首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu XH  Zhang T  Rawson DM 《Theriogenology》2001,55(8):1719-1731
High chilling sensitivity is one of the main obstacles to successful cryopreservation of zebrafish embryos. So far the nature of the chilling injury in fish embryos has not been clear. The aim of this study is to investigate the effect of cooling rate and partial removal of yolk on chilling injury in zebrafish embryos. Zebrafish embryos at 64-cell, 50%-epiboly, 6-somite and prim-6 stages were cooled to either 0 degrees C or -5 degrees C at three different cooling rates: slow (0.3 degrees C/min or 1 degree C/min), moderate (30 degrees C/min), and rapid (approximately 300 degrees C/min). After chilling, embryos were warmed in a 26 degrees C water bath, followed by 3-day culturing in EM at 26 +/- 1 degrees C for survival assessment. When embryos were cooled to 0 degrees C for up to 30 min, 64-cell embryos had higher survival after rapid cooling than when they were cooled at a slower rate. When 64-cell embryos were held at -5 degrees C for 1 min, their survival decreased greatly after both slow and rapid cooling. The effect of cooling rate on the survival of 50%-epiboly and 6-somite embryos was not significant after 1 h exposure at 0 degrees C and 1 min exposure at -5 degrees C. However, rapid cooling resulted in significantly lower embryo survival than a cooling rate of 30 degrees C/min or 1 degree C/min after 1 h exposure to 0 degrees C for prim-6 stage or 1 h exposure to -5 degrees C for all stages. Chilling injury in 64-cell embryos appears to be a consequence of exposure time at low temperatures rather than a consequence of rapid cooling. Results also indicate that chilling injury in later stage embryos (50%-epiboly, 6-somite and prim-6) is a consequence of the combination of rapid cooling and exposure time at low temperatures. Dechorionated prim-6 embryos were punctured and about half of yolk was removed. After 24 h culture at 26 +/- 1 degrees C after removal of yolk, the yolk-reduced embryos showed higher embryo survival than did control embryos after rapid cooling to -5 degrees C for 10 to 60 min. Results suggest that cold shock injury after rapid cooling can be mitigated after partial removal of yolk at the prim-6 stage. These findings help us to understand the nature of chilling sensitivity of fish embryos and to develop protocols for their cryopreservation.  相似文献   

2.
Zhang T  Liu XH  Rawson DM 《Theriogenology》2003,59(7):1545-1556
Stage-dependent chilling sensitivity has been reported for many species of fish embryos. Most of these studies reveal that developmental stages beyond 50% epiboly are less sensitive to chilling, but the chilling sensitivity accelerates rapidly at subzero temperatures. In this study, the effects of methanol and developmental arrest on chilling injury were studied using zebrafish (Danio rerio) embryos at 64-cell, 50% epiboly, 6-somite, prim-6 and long-bud stages. Embryos were exposed to methanol or anoxic conditions before they were cooled to 0 or -5 degrees C with slow (1 degrees C/min), medium (30 degrees C/min) or fast ( approximately 300 degrees C/min) cooling rates and were held at these temperatures for different time periods. Embryo survival was evaluated in terms of the percentage of treated embryos with normal developmental appearance after 3-day culture. Experiments on the effect of methanol on chilling sensitivity of the embryos showed that the addition of methanol to embryo medium increased embryo survival significantly at all developmental stages and under all cooling conditions. Higher concentration of methanol treatment generally improved embryo survival when embryos were cooled at a fast cooling rate of 300 degrees C/min. Experiments on the effect of developmental arrest on chilling sensitivity of embryos showed that embryos at 50% epiboly and prim-6 stages underwent developmental arrest almost immediately after 15 min oxygen deprivation. After 4h in anoxia, the survival rates of the embryos were not significantly different from their respective aerobic controls. Anoxia and developmental arrest had no effect on the chilling sensitivity of zebrafish embryos.  相似文献   

3.
The effect of the rate of rewarming on the survival of 8-cell mouse embryos and blastocysts was examined. The samples were slowly cooled (0.3--0.6 degrees C/min) in 1.5 M-DMSO to temperatures between -10 and -80 degrees C before direct transfer to liquid nitrogen (-196 degrees C). Embryos survived rapid thawing (275--500 degrees C/min) only when slow cooling was terminated at relatively high subzero temperatures (-10 to -50 degrees C). The highest levels of survival in vitro of rapidly thawed 8-cell embryos were obtained after transfer to -196 degrees C from -35 and -40 degrees C (72 to 88%) and of rapidly thawed blastocysts after transfer from -25 to -50 degrees C (69 to 74%). By contrast, for embryos to survive slow thawing (8 to 20 degrees C/min) slow cooling to lower subzero temperatures (-60 degrees C and below) was required before transfer to -196 degrees C. The results indicate that embryos transferred to -196 degrees C from high subzero temperatures contain sufficient intracellular ice to damage them during slow warming but to permit survival after rapid warming. Survival of embryos after rapid dilution of DMSO at room temperature was similar to that after slow (stepwise) dilution at 0 degrees C. There was no difference between the viability of rapidly and slowly thawed embryos after transfer to pseudopregnant foster mothers. It is concluded that the behaviour of mammalian embryos subjected to the stresses of freezing and thawing is similar to that of other mammalian cells. A simpler and quicker method for the preservation of mouse embryos is described.  相似文献   

4.
As an essential step toward cryopreservation of fish embryos, we examined the chilling sensitivity of medaka (Oryzias latipes) embryos at various developmental stages. Embryos at the 2-4 cell, 8-16 cell, morula, blastula, and early gastrula stages were suspended in Hanks solution. They were chilled to various temperatures (usually 0 degrees C), kept for various periods (usually 20 min), then cultured for up to 14 d to determine survival (assessed by the ability to hatch). Embryos at the 2-4 cell stage were the most sensitive to chilling to 0 degrees C, but sensitivity decreased as development proceeded. The survival rate of 2-4 cell embryos was affected after 2 min of chilling at 0 degrees C; although the rate decreased gradually as the duration of chilling increased, 38% of them still survived after 40 min of chilling. Embryos at the 2-4 cell stage were sensitive to chilling at 0 or -5 degrees C, but much less sensitive at 5 or 10 degrees C. The survival rate of 2-4 cell embryos subjected to repeated rapid cooling and warming was similar to that of those kept chilled. When early gastrula embryos were preserved at 0 or 5 degrees C, the hatching rate did not decrease after 12 and 24h of chilling, respectively, but then decreased gradually as storage was prolonged; however, 3-10% of the embryos hatched even after storage for 10 d. In conclusion, although later-stage medaka embryos would be suitable for cryopreservation (from the perspective of chilling sensitivity), chilling injury may not be serious in earlier stage embryos.  相似文献   

5.
Effect of warming rate on mouse embryos frozen and thawed in glycerol   总被引:2,自引:0,他引:2  
Mouse embryos (8-cell) fully equilibrated in 1.5 M-glycerol were cooled slowly (0.5 degrees C/min) to temperatures between - 7.5 and - 80 degrees C before rapid cooling and storage in liquid nitrogen (-196 degrees C). Some embryos survived rapid warming (approximately 500 degrees C/min) irrespective of the temperature at which slow cooling was terminated. However, the highest levels of survival of rapidly warmed embryos were observed when slow cooling was terminated between -25 and -80 degrees C (74-86%). In contrast, high survival (75-86%) was obtained after slow warming (approximately 2 degrees C/min) only when slow cooling was continued to -55 degrees C or below before transfer into liquid N2. Injury to embryos cooled slowly to -30 degrees C and then rapidly to -196 degrees C occurred only when slow warming (approximately 2 degrees C/min) was continued to -60 degrees C or above. Parallel cryomicroscopical observations indicated that embryos became dehydrated during slow cooling to -30 degrees C and did not freeze intracellularly during subsequent rapid cooling (approximately 250 degrees C/min) to -150 degrees C. During slow warming (2 degrees C/min), however, intracellular ice appeared at a temperature between -70 and -65 degrees C and melted when warming was continued to -30 degrees C. Intracellular freezing was not observed during rapid warming (250 degrees C/min) or during slow warming when slow cooling had been continued to -65 degrees C. These results indicate that glycerol provides superior or equal protection when compared to dimethyl sulphoxide against the deleterious effects of freezing and thawing.  相似文献   

6.
Cryomicroscopy and differential scanning calorimetry (DSC) were used to characterize the incidence of intracellular ice formation (IIF) in 12- to 13-hr-old embryos of Drosophila melanogaster (Oregon-R strain P2) as influenced by the state of the eggcase (untreated, dechorionated, or permeabilized), the composition of the suspending medium (with and without cryoprotectants), and the cooling rate. Untreated eggs underwent IIF over a very narrow temperature range when cooled at 4 or 16 degrees C/min with a median temperature of intracellular ice formation (TIIF50) of -28 degrees C. The freezable water volume of untreated eggs was approximately 5.4 nl as determined by DSC. IIF in dechorionated eggs occurred over a much broader temperature range (-13 to -31 degrees C), but the incidence of IIF increased sharply below -24 degrees C, and the cumulative incidence of IIF at -24 degrees C decreased with cooling rate. In permeabilized eggs without cryoprotectants (CPAs), IIF occurred at much warmer temperatures and over a much wider temperature range than in untreated eggs, and the TIIF50 was cooling rate dependent. At low cooling rates (1 to 2 degrees C/min), TIIF50 increased with cooling rate; at intermediate cooling rates (2 to 16 degrees C/min), TIIF50 decreased with cooling rate. The total incidence of IIF in permeabilized eggs was 54% at 1 degree C/min, and volumetric contraction almost always occurred during cooling. Decreasing the cooling rate to 0.5 degree C/min reduced the incidence of IIF to 43%. At a cooling rate of 4 degrees C/min, ethylene glycol reduced the TIIF50 by about 12 degrees C for each unit increase in molarity of CPA (up to 2.0 M) in the suspending medium. The TIIF50 was cooling rate dependent when embryos were preequilibrated with 1.0 M propylene glycol or ethylene glycol, but was not so in 1.0 M DMSO. For embryos equilibrated in 1.5 M ethylene glycol and then held at -5 degrees C for 1 min before further cooling at 1 degree C/min, the incidence of IIF was decreased to 31%. Increasing the duration of the isothermal hold to 10 min reduced the incidence of IIF to 22% and reduced the volume of freezable water in embryos when intracellular ice formation occurred. If the isothermal hold temperature was -7.5 or -10 degrees C, a 10- to 30-min holding time was required to achieve a comparable reduction in the incidence of IIF.  相似文献   

7.
Mouse morulae were exposed in one step to a vitrification solution (EFS, a modified PBS containing 40% ethylene glycol, 18% Ficoll, and 0.3-M sucrose) at various temperatures, then cooled rapidly in liquid nitrogen, and then warmed rapidly. All of the embryos exposed to the EFS solution for 0.5 min at 25 degrees C before vitrification developed in culture. However, survival rates were lower if the duration of exposure was prolonged to 2, 5, or 10 min. At lower ambient temperatures (20, 10, and 5 degrees C), high survival rates were associated with longer exposure to the EFS solution. The toxicity of the EFS solution was also lower at lower temperatures. The toxic injury of morulae was manifested as decompaction of the blastomeres. Among the three additives in the EFS solution, ethylene glycol, which can cross cell membranes, was responsible for the toxicity. The results show that the optimum time for exposure of the embryos to the EFS solution before rapid cooling varies with the ambient temperature, i.e., 0.5 min at 25 degrees C, 0.5-5 min at 20 degrees C, 2-5 min at 10 degrees C, and 2-10 min at 5 degrees C. If they are exposed for an optimum period, almost all mouse morulae can survive vitrification (94-100%).  相似文献   

8.
S Ogawa  S Tomoda 《Jikken dobutsu》1976,25(4):273-282
Preimplantation stage (16-celled and morula) rabbit embryos were successfully frozen to -196 degrees C. The cooling rate (from a room temperature to 0 degrees C), the presence of the mucin layer surrounding embryos, the ice-seeding treatment and the thawing procedure were examined to determine their effects on the survival of the frozen embryos of Japanese white, New Zealand white and Dutch-Belted rabbits. A high proportion (51%; 16-celled, 69%; morula) of Dutch-Belted rabbit embryos developed in vitro, when they were frozen to -196 degrees C, applying the ice-seeding at -4 degrees C in the presence of 12.5% DMSO, after being cooled to 0 degrees C at the rate of 7-9 degrees C/min, and were diluted by a stepwise addition of 4 different strength PBS on thawing. The highest rate of in vitro development (81%; Japanese white, 75%; New Zealand white, 82%; Dutch Belted embryos) was obtained when the morula stage embryos were frozen to -196 degrees C applying seeding at -4 degrees C after being cooled to 0 degrees C at the rate of 1 degrees C/2.5 min and were diluted, on thawing, by stepwise addition of 6, 3 and 1% DMSO solution and a culture medium. No great difference was found in the survival rate between the embryos covered with the mucin layer and those which had not the coat. All the embryos frozen without applying seeding treatment failed to develop in vitro after being thawed and diluted. Nine out of 27 does each of which received 6 reimplantations of the embryos frozen-thawed became pregnant and were found to be carrying 37 normal fetuses on the 12th day of pregnancy.  相似文献   

9.
The possibility of cryopreserving the eggs of Angiostrongylus cantonensis collected from the uterus of female worms was investigated. Eggs were cultured in NCTC 109 medium containing 50% rat serum, and various growth stages, from one-cell eggs to embryonated eggs, were used in this study. As a cryoprotective agent, dimethylsulphoxide (Me2SO) was added to the medium at a final concentration of 1 M. Eggs suspended in 0.2 ml of the medium at 37 degrees C were cooled to 0 degrees C at a rate of 1 degree C min-1, then an equal volume of 2M-Me2SO solution was added. After equilibration for 15 min, the freezing procedures were started. In the freezing procedures, the effectiveness of (i) a seeding process, (ii) different cooling and warming rates and (iii) the relationship between the growth stages of the eggs and their tolerance to freezing at -20 degrees C were investigated. It was found the highest level of survival could be obtained with 32-cell eggs cooled at a rate of 0.3 degrees C min-1 or more slowly with seeding at -4 degrees C and warming at a rate of 5 degrees C min-1. Survival was influenced more by cooling rate than by warming rate. Using these optimum conditions, the survival of eggs was then investigated following cooling to various temperatures. While more than 50% of eggs were found to survive cooling to -30 degrees C, extremely low survival was noted from lower temperatures.  相似文献   

10.
A cryomicroscope was used to observe changes in the appearance of day 6 1 2 to 7 1 2 cattle embryos during cooling and warming in 1.4M glycerol/PBS. Embryos were cooled at various rates between 0.2 and 25 degrees C/min to temperatures between -25 and -60 degrees C and then cooled rapidly ( approximately 250 degrees C/min) to temperatures below -140 degrees C. The volume of the embryos calculated from the cross-sectional area during slow cooling decreased at -25 degrees C to about 50% of the isotonic volume. Fracture planes could be observed in the extracellular ice matrix surrounding the embryos after rapid cooling to approximately -140 degrees C. The fracture planes often touched the zona pellucida and sometimes caused cracks in the zona. Cracks in the zona pellucida were observed more often after rapid cooling from temperatures between -20 to -35 degrees C (9 13 ) than from temperatures between -36 to -60 degrees C (2 7 ). When embryos were warmed rapidly ( approximately 250 degrees C/min) from temperatures below -140 degrees C, no change was observed in the appearance of either the embryo or its surroundings except the melting of the extracellular ice. However, when embryos were warmed slowly (2 or 5 degrees C/min), a series of events was observed; first, at approximately -70 degrees C the cytoplasm and the extracellular space gradually darkened and reached maximum darkness at approximately -55 degrees C. Then, on continued slow warming, the dark material gradually disappeared and finally the large extracellular ice crystals melted.  相似文献   

11.
Factors affecting the cryosurvival of mouse two-cell embryos   总被引:1,自引:0,他引:1  
A series of 4 experiments was conducted to examine factors affecting the survival of frozen-thawed 2-cell mouse embryos. Rapid addition of 1.5 M-DMSO (20 min equilibration at 25 degrees C) and immediate, rapid removal using 0.5 M-sucrose did not alter the frequency (mean +/- s.e.m.) of blastocyst development in vitro when compared to untreated controls (90.5 +/- 2.7% vs 95.3 +/- 2.8%). There was an interaction between the temperature at which slow cooling was terminated and thawing rate. Termination of slow cooling (-0.3 degrees C/min) at -40 degrees C with subsequent rapid thawing (approximately 1500 degrees C/min) resulted in a lower frequency of blastocyst development than did termination of slow cooling at -80 degrees C with subsequent slow thawing (+8 degrees C/min) (36.8 +/- 5.6% vs 63.9 +/- 5.7%). When slow cooling was terminated between -40 and -60 degrees C, higher survival rates were achieved with rapid thawing. When slow cooling was terminated below -60 degrees C, higher survival rates were obtained with slow thawing rates. In these comparisons absolute survival rates were highest among embryos cooled below -60 degrees C and thawed slowly. However, when slow cooling was terminated at -32 degrees C, with subsequent rapid warming, survival rates were not different from those obtained when embryos were cooled to -80 degrees C and thawed slowly (52.4 +/- 9.5%, 59.5 +/- 8.6%). These results suggest that optimal cryosurvival rates may be obtained from 2-cell mouse embryos by a rapid or slow thawing procedure, as has been found for mouse preimplantation embryos at later stages.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Attempts to cryopreserve bovine oocytes result in low survival because of their sensitivity to temperatures near 0 degrees C. This study evaluates the effects of chilling germinal vesicle-stage (GV) oocytes on their formation of microtubules and the meiotic spindle. In experiment 1, five groups of GV-stage oocytes, each consisting of approximately 90 oocytes, were held at 39 degrees C as controls, or at 31 degrees C, or cooled to 24, 4 or 0 degrees C for 10 min. After being treated, all oocytes were cultured at 39 degrees C for 24 hr. Compared to the controls, holding oocytes for 10 min at 31 or 24 degrees C did not significantly alter the formation of normal spindles, but chilling them to 4 or 0 degrees C did. After 24 hr of maturation, the respective percentages of oocytes containing normal meiotic spindles observed in the controls or those held at 31 or 24 degrees C were 69.8%, 71.9%, or 69.4% (P > 0.05). In contrast, the percentages of oocytes with normal spindles after they had been cooled to 4 or 0 degrees C were 44.0% or 29.1%, respectively. In experiment 2, approximately 90 oocytes/group were cooled to 4 degrees C for various times before being warmed and cultured. Regardless of the time of exposure, cooling oocytes to 4 degrees C reduced the formation of normal spindles. The percentages of oocytes cooled to 4 degrees C for 10, 20, 30, 45, or 60 min with normal spindles were 44.0%, 38.4%, 37.5%, 34.5% and 30.9%, respectively. In experiment 3, approximately 60 oocytes per group that had been held at 31 degrees C or cooled to 24, 4 or 0 degrees C for 10 min were allowed to mature for 24 hr before being subjected to in vitro fertilization. The cleavage rates of oocytes subjected to various chilling treatments exhibited the same pattern as that of oocytes with normal spindles. That is, there were no significant differences in cleavage rates among the control oocytes and those held at 31 or 24 degrees C (70.4%, 71.8%, and 72.4%; P > 0.05). However, only 37. 0% and 30.4% of oocytes chilled to 4 or 0 degrees C cleaved after fertilization. These results suggest that: (1) chilling bovine oocytes no lower than 24 degrees C does not reduce formation of normal meiotic spindles; (2) however, chilling oocytes to 4 degrees C or lower for as little as 10 min drastically reduces the formation of normal meiotic spindles and of fertilization; (3) the rates of fertilization and cleavage of resultant zygotes mimic that of formation of normal spindles.  相似文献   

13.
We have previously reported high survival in mouse sperm frozen at 21 degrees C/min to -70 degrees C in a solution containing 18% raffinose in 0.25 x PBS (400 mOsm) and then warmed rapidly at approximately 2000 degrees C/min, especially under lowered oxygen tensions induced by Oxyrase, a bacterial membrane preparation. The best survival rates were obtained in the absence of glycerol. The first concern of the present study was to determine the effects of the cooling rate on the survival of sperm suspended in this medium. The sperm were cooled to -70 degrees C at rates ranging from 0.3 to 530 degrees C/min. The survival curve was an inverted "U" shape, with the highest motility occurring between 27 and 130 degrees C/min. Survival decreased precipitously at higher cooling rates. Decreasing the warming rate, however, decreased survivals at all cooling rates. The motility depression with slow warming was especially evident in sperm cooled at the optimal rates. This fact is consistent with our current view that the frozen medium surrounding sperm cells is in a metastable state, perhaps partly vitrified as a result of the high concentrations of sugar. The decimation of sperm cooled more rapidly than optimum (>130 degrees C/min), even with rapid warming, is consistent with the induction of considerable quantities of intracellular ice at these rates. When glycerol was added to the above medium, motilities were also dependent on the cooling rate, but they tended to be substantially lower than those obtained in the absence of glycerol. The minimum temperature in the above experiments was -70 degrees C. When sperm were frozen to -70 degrees C at optimum rates, lowering the temperature to -196 degrees C had no adverse effect.  相似文献   

14.
Mouse spermatozoa in 18% raffinose and 3.8% Oxyrase in 0.25 x PBS exhibit high motilities when frozen to -70 degrees C at 20-130 degrees C/min and then rapidly warmed. However, survival is <10% when they are frozen at 260 or 530 degrees C/min, presumably because, at those high rates, intracellular water cannot leave rapidly enough to prevent extensive supercooling and this supercooling leads to nucleation and freezing in situ (intracellular ice formation [IIF]). The probability of IIF as a function of cooling rate can be computed by coupled differential equations that describe the extent of the loss of cell water during freezing and from knowledge of the temperature at which the supercooled protoplasm of the cell can nucleate. Calculation of the kinetics of dehydration requires values for the hydraulic conductivity (Lp) of the cell and for its activation energy (Ea). Using literature values for these parameters in mouse sperm, we calculated curves of water volume versus temperature for four cooling rates between 250 and 2000 degrees C/min. The intracellular nucleation temperature was inferred to be -20 degrees C or above based on the greatly reduced motilities of sperm that underwent rapid cooling to a minimum temperature of between -20 and -70 degrees C. Combining that information regarding nucleation temperature with the computed dehydration curves leads to the conclusion that intracellular freezing should occur only in cells that are cooled at 2000 degrees C/min and not in cells that are cooled at 250-1000 degrees C/min. The calculated rate of 2000 degrees C/min for IIF is approximately eightfold higher than the experimentally inferred value of 260 degrees C/min. Possible reasons for the discrepancy are discussed.  相似文献   

15.
T Kojima  T Soma  N Oguri 《Cryobiology》1987,24(3):247-255
The aim of the present study was to examine the effects of various conditions of addition and dilution of dimethyl sulfoxide (Me2SO) and 37 degrees C equilibration, and also the effects of freezing in the solution which was prepared in advance and stored in plastic straws at -20 degrees C on the viability of rabbit morulae thawed rapidly. The embryos were cooled from room temperature to -30 degrees C at 1 degree C/min in the presence of 1.5 M Me2SO using a programmable liquid nitrogen vapor freezing machine with an automatic seeding device, then cooled rapidly, and stored in liquid nitrogen. The frozen straws were thawed rapidly (greater than 1000 degrees C/min). When Me2SO was added in a single step, equilibrated with embryos at 37 degrees C for 15 min and diluted out in a single step, a very high survival was obtained: transferable/recovered, 90%: developed/recovered, 96%. When embryos were pipetted into 1.5 M Me2SO that was prepared in advance, stocked in straws at -20 degrees C, and cooled, the proportions of transferable and developed embryos were equivalent to those of embryos frozen in the solution that was prepared immediately before use.  相似文献   

16.
Over a decade ago it was hypothesized that the rapid cold hardening process allows an organism's overall cold tolerance to track changes in environmental temperature, as would occur in nature during diurnal thermal cycles. Although a number of studies have since focused on characterizing the rapid cold hardening process and on elucidating the physiological mechanisms upon which it is based, the ecological relevance of this phenomenon has received little attention. We present evidence that in Drosophila melanogaster rapid cold hardening can be induced during cooling at rates which occur naturally, and that the protection afforded in such a manner benefits the organism at ecologically relevant temperatures. Drosophila melanogaster cooled at natural rates (0.05 and 0.1 degrees C min(-1)) exhibited significantly higher survival after one hour of exposure to -7 and -8 degrees C than did those directly transferred to these temperatures or those cooled at 0.5, or 1.0 degrees C min(-1). Protection accrued throughout the cooling process (e.g., flies cooled to 0 degrees C were more cold tolerant than those cooled to 11 degrees C). Whereas D. melanogaster cooled at 1.0 degrees C min(-1) had a critical thermal minimum (i.e., the temperature at which torpor occurred) of 6.5+/-0.6 degrees C, those cooled at an ecologically relevant rate of 0.1 degrees C min(-1) had a significantly lower value of 3.9+/-0.9 degrees C.  相似文献   

17.
The temperature at which ice formation occurs in supercooled cytoplasm is an important element in predicting the likelihood of intracellular freezing of cells cooled by various procedures to subzero temperatures. We have confirmed and extended prior indications that permeating cryoprotective additives decrease the ice nucleation temperature of cells, and have determined some possible mechanisms for the decrease. Our experiments were carried out on eight-cell mouse embryos equilibrated with various concentrations (0-2.0 M) of dimethyl sulfoxide or glycerol and then cooled rapidly. Two methods were used to assess the nucleation temperature. The first, indirect, method was to determine the in vitro survival of the rapidly cooled embryos as a function of temperature. The temperatures over which an abrupt drop in survival occurs are generally diagnostic of the temperature range for intracellular freezing. The second, direct, method was to observe the microscopic appearance during rapid cooling and note the temperature at which nucleation occurred. Both methods showed that the nucleation temperature decreased from - 10 to - 15 degrees C in saline alone to between - 38 degrees and - 44 degrees C in 1.0-2.0 M glycerol and dimethyl sulfoxide. The latter two temperatures are close to the homogeneous nucleation temperatures of the solutions in the embryo cytoplasm, and suggest that embryos equilibrated in these solutions do not contain heterogeneous nucleating agents and are not accessible to any extracellular nucleating agents, such as extracellular ice. The much higher freezing temperatures of cells in saline or in low concentrations of additive indicate that they are being nucleated by heterogeneous agents or, more likely, by extracellular ice.  相似文献   

18.
Wang HS  Kang L 《Cryobiology》2005,51(2):220-229
To examine the relationship between cooling rate and cold hardiness in eggs of the migratory locust, Locusta migratoria, the survival rates and cryoprotectant levels of three embryonic developmental stages were measured at different cooling rates (from 0.05 to 0.8 degrees C min(-1)) in acclimated and non-acclimated eggs. Egg survival rate increased with decreasing cooling rate. The concentration of cryoprotectants (myo-inositol, trehalose, mannitol, glycerol, and sorbitol) increased in non-acclimated eggs, but varied significantly in response to different cooling rates in acclimated eggs. The acclimation process (5 degrees C for 3 days) did not increase eggs resistance to quick cooling ("plunge" cooling and 0.8 degrees C min(-1)). Earlier stage embryos were much more sensitive than later stage embryos to the same cooling rates. Time spent at subzero temperatures also had a strong influence on egg survival.  相似文献   

19.
Hatching performances of three embryonic stages of postfertilization rohu (Labeo rohita) (9-, 12-, and 15-h) were examined after treatment with various concentrations (0.5-4.5M) of two cryoprotectants (methanol and propylene glycol) supplemented with 0.1M trehalose. Different lengths of storage (1-48 h) and temperature (-4 degrees C to ambient) were studied. Of the three stages of embryonic development, the 12-h stage proved to be the most suitable stage for low temperature storage, showing the highest percentage of hatch out (72+/-2%) with 2.0M methanol and 0.1M trehalose. Methanol was more useful for storage at higher temperatures and propylene glycol at subzero temperatures. The maximum possible duration of effective storage of 12-h embryos was 31h in 2.0M methanol at 0 degrees C. No hatch out was found beyond 31h of storage with all concentrations of methanol at 0 degrees C. The results of interactions was that the optimal concentration of methanol was 3.0M at 4 degrees C, 2.0M at 0 degrees C, and 1.5M at 4 degrees C. Among three embryonic stages 12-h stage showed better results in trehalose treatment than sucrose. Among all concentrations of trehalose tested 0.1M gave the maximal survival rate of the rohu embryos.  相似文献   

20.
Embryonic development of the sea urchin after low-temperature preservation   总被引:1,自引:0,他引:1  
The sea urchin embryos were cooled to -196 degrees by two-step freezing with the use of 1-1.5 M dimethyl sulfoxide as a cryoprotectant. The embryos were equilibrated with the cryoprotectant for 20-30 min at 0 +/- 2 degrees. At -7 degrees ice crystallization was induced and the embryos were cooled to -38-42 degrees at a rate of 6-8 degrees /min. The embryos were then transferred into liquid nitrogen. The embryos were thawed in a water bath at 19 degrees. No less than 90% of the embryos frozen at the stages of blastula, gastrula, or pluteus were capable of recovery and normal development. The length of cryopreservation did not affect the survival of the embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号