunological and electrophoretic studies revealed that alpha-migrating lipoproteins were present in the d 1.046-1.060 g/ml range, a finding consistent with their enrichment in apoA-I; apoE-, apoA-II-, and apoC-like proteins were also detected. These findings indicate the presence of HDL1 particles. Murine apoA-I and apoB-like proteins of higher (apoBH) and lower (apoBL) molecular weight were constituents of the d 1.033-1.046 g/ml fraction. Alternative techniques, such as electrophoresis in starch block, are therefore a prequisite for separation of apoB from alpha-migrating, apoA-I-containing lipoproteins in the low density range in mouse serum. The LDL class (d 1.023-1.060 g/ml) amounted to only approximately 20% of the total murine lipoproteins of d less than 1.188 g/ml (65-70 mg/dl serum). Particles were richer In triglyceride, larger in diameter (mean 244 A), and more heterogeneous than typical of man. VLDL (40-80 mg/dl serum) was triglyceride-rich (66% by weight) and similarly heterogeneous in size (mean diameter 494 A; range 270-750 A). ApoBH and apoBL were prominent in murine VLDL, and cross-reacted with an antiserum to human apoB. ApoE- and apoA-I-like proteins were also detectable in apoVLDL, as was a protein of 70,000-75,000 mol wt. The presence of murine apolipoproteins analogous to human apoB and apoE was confirmed by the immunological cross-reactivities of VLDL and LDL with monospecific antisera to the human proteins. The marked similarity of lipoprotein and apolipoprotein profile in the mouse and rat is notable. Since murine VLDL contains apoE and apoBL, this resemblance may extend to the metabolism of chylomicron remnants and hepatic VLDL in the two species.  相似文献   

19.
The regulation of lipoprotein assembly and secretion at a molecular level is incompletely understood. To begin to identify the determinants of apoprotein synthesis and distribution among lipoprotein classes, we have examined the effects of chylomicron remnants which deliver triglyceride and cholesterol, and beta very low density lipoprotein (beta VLDL), which deliver primarily cholesterol, on apolipoprotein synthesis and secretion by the human hepatoma Hep G2. Hep G2 cells were incubated with remnants or beta VLDL for 24 h, the medium was changed and the cells then incubated with [35S]methionine. The secreted lipoproteins were separated by gradient ultracentrifugation and the radiolabeled apoproteins were isolated by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and counted. Remnants caused a 14-fold, and beta VLDL a 7-fold, increase in VLDL apoprotein (apo) secretion; the apoB/apoE ratio in this class was unchanged. Preincubation with either of the lipoproteins also stimulated low density lipoprotein apoB secretion. Preincubation with beta VLDL, but not with remnants, significantly increased apoE and apoA-I secreted in high density lipoprotein (HDL). In addition, the apoE/apoA-I ratio precipitated from the HDL of beta VLDL-treated cells by anti-apoE was 2.2-fold higher than that precipitated by anti-apoA-I. There was no difference in the ratios precipitated from control HDL. This was due to the secretion of a lipoprotein, subsequently isolated by immunoaffinity chromatography, that contained predominantly apoE. When Hep G2 cells were preincubated with oleic acid alone, total apoprotein secretion was not altered. However, cholesterol-rich liposomes stimulated secretion of newly synthesized apoE, but not apoB, while apoA-I secretion was variably affected. Cholesterol-poor liposomes had no effect. Thus, lipid supply is a determinant of apoprotein synthesis and secretion, and cholesterol may be of particular importance in initiating apoprotein synthesis.  相似文献   

20.
Serum amyloid A (SAA) circulates bound to HDL3 during the acute-phase response (APR), and recent evidence suggests that elevated levels of SAA may be a risk factor for cardiovascular disease. In this study, SAA-HDL was produced in vivo during the APR and without the APR by injection of an adenoviral vector expressing human SAA-1. SAA-HDL was also produced in vitro by incubating mouse HDL with recombinant mouse SAA and by SAA-expressing cultured hepatoma cells. Whether produced in vivo or in vitro, SAA-HDL floated at a density corresponding to that of human HDL3 (d 1.12 g/ml) separate from other apolipoproteins, including apolipoprotein A-I (apoA-I; d 1.10 g/ml) when either apoA-I or apolipoprotein E (apoE) was present. In the absence of both apoA-I and apoE, SAA was found in VLDL and LDL, with low levels in the HDL and the lipid-poor fractions suggesting that other HDL apolipoproteins are incapable of facilitating the formation of SAA-HDL. We conclude that SAA does not exist in plasma as a lipid-free protein. In the presence of HDL-associated apoA-I or apoE, SAA circulates as SAA-HDL with a density corresponding to that of human HDL3. In the absence of both apoA-I and apoE, SAA-HDL is not formed and SAA associates with any available lipoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号