首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One strategy for controlling transmission of insect-borne disease involves replacing the native insect population with transgenic animals unable to transmit disease. Population replacement requires a drive mechanism to ensure the rapid spread of linked transgenes, the presence of which may result in a fitness cost to carriers. Medea selfish genetic elements have the feature that when present in a female, only offspring that inherit the element survive, a behavior that can lead to spread. Here, we derive equations that describe the conditions under which Medea elements with a fitness cost will spread, and the equilibrium allele frequencies are achieved. Of particular importance, we show that whenever Medea spreads, the non-Medea genotype is driven out of the population, and we estimate the number of generations required to achieve this goal for Medea elements with different fitness costs and male-only introduction frequencies. Finally, we characterize two contexts in which Medea elements with fitness costs drive the non-Medea allele from the population: an autosomal element in which not all Medea-bearing progeny of a Medea-bearing mother survive, and an X-linked element in species in which X/Y individuals are male. Our results suggest that Medea elements can drive population replacement under a wide range of conditions.  相似文献   

2.
3.
One strategy to control mosquito-borne diseases, such as malaria and dengue fever, on a regional scale is to use gene drive systems to spread disease-refractory genes into wild mosquito populations. The development of a synthetic Medea element that has been shown to drive population replacement in laboratory Drosophila populations has provided encouragement for this strategy but has also been greeted with caution over the concern that transgenes may spread into countries without their consent. Here, we propose a novel gene drive system, inverse Medea, which is strong enough to bring about local population replacement but is unable to establish itself beyond an isolated release site. The system consists of 2 genetic components--a zygotic toxin and maternal antidote--which render heterozygous offspring of wild-type mothers unviable. Through population genetic analysis, we show that inverse Medea will only spread when it represents a majority of the alleles in a population. The element is best located on an autosome and will spread to fixation provided any associated fitness costs are dominant and to very high frequency otherwise. We suggest molecular tools that could be used to build the inverse Medea system and discuss its utility for a confined release of transgenic mosquitoes.  相似文献   

4.
The Population Dynamics of Maternal-Effect Selfish Genes   总被引:5,自引:1,他引:4       下载免费PDF全文
M. J. Wade  R. W. Beeman 《Genetics》1994,138(4):1309-1314
We use population genetic methods to describe the expected population dynamics of the selfish-gene chromosomal factor, Medea (maternal-effect dominant embryonic arrest), recently discovered in flour beetles, genus Tribolium. In the absence of deleterious effects on gross fecundity, Medea factors spread to fixation for all degrees of maternal-effect lethality greater than zero and the rate of spread is proportional to the strength of the maternal-effect. The rate of spread when rare is very slow, on the order of the frequency squared p(2), but this can be accelerated to order p when there is density regulation at the level of families as is known to occur for some genetic strains of flour beetles. When there are general deleterious effects of Medea on fecundity, affecting all offspring genotypes in addition to the genotype-specific maternal effect, then a stable interior polymorphism is possible. The location of the interior equilibrium and the probability of loss or fixation are sensitive to the degree of dominance of these fecundity effects.  相似文献   

5.
6.
7.
Li J  Li WX 《Nature cell biology》2006,8(12):1407-1414
Signalling by the TGF-beta superfamily member and BMP orthologue Decapentaplegic (Dpp) is crucial for multiple developmental programmes and has to be tightly regulated. Here, we demonstrate that the Drosophila Dpp pathway is negatively regulated by eukaryotic translation initiation factor 4A (eIF4A), which mediates activation-dependent degradation of the Dpp signalling components Mad and Medea. eIF4A mutants exhibit increased Dpp signalling and accumulation of Mad and phospho-Mad. Overexpression of eIF4A decreases Dpp signalling and causes loss of Mad and phospho-Mad. Furthermore, eIF4A physically associates with Mad and Medea, and promotes their degradation following activation of Dpp signalling in a translation-independent manner. Finally, we show that eIF4A acts synergistically with, but independently of, the ubiquitin ligase DSmurf, indicating that a dual system controls SMAD degradation. Thus, in addition to being an obligatory component of the cap-dependent translation initiation complex, eIF4A has a novel function as a specific inhibitor of Dpp signalling that mediates the degradation of SMAD homologues.  相似文献   

8.
Pathways for regulation of signaling by transforming growth factor-β family members are poorly understood at present. The best genetically characterized member of this family is encoded by the Drosophila gene decapentaplegic (dpp), which is required for multiple events during fly development. We describe here the results of screens for genes required to maximize dpp signaling during embryonic dorsal-ventral patterning. Screens for genetic interactions in the zygote have identified an allele of tolloid, as well as two novel alleles of screw, a gene recently shown to encode another bone morphogenetic protein-like polypeptide. Both genes are required for patterning the dorsalmost tissues of the embryo. Screens for dpp interactions with maternally expressed genes have identified loss of function mutations in Mothers against dpp and Medea. These mutations are homozygous pupal lethal, engendering gut defects and severely reduced imaginal disks, reminiscent of dpp mutant phenotypes arising during other dpp-dependent developmental events. Genetic interaction phenotypes are consistent with reduction of dpp activity in the early embryo and in the imaginal disks. We propose that the novel screw mutations identified here titrate out some component(s) of the dpp signaling pathway. We propose that Mad and Medea encode rate-limiting components integral to dpp pathways throughout development.  相似文献   

9.
Gene drive systems are genetic elements capable of spreading into a population even if they confer a fitness cost to their host. We consider a class of drive systems consisting of a chromosomally located, linked cluster of genes, the presence of which renders specific classes of offspring arising from specific parental crosses unviable. Under permissive conditions, a number of these elements are capable of distorting the offspring ratio in their favor. We use a population genetic framework to derive conditions under which these elements spread to fixation in a population or induce a population crash. Many of these systems can be engineered using combinations of toxin and antidote genes, analogous to Medea, which consists of a maternal toxin and zygotic antidote. The majority of toxin-antidote drive systems require a critical frequency to be exceeded before they spread into a population. Of particular interest, a Z-linked Medea construct with a recessive antidote is expected to induce an all-male population crash for release frequencies above 50%. We suggest molecular tools that may be used to build these systems, and discuss their relevance to the control of a variety of insect pest species, including mosquito vectors of diseases such as malaria and dengue fever.  相似文献   

10.
A subset of BMP-responsive enhancer elements are characterized by pairing of a GC-rich Smad1 binding site and an SBE-type Smad4 binding site. Such paired, or bipartite, sites are in some cases just 5 bp apart and thus might be contacted by a single Smad1-Smad4 complex. Other potential pairings are separated as much as 60 bp but it is not known whether such longer distances can be spanned by a Smad1-Smad4 complex, indeed binding of native Smad1-Smad4 complexes to any of these bipartite elements has yet to be reported. Here we report that a complex of the homologous Drosophila Smad proteins, Mad and Medea, is capable of concerted binding to GC-rich and SBE sites separated by as much as 20 bp. The wider the separation, the more severely binding affinity was reduced by shortening of the linker region that tethers the DNA binding domain of Medea. In contrast, length of the Mad linker did not affect the allowed distance between paired sites, rather it contributes specifically to Mad contact with the GC-rich site. Finally, we show that Smad1 and Smad4 can participate in binding to bipartite sites.  相似文献   

11.
12.
Genetic evidence suggests that the Drosophila ectoderm is patterned by a spatial gradient of bone morphogenetic protein (BMP). Here we compare patterns of two related cellular responses, both signal-dependent phosphorylation of the BMP-regulated R-SMAD, MAD, and signal-dependent changes in levels and sub-cellular distribution of the co-SMAD Medea. Our data demonstrate that nuclear accumulation of the co-SMAD Medea requires a BMP signal during blastoderm and gastrula stages. During this period, nuclear co-SMAD responses occur in three distinct patterns. At the end of blastoderm, a broad dorsal domain of weak SMAD response is detected. During early gastrulation, this domain narrows to a thin stripe of strong SMAD response at the dorsal midline. SMAD response levels continue to rise in the dorsal midline region during gastrulation, and flanking plateaus of weak responses are detected in dorsolateral cells. Thus, the thresholds for gene expression responses are implicit in the levels of SMAD responses during gastrulation. Both BMP ligands, DPP and Screw, are required for nuclear co-SMAD responses during these stages. The BMP antagonist Short gastrulation (SOG) is required to elevate peak responses at the dorsal midline as well as to depress responses in dorsolateral cells. The midline SMAD response gradient can form in embryos with reduced dpp gene dosage, but the peak level is reduced. These data support a model in which weak BMP activity during blastoderm defines the boundary between ventral neurogenic ectoderm and dorsal ectoderm. Subsequently, BMP activity creates a step gradient of SMAD responses that patterns the amnioserosa and dorsomedial ectoderm.  相似文献   

13.
The Drosophila visual system consists of the compound eyes and the optic ganglia in the brain. Among the eight photoreceptor (R) neurons, axons from the R1-R6 neurons stop between two layers of glial cells in the lamina, the most superficial ganglion in the optic lobe. Although it has been suggested that the lamina glia serve as intermediate targets of R axons, little is known about the mechanisms by which these cells develop. We show that DPP signaling plays a key role in this process. dpp is expressed at the margin of the lamina target region, where glial precursors reside. The generation of clones mutant for Medea, the DPP signal transducer, or inhibition of DPP signaling in this region resulted in defects in R neuron projection patterns and in the lamina morphology, which was caused by defects in the differentiation of the lamina glial cells. glial cells missing/glial cells deficient (gcm; also known as glide) is expressed shortly after glia precursors start to differentiate and migrate. Its expression depends on DPP; gcm is reduced or absent in dpp mutants or Medea clones, and ectopic activation of DPP signaling induces ectopic expression of gcm and REPO. In addition, R axon projections and lamina glia development were impaired by the expression of a dominant-negative form of gcm, suggesting that gcm indeed controls the differentiation of lamina glial cells. These results suggest that DPP signaling mediates the maturation of the lamina glia required for the correct R axon projection pattern by controlling the expression of gcm.  相似文献   

14.
Selfish genetic elements (SGEs) are DNA sequences that are transmitted to viable offspring in greater than Mendelian frequencies. Medea SGEs occur naturally in some populations of red flour beetle (Tribolium castaneum) and are expected to increase in frequency within populations and spread among populations. The large‐scale U.S. distributions of Medea‐4 (M4) had been mapped based on samples from 1993 to 1995. We sampled beetles in 2011–2014 and show that the distribution of M4 in the United States is dynamic and has shifted southward. By using a genetic marker of Medea‐1 (M1), we found five unique geographic clusters with high and low M1 frequencies in a pattern not predicted by microsatellite‐based analysis of population structure. Our results indicate the absence of rigid barriers to Medea spread in the United States, so assessment of what factors have limited its current distribution requires further investigation. There is great interest in using synthetic SGEs, including synthetic Medea, to alter or suppress pest populations, but there is concern about unpredicted spread of these SGEs and potential for populations to become resistant to them. The finding of patchy distributions of Medea elements suggests that released synthetic SGEs cannot always be expected to spread uniformly, especially in target species with limited dispersal.  相似文献   

15.
16.
Insects carry out essential ecological functions, such as pollination, but also cause extensive damage to agricultural crops, and transmit human diseases such as malaria and dengue fever. Advances in insect transgenesis are making it increasingly feasible to engineer genes conferring desirable phenotypes, and gene drive systems are required to spread these genes into wild populations. Medea provides one solution, being able to spread into a population from very low initial frequencies through the action of a maternally-expressed toxin linked to a zygotically-expressed antidote. Several other toxin-antidote combinations are imaginable that distort the offspring ratio in favor of a desired transgene, or drive the population towards an all-male crash. We explore two such systems--Semele, which is capable of spreading a desired transgene into an isolated population in a confined manner; and Merea, which is capable of inducing a local population crash when located on the Z chromosome of a Lepidopteron pest.  相似文献   

17.
18.
The ability of secreted Transforming Growth Factor β (TGFβ) proteins to act as morphogens dictates that their influence be strictly regulated. Here, we report that maternally contributed fat facets (faf; a homolog of USP9X/FAM) is essential for proper interpretation of the zygotic Decapentaplegic (Dpp) morphogen gradient that patterns the embryonic dorsal-ventral axis. The data suggest that the loss of faf reduces the activity of Medea (a homolog of Smad4) below the minimum necessary for adequate Dpp signaling and that this is likely due to excessive ubiquitylation on a specific lysine. This study supports the hypothesis that the control of cellular responsiveness to TGFβ signals at the level of Smad4 ubiquitylation is a conserved mechanism required for proper implementation of a morphogen gradient.  相似文献   

19.
Both men and women prefer someone with a “good sense of humor” as a relationship partner. However, two recent studies have shown that men are not attracted to funny women, suggesting the sexes use the phrase good sense of humor differently. To investigate this question, we measured the importance participants placed on a partner's production of humor vs. receptivity to their own humor. Men emphasized the importance of their partners' receptivity to their own humor, whereas women valued humor production and receptivity equally. In a second task, participants chose whether they preferred a person who only produced humor or a person who only appreciated their own humor for several types of relationships. Women preferred those who produced humor for all types of relationships, whereas men preferred those who were receptive to their own humor, particularly for sexual relationships. Our results suggest that sexual selection may have operated on men's and women's preferences during humorous interaction in dramatically different ways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号