首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
树木年轮 (简称树轮 ) 气候学是监测与重建全球气候变化的重要方法之一。针叶树树轮的生长能反馈出气温的变化, 在高纬度地带尤为明显。该文分析了生长在我国最北部的兴安落叶松 (Larixgmelinii) 与樟子松 (Pinussylvestrisvar.mongolica) 的树轮密度和宽度的特性。落叶松最大密度、晚材平均密度、早晚材宽度和轮宽都远高于樟子松。樟子松的所有密度变量的样本方差都明显高于兴安落叶松, 宽度变量的样本方差却明显低于兴安落叶松。两树种密度变量的差值年表显著相关, 宽度变量之间没有显著相关关系。落叶松与樟子松的晚材密度的形成受 7、8月的最高温控制。另外, 樟子松的晚材还与生长季节的长短相关。落叶松的年轮宽度对生长季节开始前的温度敏感, 而樟子松的轮宽对气候变量没有很好的响应。结果表明, 落叶松与樟子松的树轮最大密度都与生长季后期的温度显著相关, 两树种的树轮信息对气候变化的重建有很大的潜力。  相似文献   

2.
Loblolly pine (Pinus taeda L.) were grown in the field, under non-limiting nutrient conditions, in open-top chambers for 4 years at ambient CO2 partial pressures (pCO2) and with a CO2-enriched atmosphere (+ 30 Pa pCO2 compared to ambient concentration). A third replicate of trees were grown without chambers at ambient pCO2. Wood anatomy, wood density and tree ring width were analysed using stem wood samples. No significant differences were observed in the cell wall to cell lumen ratio within the latewood of the third growth ring formed in 1994. No significant differences were observed in the density of resin canals or in the ratio of resin canal cross-sectional area to xylem area within the same growth ring. Ring widths were significantly wider in the CO2-enrichment treatment for 3 of 4 years compared to the ambient chamber control treatment. Latewood in the 1995 growth ring was significantly wider than that in the ambient control and represented a larger percentage of the total growth-ring width. Carbon dioxide enrichment also significantly increased the total wood specific gravity (determined by displacement). However, when determined as total sample wood density by X-ray densitometry, the density of enriched samples was not significantly higher than that of the ambient chamber controls. Only the 1993 growth ring of enriched trees had a significantly higher maximum latewood density than that of trees grown on non-chambered plots or ambient chambered controls. No significant differences were observed in the minimum earlywood density of individual growth rings between chambered treatments. These results show that the most significant effect of CO2 enrichment on wood production in loblolly pine is its influence on radial growth, measured as annual tree ring widths. This influence is most pronounced in the first year of growth and decreases with age.  相似文献   

3.
Long-term changes in sessile oak (Quercus petraea Liebl.) growth and wood density were studied using cores collected from 99 even-aged high forest stands between 56 and 187 years old, located in northeastern and north-central France. Growth and density trends were tested by analysis of variance and covariance. Two models were applied to two samples, sample A and sample B (sample B being a sub-sample with limited cambial age and calendar date ranges). Model 1 showed a significant increase in radial growth: +35%, +87% and +66% in earlywood width, latewood width and ring width, respectively, from 1811 to 1993 for sample A. Consequently, there was a positive trend in latewood ratio (+14%). A slight decrease in wood density was found: -3.3% and -5.4% for earlywood and latewood density, respectively. Despite an increase in latewood percentage, mean ring density showed a -2.0% decrease. Model 1 applied to a biomass indicator (density2ring width) showed a 62% increase from 10.4 to 16.8 kg m-3 between 1811 and 1993 for sample A. Results for sample B were slightly different: the increase in latewood ratio was not detected. Model 2 showed a change with time in the positive hyperbolic relationship between mean density and ring width. The results are discussed. The decrease in wood density cannot be explained by N atmospheric deposition or by long-term changes in average temperature. Increasing atmospheric CO2 levels cannot be invoked owing to the present lack of studies. Finally, hypotheses concerning long-term changes in wood anatomical characteristics are proposed.  相似文献   

4.
气候变暖背景下杉木年轮密度对气候因子的响应   总被引:1,自引:0,他引:1  
为探讨杉木年轮密度与气候因子的响应关系,采用树木年轮学方法,以60年生杉木种源林为研究对象,测定杉木整轮密度、早材密度、晚材密度、晚材最大密度和早材最小密度,分析在气候变暖条件下主要气候因子(温度、降水、相对湿度)对杉木年轮密度及其生长的影响。结果表明:杉木不同年轮密度指标均受到温度、降水和相对湿度的显著影响。早材密度与当年夏季最高温度、当年5月降水量,最大密度与当年10月、当年秋季降水量,最小密度与前一年秋季降水量、最小相对湿度呈显著负相关。滑动相关分析表明气候因子在短时间尺度上对杉木生长影响的稳定性有显著影响,其中杉木年轮最大密度与当年10月、秋季的平均相对湿度和最小相对湿度,最小密度与当年2、3月的平均相对湿度和前一年秋季的平均相对湿度、最小相对湿度、降水量的负相关关系最为稳定。杉木年轮最小密度对前一年气候要素的响应存在滞后效应,且晚材密度对当年春季的气候要素响应也存在滞后效应。研究结果对开展亚热带针叶树种年轮生态学和年轮气候学研究具有重要参考价值,建议选择武夷山的天然林获取更长年表用于重建古气候。  相似文献   

5.
Questions: (1) How do extreme climatic events and climate variability influence radial growth of conifers (silver fir, Norway spruce, Scots pine)? (2) How do elevation and soil water capacity (SWC) modulate sensitivity to climate? Location: The sampled conifer stands are in France, in western lowland and mountain forests, at elevations from 400 to 1700 m, and an SWC from 50 to 190 mm. Methods: We established stand chronologies for total ring width, earlywood and latewood width for the 33 studied stands (985 trees in total). Responses to climate were analysed using pointer years and bootstrapped response functions. Principal component analysis was applied to pointer years and response function coefficients in order to elucidate the ecological structure of the studied stands. Results: Extreme winter frosts are responsible for greater growth reductions in silver fir than in Norway spruce, especially at the upper elevation, while Scots pine was the least sensitive species. Exceptional spring droughts caused a notable growth decrease, especially when local conditions were dry (altitude<1000 m and SWC<100 mm for silver fir, western lowlands for Scots pine). Earlywood of silver fir depended on previous September and November and current‐year February temperature, after which current June and July water supply influenced latewood. Earlywood of Norway spruce was influenced by previous September temperature, after which current spring and summer droughts influenced both ring components. In Scots pine, earlywood and latewood depended on the current summer water balance. Local conditions mainly modulated latewood formation. Conclusions: If the climate becomes drier, low‐elevation dry stands or trees growing in western lowlands may face problems, as their growth is highly dependent on soil moisture availability.  相似文献   

6.
《Dendrochronologia》2014,32(2):127-136
We examined tree-ring growth in a naturally seeded old-growth slash pine (Pinus elliottii Engelm. var. elliottii) stand in coastal Georgia to develop growth-climate models and reconstruct past climatic conditions during the mid and late 1800s. We generated earlywood, latewood, and annual ring chronologies dating to 1818, based on 40 cores collected from 22 trees at the Wormsloe State Historic Site near Savannah, Georgia, with 28 cores dating before 1900. We used correlation and response function analysis to relate tree-ring growth to climatic variables and El Niño/Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) indices. Water availability (represented by PDSI and secondarily, precipitation) was the most important factor determining growth for all three series, with latewood and September PDSI showing the strongest relationship. Like other species in the southeastern United States, moisture in the late winter and spring was crucial for earlywood development, while latewood and annual growth was enhanced in cooler, wetter summers, particularly with hurricanes bringing rainfall late in the growing season. Earlywood growth was greater following +ENSO (winter) phases and −NAO (winter) phases – for both indices, times when the northern Georgia coast is often relatively cool and wet. A verified split-calibration regression model based on latewood ring growth showed temporal stability and accounted for 27% of the variation in the observed September PDSI record from 1895 to 2009 (mean reduction in error = 0.21 and coefficient of efficiency = 0.05). During the instrument record, the timing of reconstructed and observed dry and moist periods matched closely; prior to that, reconstructed PDSI values indicated drought from the early 1840s to late 1850s – a period of unusually low latewood growth.  相似文献   

7.
We determined the temporal and seasonal dynamics of intra-annual cell formation of south Florida slash pine (Pinus elliottii Engelm. var. densa Little & Dor.), the southernmost native pine in the United States and the foundation species of globally endangered pine rockland ecosystems. To assess intra-annual cambial activity and identify possible relationships between cell production and climatic factors, wood micro-cores were extracted monthly from six trees during the period March 2010 to March 2011. The results confirmed annual growth ring formation in P. elliottii var. densa and indicated that its growing season extends from February to December, with a short period of dormancy that varied little between individuals. Within the growing season, earlywood cells were produced from February to July, latewood cells produced from July to December, and intra-annual density fluctuations (IADFs) occurred in the growth rings of four of six trees between July and August. A principal component analysis indicated a homogeneous response of cambial activity among trees to site-specific climatic factors. The first principal component axis explained 71?% of the total variance in cell production during the study period. Our results indicated that the dynamics of seasonal cambial activity of P. elliottii var. densa are controlled by solar radiation (r?=?0.51, p?<?0.10) in the Florida Keys. The nature of our data allow us to only speculate on the ecophysiological processes responsible for IADFs in P. elliottii var. densa, and additional research is needed to better understand the relationship between their formation and the environment in the Lower Florida Keys.  相似文献   

8.
Radial growth of boreal tree species is only rarely studied in riparian habitats. Here we investigated chronologies of earlywood, latewood, and annual ring widths and blue intensity (BI; a surrogate to latewood density) from riparian lake shore and upland forest interior pines (Pinus sylvestris L.) growing in boreal forest in eastern Finland. Riparian and upland chronologies were compared to examine differences in the pine growth variability and growth response to climatic variation in the two habitats. It was found that the climatic variables showing statistically significant correlations with the tree-ring chronologies were related to snow conditions at the start of the growing season. Deeper snowpack led to reduced upland pine growth, possibly due to delayed snowmelt and thus postponed onset of the growing season. Warm late winters were followed by increased riparian pine growth because of earlier start of the snow-melt season and thus a lower maximum early summer lake level. Moreover, riparian pines reacted negatively to increased rainfall in June, whereas the upland pines showed a positive response. Latewood growth reacted significantly to summer temperatures. The BI chronology showed a strong correlation with warm-season temperatures, indicating an encouraging possibility of summer temperature reconstruction using middle/south boreal pine tree-ring archives.  相似文献   

9.
河北木兰围场油松年轮生态学的初步研究   总被引:9,自引:0,他引:9  
运用树木年轮气候学方法,研究了河北木兰围场油松的生长与气候要素之间的关系.结果表明:油松生长对环境变化十分敏感,以早材最为敏感.5、6月气温与油松生长存在显著的负相关关系;6月的降水和相对湿度对油松早材的生长有促进作用, 上年9月到翌年9月的降水对油松生长有更强的促进作用;12月到翌年3月的相对湿度对油松晚材生长的促进作用较干旱和全轮显著;油松的生长与大尺度气候波动存在一定的相关性.1951—2006年间,围场地区增温明显.随气温的升高,油松生长对温度和降水的敏感性下降,且有向相反方向转变的趋势.百年尺度上5—6月平均气温的重建值与观测值差异较大,说明当地油松的宽度生长对气候因子变化的敏感性波动较大.  相似文献   

10.
近年来逆境导致植物雌雄幼苗的生长出现差异被许多控制实验所证实, 而有关气候变化对雌雄异株植物成树生长的潜在影响尚未引起人们广泛的关注。为进一步揭示气候变化对雌雄植株树木径向和密度生长的不同影响, 该文通过树轮生态学的研究方法, 选择小五台山天然青杨(Populus cathayana)种群为研究对象, 对青杨雌雄植株近30年(1982-2011)的树轮生长特性及其与气候的相关性进行了分析。结果显示: 1)在近30年当地气温不断升高的气候条件下, 雌株的年轮最大密度和晚材平均密度均高于雄株(p < 0.05), 但雌雄植株的径向生长无显著差异; 2)雌雄植株年轮最大密度和宽度差值年表的变化趋势具有一致性, 但在年轮最大密度差值年表的变化上雄株波动幅度大于雌株; 3)青杨雌雄植株年轮密度差值年表对温度响应的月份明显不同。雌株年轮最大密度与当年8月的月平均最高气温显著正相关, 而雄株年轮最大密度与当年1月和4月的气温负相关; 4)生长季前的气候变化对青杨雌雄植株的径向生长均有明显的限制作用。此外, 当年6月的高温对于早材生长的限制作用特别明显。上述结果表明, 雌雄异株植物在树木年轮生长方面对全球气候变暖可能具有不同的响应机制, 雌株比雄株更侧重于密度生长。  相似文献   

11.
《植物生态学报》2014,38(3):270
近年来逆境导致植物雌雄幼苗的生长出现差异被许多控制实验所证实, 而有关气候变化对雌雄异株植物成树生长的潜在影响尚未引起人们广泛的关注。为进一步揭示气候变化对雌雄植株树木径向和密度生长的不同影响, 该文通过树轮生态学的研究方法, 选择小五台山天然青杨(Populus cathayana)种群为研究对象, 对青杨雌雄植株近30年(1982-2011)的树轮生长特性及其与气候的相关性进行了分析。结果显示: 1)在近30年当地气温不断升高的气候条件下, 雌株的年轮最大密度和晚材平均密度均高于雄株(p < 0.05), 但雌雄植株的径向生长无显著差异; 2)雌雄植株年轮最大密度和宽度差值年表的变化趋势具有一致性, 但在年轮最大密度差值年表的变化上雄株波动幅度大于雌株; 3)青杨雌雄植株年轮密度差值年表对温度响应的月份明显不同。雌株年轮最大密度与当年8月的月平均最高气温显著正相关, 而雄株年轮最大密度与当年1月和4月的气温负相关; 4)生长季前的气候变化对青杨雌雄植株的径向生长均有明显的限制作用。此外, 当年6月的高温对于早材生长的限制作用特别明显。上述结果表明, 雌雄异株植物在树木年轮生长方面对全球气候变暖可能具有不同的响应机制, 雌株比雄株更侧重于密度生长。  相似文献   

12.
Summary Dendroclimatological techniques are used to assess the impact of climatic factors on tree-ring width of Larix decidua and L. decidua × L. kaempferi (= L. x eurolepis) growing in two experimental plots established in 1914 in south-west Poland. One plot included F1 progeny grown from seeds of an artificial crossing between European and Japanese larch. The other plot included progeny from maternal trees of European larch. Total ring width, earlywood width and latewood widths were dated, standardized and related to monthly climatic data using response function and stepwise multiple regression analyses. Wide rings in larch are associated with high precipitation in May–July, cool conditions in July–September of the preceding year, and cool dry conditions in August. Ring widths in L. x eurolepis are more dependent upon precipitation than ring widths in L. decidua. Latewood widths in L. x eurolepis are more dependent on high temperatures in June and July than latewood in L. decidua as well as total width and earlywood measurements. Variations in latewood were relatively independent of variations in earlywood and total wood. The variability of ring widths in these larches was greater than the variability reported for larches in many alpine sites and for other conifer species in some regions of North America.  相似文献   

13.
14.
The Azores Archipelago, located in the North Atlantic Ridge, experiences heavy rainfall and mild temperatures with weak seasonal differences due to oceanic influence. To our knowledge, there have been no dendrochronological studies in the Azores. The aim of this study is to explore the dendrochronological potential of Pinus pinaster Ait. growing in this archipelago and to determine what limiting factor is regulating tree growth. To do so, we have sampled adult maritime pine trees growing in a plantation, in the Pico island of the Azores.Tree ring boundaries were not always easily distinguished, suggesting that in some years cambial activity did not stop during winter. Despite this, it was possible to successfully crossdate the tree-ring series and to establish a tree-ring width chronology with a strong common signal. Climatic correlations revealed a positive response to spring precipitation but no temperature signal in the tree-ring width chronology. Tree-ring width was also negatively correlated with the North Atlantic Oscillation (NAO) and the sea level pressure (SLP) in May − June.Intra-annual density fluctuations (IADFs), which are anatomical features formed in response to variations in environmental conditions during the growing season, were present in 85% of the tree rings. IADFs were identified based on its position within the ring: type E+, characterized as a transition wood from early- to latewood; type L, the most frequent, characterized as earlywood-like cells within latewood; and type L+, characterized as earlywood-like cells between latewood and earlywood of the next tree ring. Each IADF type presented a unique climatic signal: type E+ was positively correlated with early summer precipitation and early spring temperature; type L was positively correlated with early autumn precipitation and temperature; and type L+ was positively correlated with late autumn precipitation.In conclusion, the tree-ring width chronology established for maritime pine growing in the Pico Island of Azores contains a clear climatic signal for spring precipitation, whereas IADFs frequency correlated better with precipitation later in the growing season. For this reason, we suggest that IADFs should be included in future dendrochronological studies in the Macaronesia Biogeographical region since they can improve the climatic signal present in tree-ring width chronologies.  相似文献   

15.
以塞罕坝机械林场华北落叶松纯林及华北落叶松-白桦混交林为对象,研究林地边缘华北落叶松边界木与林内木径向生长、年轮细胞大小及数量的差异,分析林缘对不同林分类型华北落叶松径向生长及细胞特征的影响。结果表明: 纯林中边界木的径向生长显著快于林内木,年轮总宽、早材和晚材总生长量在边界木较林内木分别增加48.9%、58.9%和29.6%,而混交林边界木与林内木的径向生长差距并不明显。纯林边界木早材细胞总数、早材大细胞和小细胞数量较林内木分别增加63.3%、55.6%和70.0%,晚材细胞总数、晚材大细胞和小细胞数量边界木较林内木分别增加35.4%、37.5%和28.5%,而早晚材细胞大小在边界木与林内木间无显著差异。混交林边界木早晚材细胞数量与林内木无显著差异,但边界木早材细胞大小较林内木增大50.0%,边界木早材最大细胞、最小细胞、大细胞及小细胞的大小较林内木分别增大28.6%、33.3%、16.6%和25.0%。通过混交的方式营造混交林可以有效地缓解林缘导致的纯林中边界木生长过快而林内木生长较慢的现象。  相似文献   

16.
Non-structural carbohydrates (NSC) reserves are crucial for trees to cope with weather extremes, thus to ensure their survival and ecological plasticity. The NSC reserves can depend on social status, suggesting uneven plasticity of trees at the stand level. In stemwood of Scots pine (Pinus sylvestris L.), which is a widespread and important species, NSC reserves are stored in parenchyma in wood rays (WR). The quantity of WRs is adjusted intra-annually, allowing retrospective analysis of factors affecting their formation. Accordingly, the differences in WR quantity in stemwood of dominant and intermediate (canopy trees with reduced and narrow crowns) maturing Scots pine were assessed by quantitative wood anatomy. Tangential cuts from the outermost 30 tree-rings were analysed. The relative ray area was intermediate, i.e. covering about 5% of the tangential cut, yet expressed high individuality among the trees. The size and amount of WR mainly differed between the earlywood and latewood; WRs in latewood were higher although narrower in comparison to earlywood, yet their total amount was higher in earlywood. Canopy status had only a slight effect, as quantity and height of WR tended to be higher for the intermediate trees, particularly in earlywood. The size and quantity of WR expressed inter-annual variation, which was mainly related to the meteorological conditions prior to the formation of the tree-ring (previous summer and autumn) indicating legacy effects of climatic factors on NSC and susceptibility of trees to cumulative effects of weather extremes. However, the climatic signals in the inter-annual variation of WR were weaker than observed before, likely due to location of the studied stand in the mid-part of the species range. Nevertheless, the observed differences in mean values and inter-annual variation of WR suggested a within-species diversity of carbon allocation patterns, supporting adaptability of the species.  相似文献   

17.
Knowledge of tree growth/climate response relationships is important to dendroecological studies and dendroclimatic reconstructions, particularly in the Southeastern Coastal Plain where few such studies have been attempted. To this end, we developed tree-ring chronologies of total ring width, earlywood width, and latewood width from longleaf pine (Pinus palustris Mill.) at three sites in the Southeastern Coastal Plain to examine the climate–growth relationships for this tree species. The length of these chronologies is unprecedented for southern pine chronologies in the Southeast. We compared the tree-ring chronologies to monthly temperature, precipitation, Palmer drought severity index (PDSI), and Palmer hydrological drought index (PHDI) data from the pertinent climate divisions. We found that PDSI and PHDI have the highest correlation with longleaf pine growth, and the strongest relationships between longleaf pine growth and these variables occur between July and November. Precipitation in the spring and summer was also positively related to growth at all sites. The relationship between temperature and growth was the weakest among all climate variables, but warm summer temperatures had a consistent, negative relationship with longleaf pine growth. The climate signal in the latewood was generally more robust than for total ring width and earlywood width.  相似文献   

18.
We established a five-century long tree-ring chronology partitioned between earlywood and latewood growth to examine intra-annual climate response and attempt to establish linkages to agricultural production. Longleaf pine earlywood and latewood width chronologies spanned the period 1491–2017 (527 years) and constitute one of the longest records achieved for this species. High monthly correlations were found between latewood growth and summer-fall Palmer Drought Z-Index. Correlations were consistently significantly positive for June through October. Intra-annual growth of earlywood and latewood were positively correlated for the full period of record, but exhibited variability in correlation strength through time. Conversely, earlywood and prior-year latewood were also frequently correlated, but correlations were found to switch between positive and negative association, possibly in response to Atlantic Ocean temperatures. Annual yields of major crops are coupled with latewood growth, representing a new and potentially valuable proxy for linking agricultural yields to climate proxies over multiple centuries.  相似文献   

19.
为评估径级对树木的气候-生长关系的影响,建立太行山南麓低海拔地区栓皮栎全轮、早材、晚材宽度年表,对比两个径级栓皮栎人工林径向生长对气候响应的敏感性差异,使用叠加时代分析揭示干旱事件对不同径级栓皮栎的影响,为气候变化背景下研究区栓皮栎人工林可持续经营提供参考数据。结果表明: 大径级栓皮栎全轮、晚材年表的平均敏感度高于小径级栓皮栎年表,但小径级栓皮栎早材年表的平均敏感度高于大径级栓皮栎早材年表。晚材是树轮气候响应最敏感的组分。两径级栓皮栎标准年表指数对当年气候因子的响应模式相似。小径级栓皮栎全轮、晚材生长对当年6—8月的气候因子更敏感,其早材对生长季之前(1—2月)气候因子更敏感;而大径级栓皮栎早材对去年的气候因子更敏感,有更强的滞后效应。研究区栓皮栎对干旱非常敏感,干旱年份两径级栓皮栎全轮、晚材的径向生长量显著低于上一年,且大径级栓皮栎的减少幅度更高,但干旱后大径级栓皮栎生长恢复程度更高。  相似文献   

20.
雷帅  张劲松  孟平  何子兵  程顺  孙守家 《生态学报》2020,40(13):4479-4492
通过树木年代学方法,测定了毛乌素和塞罕坝相同密度樟子松(Pinus sylvestris var.mongolica)全木(Ringwood,RW)、早材(Earlywood,EW)和晚材(Latewood,LW)宽度,计算胸高断面积增量(Basal area increment,BAI),并建立了樟子松年轮宽度年表,分析其对气候响应的差异。结果显示,毛乌素(Mu Us)樟子松轮宽随树龄呈"升-降"的曲线变化,塞罕坝(Saihanba)呈线性下降,两地樟子松BAI变化相似,呈"升-降"的曲线变化,EW占RW的65%—70%,表明EW对RW贡献较大。生长期间,毛乌素樟子松早晚材比例保持平稳,塞罕坝EW/RW值下降,LW/RW值上升,两地干旱事件均使LW/RW值下降,EW/RW值上升。差值年表(Residual chronology,RES)相关性分析显示,毛乌素樟子松径向生长主要与4、7月平均降雨,7月标准化降水蒸散发指数(Standardized precipitation evapotranspiration index,SPEI),3、8月平均温度及上年12月和当年3月最低温度呈正相关关系,与上年11月和当年6月最高温度呈负相关关系。塞罕坝樟子松径向生长主要与7、8月平均降雨、SPEI和最低温度呈正相关关系,与当年3、5月最高温度呈负相关关系。结构方程模型表明,毛乌素年平均温度和年SPEI对樟子松RW产生极显著负效应,年平均降雨对RW产生显著正效应,年平均降雨对EW产生极显著正效应,年最低温度和年平均温度分别对LW产生极显著正/负效应。塞罕坝樟子松径向生长对其年气象因子响应与毛乌素相似,但有部分差别,塞罕坝年平均降雨对LW产生极显著负效应,但对EW未达到显著性水平,且年SPEI对塞罕坝樟子松RW和EW产生的干旱胁迫效应明显小于毛乌素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号