首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In our laboratory, EAPc-7 a strain having higher aspartase activity was derived from Escherichia coli ATCC 11303. For the improvement of l-aspartic acid productivity using EAPc-7 cells immobilized in -carrageenan, it was necessary to eliminate the fumarase activity which converts fumaric acid to l-malic acid. Several treatments for specifically eliminating fumarase activity from EAPc-7 cells were tested and it was found that when EAPc-7 cells were treated in a culture broth (pH 4.9) containing 50 mM l-aspartic acid at 45° C for 1 h, fumarase activity was almost completely eliminated without inactivation of the aspartase.The treated cells, immobilized in -carrageenan, were used for continuous production of l-aspartic acid from ammonium fumarate. The formation of l-malic acid was negligible and the half-life of the immobilized preparation was 126 days.Productivity of immobilized preparation of treated EAPc-7 cells in l-aspartic acid production was six times of that of the parent cell preparation.  相似文献   

2.
Summary A process for l-phenylalanine production was studied using a tyrosine auxotrophic regulatory mutant of Escherichia coli, resistant to both -2-thienyl-dl-alanine and p-fluoro-dl-phenylalanine. Fermentations were carried out in a 30-1 fermentor with intermittent feeding of glucose plus phosphate. The mutant accumulated l-phenylalanine in the fermentation broth up to 15 g/l at pH 7.0 and 33°C. Column chromatography on a strong cation exchanger was employed as the most effective step in the purification of l-phenyl-alanine from the broth. This step brought about 4-fold concentration of the product with 96% recovery.  相似文献   

3.
Summary To establish an efficient production method for l-phenylalanine, the production of l-phenylalanine from phenylpyruvate by Paracoccus denitrificans pFPr-1 containing aminotransferase activity was investigated. By using intact cells, 0.74M l-phenylalanine was produced from 0.8M phenylpyruvate (conversion yield, 92.5%). Moreover, by using immobilized cells with -carrageenan, when the space velocity was 0.1 h-1 at 30°C, 0.135 M l-phenylalanine was produced from 0.15 M phenylpyruvate (conversion yield, 90%). The half-life of the l-phenylalanine-forming activity of the column was estimated to be about 30 days at 30°C.  相似文献   

4.
Pseudomonas aeruginosa PA01 was found to utilise both thed- andl-isomers of -alanine and also -alanine as sole sources of carbon and energy for growth. Enzymological studies of wild-type cultures and comparison with mutants deficient in growth upon one or more isomers of alanine led to the following conclusions: (i) utilisation ofd-alanine involved its direct oxidation by an inducible, membrane-bound, cytochrome-linked dehydrogenase; (ii) utilisation ofl-alanine required its conversion to the directly oxidisabled-form by a soluble racemase; (iii) utilisation of -alanine, likel-alanine, involves both the racemase andd-alanine dehydrogenase enzymes, but in addition must involve other enzymes the identity, of which is still speculative; (iv)P. aeruginosa, likeEscherichia coli, appears to take upd-alanine andl-alanine by means of two specific permeases.Abbreviation DCPIP 2,6-dichlorophenol-indophenol  相似文献   

5.
Ruan L  He W  He J  Sun M  Yu Z 《Antonie van Leeuwenhoek》2005,87(4):283-288
Previous work from our laboratory has shown that most of Bacillus thuringiensis strains possess the ability to produce melanin in the presence of l-tyrosine at elevated temperatures (42 °C). Furthermore, it was shown that the melanin produced by B. thuringiensis was synthesized by the action of tyrosinase, which catalyzed the conversion of l-tyrosine, via l-DOPA, to melanin. In this study, the tyrosinase-encoding gene (mel) from B. thuringiensis 4D11 was cloned using PCR techniques and expressed in Escherichia coli DH5 . A DNA fragment with 1179 bp which contained the intact mel gene in the recombinant plasmid pGEM1179 imparted the ability to synthesize melanin to the E. coli recipient strain. The nucleotide sequence of this DNA fragment revealed an open reading frame of 744 bp, encoding a protein of 248 amino acids. The novel mel gene from B.thuringiensis expressed in E. coli DH5 conferred UV protection on the recipient strain.  相似文献   

6.
Glutamine synthetase (GS, EC 6.3.1.2) from Nocardia asteroides was purified to homogeneity by ammonium sulfate precipitation, Sephadex G-150, and DEAE-Sepharose chromatography. The native molecular weight of the purified enzyme was determined to be 720 kDa. SDS-PAGE analysis of the purified preparation revealed a single band corresponding to 59 kDa, indicating the possible presence of 12 identical subunits. The divalent cations Mn2- and Mg2+ were found to be essential for optimal transferase and biosynthetic activity, respectively. The optimal pH and temperature for both activities of the enzyme were found to be 7.2 and 50°C. Amino acids such as l-alanine, glycine, and aspartate inhibited the GS activity. The K m values for the substrates of the biosynthetic reaction ATP, glutamate, and ammonium chloride were found to be 400 m, 7.7mm, and 200 m, respectively. Addition of ammonium chloride to the nitrogen-limited culture resulted in a decrease of GS transferase and biosynthetic activities. Phosphodiesterase treatment of the extract from ammonia-shocked cultures showed an increase in GS transferase activity. The results indicate the possible regulation of GS by covalent modification.  相似文献   

7.
Summary We have confirmed previous demonstrations of sodium gradient-stimulated transport ofl-alanine, phenylalanine, proline, and -alanine, and in addition demonstrated transport of N-methylamino-isobutyric acid (MeAIB) and lysine in isolated rabbit kidney brush border vesicles. In order to probe the multiplicity of transport pathways available to each of these14C-amino acids, we measured the ability of test amino acids to inhibit tracer uptake. To obtain a rough estimate of nonspecific effects, e.g., dissipation of the transmembrane sodium electrochemical potential gradient, we measured the ability ofd-glucose to inhibit tracer uptake.l-alanine and phenylalanine were completely mutually inhibitory. Roughly 75% of the14C-l-alanine uptake could be inhibited by proline and -alanine, while lysine and MeAIB were no more effective thand-glucose. Roughly 50% of the14C-phenylalanine uptake could be inhibited by proline and -alanine; lysine was as effective as proline and -alanine, and the effects of pairs of these amino acids at 50mm each were not cumulative. MeAIB was no more effective thand-glucose. We conclude that three pathways mediate the uptake of neutral,l, -amino acids. One system is inaccessible to lysine, proline, and -alanine. The second system carries a major fraction of thel-alanine flux; it is sensitive to proline and -alanine, but not to lysine. The third system carries half the14C-phenylalanine flux, and it is sensitive to proline, lysine, and -alanine. Since the neutral,l, -amino acid fluxes are insensitive to MeAIB, we conclude that they are not mediated by the classicalA system, and since all of thel-alanine flux is inhibited by phenylalanine, we conclude that it is not mediated by the classicalASC system.l-alanine and phenylalanine completely inhibit uptake of lysine. MeAIB is no more effective thand-glucose in inhibiting lysine uptake, while proline and -alanine appear to inhibit a component of the lysine flux. We conclude that the14C-lysine fluxes are mediated by two systems, one, shared with phenylalanine, which is inhibited by proline, -alanine, andl-alanine, and one which is inhibited byl-alanine and phenylalanine but inaccessible to proline, -alanine, and MeAIB. Fluxes of14C-proline and14C-MeAIB are completely inhibited byl-alanine, phenylalanine, proline, and MeAIB, but they are insensitive to lysine. Proline and MeAIB, as well as alanine and phenylalanine, but not lysine, inhibit14C--alanine uptake. However, -alanine inhibits only 38% of the14C-proline uptake and 57% of the MeAIB uptake. We conclude that two systems mediate uptake of proline and MeAIB, and that one of these systems also transports -alanine.  相似文献   

8.
Cloned penicillin G acylase (PGA) from Escherichia coli ATCC 11105 was mutagenized in vivo using N-methyl-N-nitrosoguanidine. Mutants of PGA were selected by their ability to allow growth of the host strain E. coli M8820 with the new substrates phenylacetyl--alanyl-l-proline (PhAc-Ala-Pro) phthalyl-l-leucine (Pht-Leu) or phthalylglycyl-l-proline (Pht-Gly-Pro) as sole source of proline and leucine respectively. PGA mutants were purified and immobilized onto spherical methacrylate (G-gel). The immobilized form of mutant PGA selected with (PhAc-gbAla-Pro) hydrolyzed 95% of 9 mmol penicillin G 30% faster than wild-type PGA using the same specific activities. The specific activity of the soluble enzyme was 2.7-fold, and inhibition by phenylacetic acid was halved. Immobilized PGA mutant selected with Pht-Gly-Pro hydrolyzed penicillin G 20% faster than wild-type PGA. The K m of the soluble enzyme was increased 1.7-fold. Furthermore, the latter two mutants were also 3.6-fold more stable at 45° C than wild-type PGA. The specific activity of the mutant selected with Pht-Leu was 6.3-fold lower, and inhibition by phenylacetic acid was increased 13-fold.  相似文献   

9.
Summary To develop a practical process for d-alanine production from dl-alanine, we screened 107 yeasts for their asymmetric degrading activity against dl-alanine. Candida maltosa JCM1504 degraded the l-isomer ten times more rapidly than the d-isomer. The cells of this strain were used as a biocatalyst for eliminating the l-isomer. However, when the degradation reaction was conducted in the presence of a high concentration of dl-alanine, the pH of the reaction mixture was rapidly increased by the liberation of ammonia from l-alanine, and consequently the reaction stopped. This hindrance was overcome by controlling the pH value at 6.0 with H2SO4 during the reaction. Additionally, we found that the maximum rate of l-isomer degradation was obtained at 30° C and pH 6.0 under conditions of high aeration (1.0 vvm) and agitation (1200 rpm). Under the optimal conditions, the l-isomer of 200 g dl-alanine/l was completely degraded within 40 h and 90 g d-alanine/l remained in the reaction mixture. d-Alanine was easily isolated from the reaction mixture. The chemical and optical purity of the d-isomer product so obtained was 99.0% and 99.9% enantiomeric excess, respectively.Offprint requests to: I. Umemura  相似文献   

10.
Agaricus bisporus glutamine synthetase, a key enzyme in nitrogen metabolism, was purified to apparent homogeneity. The native enzyme appeared to be a GS-II type enzyme. It has a molecular weight of 325 kDa and consists of eight 46-kDa subunits. Its pI was found at 4.9. Optimal activity was found at 30°C. The enzyme had low thermostability. Stability declined rapidly at temperatures above 20°C. The enzyme exhibits a K m for glutamate, ammonium, and ATP of 22mm, 0.16mm and 1.25mm respectively in the biosynthetic reaction, with optimal activity at pH 7. The enzyme is slightly inhibited by 10mm concentrations of l-alanine, l-histidine, l-tryptophan, anthranilic acid, and 5-AMP and was strongly inhibited by methionine sulfoximine and phosphinothricine. For the transferase reaction K i-values were 890 m and 240 m for methionine sulfoximine and phosphinothricine respectively. For the biosynthetic reaction K i was 17 m for both methionine sulfoximine and phosphinothricine.  相似文献   

11.
Leucine dehydrogenase (l-leucine: NAD+ oxidoreductase, deaminating, EC 1.4.1.9) has been purified to homogeneity from a moderate thermophilic bacterium, Bacillus stearothermophilus. Am improved method of preparative slab gel electrophoresis was used effectively to purify it. The enzyme has a molecular mass of about 300,000 and consists of six subunits with identical molecular mass (Mr, 49,000). The enzyme does not lose its activity by heat treatment at 70° C for 20 min, and incubation in the pH range of 5.5–10.0 at 55° C for 5 min. It is stable in 10 mM phosphate buffer (pH 7.2) containing 0.01% 2-mercaptoethanol at over 1 month, and is resistant to detergent and ethanol treatment. The enzyme catalyzes the oxidative deamination of branched-chain l-amino acids and the reductive amination of their keto analogs in the presence of NAD+ and NADH, respectively, as the coenzymes. The pH optima are 11 for the deamination of l-leucine, and 9.7 and 8.8 for the amination of -ketoisocaproate and -ketoisovalerate, respectively. The Michaelis constants were determined: 4.4 mM for l-leucine, 3.3 mM for l-valine, 1.4 mM for l-isoleucine and 0.49 mM for NAD+ in the oxidative deamination. The B. stearothermophilus enzyme shows similar catalytic properties, but higher activities than that from Bacillus sphaericus.Dedicated to Prof. Dr. G. Drews on the occasion of his 60th birthday  相似文献   

12.
Summary Of 373 anaerobic microbial isolates screened for the enzymatic conversion of dihydrouracil to N-carbamyl--alanine, several strains of Clostridium spp., C. glycolicum, C. subterminale and Peptococcus anaerobius were positive. These Clostridium and Peptococcus strains produced also N-carbamyl-d-amino acids from the respective 5-monosubstituted hydantoins. The d-hydantoinase activity from whole cell suspensions of P. anaerobius strain CRDA 303 was characterized with regard to pH and temperature stability and activity by using dihydrouracil (DHU) and isopropylhydantoin (IPH) as substrates. The d-hydantoinase from P. anaerobius was optimal at 60°C and at pH 6.5–9.5 for the substrate DHU. It was stable up to 55°C and at pH 5.0–9.5 and could be stored at 4°C under an aerobic atmosphere for at least 14 days. Offprint requests to: A. Morin  相似文献   

13.
Summary Alanine was the best amino donor among various amino acids and NH4Cl for the phenylalanine production of Micrococus luteus. l-Alanine was regenerated at the rate of 9.2 moles/min/g dry cells from NH4Cl and pyruvate by immobilized Clostridium butyricum-alanine dehydrogenase. l-Phenylalanine was continuously produced from hydrogen, NH4Cl and phenylpyruvate by coupling immobilized C. butyricum, alanine dehydrogenase and M. luteus. The rate of phenylalanine production was 1.74 moles/min/g dry cells.  相似文献   

14.
Immobilized cells of Bacillus subtilis HLZ-68 were used to produce d-alanine from dl-alanine by asymmetric degradation. Different compounds such as polyvinyl alcohol and calcium alginate were employed for immobilizing the B. subtilis HLZ-68 cells, and the results showed that cells immobilized using a mixture of these two compounds presented higher l-alanine degradation activity, when compared with free cells. Subsequently, the effects of different concentrations of polyvinyl alcohol and calcium alginate on l-alanine consumption were examined. Maximum l-alanine degradation was exhibited by cells immobilized with 8% (w/v) polyvinyl alcohol and 2% (w/v) calcium alginate. Addition of 400 g of dl-alanine (200 g at the beginning of the reaction and 200 g after 30 h of incubation) into the reaction solution at 30 °C, pH 6.0, aeration of 1.0 vvm, and agitation of 400 rpm resulted in complete l-alanine degradation within 60 h, leaving 185 g of d-alanine in the reaction solution. The immobilized cells were applied for more than 15 cycles of degradation and a maximum utilization rate was achieved at the third cycle. d-alanine was easily extracted from the reaction solution using cation-exchange resin, and the chemical and optical purity of the extracted d-alanine was 99.1 and 99.6%, respectively.  相似文献   

15.
We have developed an enzymatic procedure for the enantiospecific synthesis ofN-acetyl-l-methionine with aminoacylase in an organic solvent.N-Acetyl-l-methionine was most effectively synthesized with a yield of about 90% (on the basis of thel-methionine used) when the reaction mixture, composed of 100 mm sodium acetate, 20 MMdl-methionine and aminoacylase (1000 units) immobilized on celite in 1 ml ethyl acetate saturated with 32 l 140mm sodium phosphate buffer (pH 7.0) containing 0.1 mm CoCl2, was incubated at 30°C for 24 h.N-Acetyl-l-methionine was isolated from the reaction mixture and the enantiomeric excess was 100%.d-Methionine was also isolated from the mixture with a yield of about 95% and 90% enantiomeric excess. The method is applicable to the synthesis of otherN-acetyl-l-amino acids.  相似文献   

16.
Lon protease, which plays a major role in degradation of abnormal proteins inEscherichia coli, was overproduced and efficiently purified using the maltose-binding protein (MBP) fusion vector. The MBP-Lon fusion protein was expressed in a soluble form inE. coli and purified to homogeneity by amylose resin in a single step. Lon protease was split from MBP by cleaving a fusion point between MBP and Lon with factor Xa and purified by amylose resin and subsequent gel filtration. In this simple method, Lon protease was purified to homogeneity. Purified MBP-Lon fusion protein and Lon protease showed similar breakdown activities with a peptide (succinyl-l-phenylalanyl-l-leucyl-phenylalanyl--d-methoxynaphthylamide) and protein (-casein) in the presence of ATP. Therefore, the gene-fusion approach described in this study is useful for the production of functional Lon protease. MBP-Lon fusion protein, which both binds to the amylose resin and has ATP-dependent protease activity, should be especially valuable for its application in the degradation of abnormal proteins by immobilized enzymes.  相似文献   

17.
l -Aspartate β-decarboxylase (Asd) is an important enzyme to produce l-alanine and d-aspartate. The genomic library of Alcaligenes faecalis CCRC 11585 was cloned into pBK-CMV and transformed into Escherichia coli. One clone, which carried the asd gene and expressed Asd activity, was isolated and chosen for further study. PBK-asdAE1 was subcloned and its sequence analysis revealed an open reading frame, consisting of 1599 bp, that encodes a 533-amino-acid polypeptide. The nucleotide sequence of the asd gene from A. faecalis CCRC 11585 (asdA) showed 84% identity with that from Pseudomonas dacunhae CCRC 12623, and the amino acid sequence showed 93% identity. The amino acid sequence of the AsdA showed 51–58% homology with various aminotransferases. Alignment of the AsdA with several aspartate or tyrosine aminotransferases revealed 17 conserved amino acids that appeared in most of the conserved amino acid residues within the pyridoxal-5′-phosphate (PLP) binding domains of aminotransferases. Furthermore, the asdA gene was cloned into expression vector pET-21a and transformed into E. coli BL21(DE3). A protein band sized at 61 kDa is present on the SDS-PAGE gel from the intracellular soluble form of E. coli BL21(DE3)/pET-asdA. The specific activities of the pET-AsdA purified by using His-Bind chromatography is 215 U/mg at 45°C and pH 5.0, which is 1000-fold higher than that of the A. faecalis crude extract. This is the first report of an asdA gene sequence from A. faecalis and represents the potential application of a recombinant AsdA for production of l-alanine or d-aspartic acid. Journal of Industrial Microbiology & Biotechnology (2000) 25, 132–140. Received 02 November 1999/ Accepted in revised form 23 June 2000  相似文献   

18.
Summary Four enzymes required for the biosynthesis of pencillins and cephalosporins by Streptomyces clavuligerus have been immobilized on an anion exchange resin. The capabilities of the system have been studied by circulation of reaction mixtures through the immobilized enzyme reactor. Within 30 min, all of the substrate -(l--aminoadipyl)-l-cysteinyl-d-valine is consumed and converted to a mixture of penicillins and cephalosporins. After 60 min the major antibiotic products are (iso)penicillin N and desacetylcephalosporin C. The activity of the immobilized enzyme reactor activity is stable to storage at temperatures below 4°C but activity is lost on repeated use.  相似文献   

19.
Summary Germination requirements of suspensions of spores of Bacillus megaterium, Texas strain, an l-alanine-inosine type, have been examined employing a decrease in optical density as the criterion of germination. In deionized water, l-alanine and inosine were devoid of germinative powers. They were effective only in conjunction with any one of a large variety of salts. Data are given for germination by the monovalent and divalent alkali metal chlorides. The potassium halides were germinative; potassium fluoride was the best. Salts of organic acids, including fatty acids and polycarboxylic acids, were germinative. The need for inosine could be bypassed by various salts, e.g., ammonium propionate or salts of dipicolinic acid. Also, l-alanine was replaceable by a variety of amino acids, provided suitable ions were present. In the presence of magnesium chloride, sodium dipicolinate could substitute for either inosine or l-alanine, but not both. Salts of n-hexylamine and n-heptylamine bypassed the need for both l-alanine and inosine. A primary role for ions in germination is proposed and a secondary, augmentative action is attributed to l-alanine and inosine.  相似文献   

20.
Analysis in mouse brain slices of the uptake of acetyl-l-[N-methyl-14C]carnitine with time showed it to be concentrative, and kinetic analysis gave aK m of 1.92 mM and aV max of 1.96 mol/min per ml, indicating the presence of a low-affinity carrier system. The uptake was energy-requiring and sodium-dependent, being inhibited in the presence of nitrogen (absence of O2), sodium cyanide, low temperature (4°C), and ouabain, and in the absence of Na+. The uptake of acetyl-l-carnitine was not strictly substrate-specific; -butyrobetaine,l-carnitine,l-DABA, and GABA were potent inhibitors, hypotaurine andl-glutamate were moderate inhibitors, and glycine and -alanine were only weakly inhibitory. In vivo, acetyl-l-carnitine transport across the blood-brain barrier had a brain uptake index of 2.4±0.2, which was similar to that of GABA. These results indicate an affinity of acetyl-l-carnitine to the GABA transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号