首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The causes of inhibition of Escherichia coli inorganic pyrophosphatase (PPase) by Ca2+ were investigated. The interactions of several mutant pyrophosphatases with Ca2+ in the absence of substrate were analyzed by equilibrium dialysis. The kinetics of Ca2+ inhibition of hydrolysis of the substrates MgPPi and LaPPi by the native PPase and three mutant enzymes (Asp-42-Asn, Ala, and Glu) were studied. X-Ray data on E. coli PPase complexed with Ca2+ or CaPPi solved at atomic resolution were analyzed. It was shown that, in the course of the catalytic reaction, Ca2+ replaces Mg2+ at the M2 site, which shows higher affinity for Ca2+ than for Mg2+. Different properties of these cations account for active site deformation. Our findings indicate that the filling of the M2 site with Ca2+ is sufficient for PPase inhibition. This fact proves that Ca2+ is incapable of properly activating the H2O molecule for nucleophilic attack on PPi. It was also demonstrated that Ca2+, as a constituent of the non-hydrolyzable substrate analog CaPPi, competes with MgPPi at the M3 binding site. As a result, Ca2+ is a powerful inhibitor of all known PPases. Other possible reasons for the inhibitory effect of Ca2+ on the enzyme activity are also considered.  相似文献   

2.
Initial rates of PPi hydrolysis by cytosolic and mitochondrial inorganic pyrophosphatases of rat liver have been measured in the presence of 0.2-100 microM MgPPi and 0.01-50 mM Mg2+ at pH 7.2 to 9.3. The apparently simplest model consistent with the data for both enzymes implies that they bind substrate, in the form of MgPPi, and three Mg2+ ions, of which two are absolutely required for activity. The third metal ion facilitates substrate binding but decreases maximal velocity for the cytosolic enzyme, while substrate binding is only modulated for the mitochondrial enzyme. The model is also applicable to bovine heart mitochondrial pyrophosphatases. The active form of the substrate for the cytosolic pyrophosphatase is MgP2O7(-2); the catalytic and metal-binding steps require a protonated group with pKa = 9.2 and an unprotonated group with pKa = 8.8, respectively. The results indicate that the mitochondrial pyrophosphatase is more sensitive to variations of Mg2+ concentration in rat liver cells than is the cytosolic one.  相似文献   

3.
Kinetic and binding studies of yeast inorganic pyrophosphatase (EC 3.6.1.1) revealed a regulatory PPi-binding site. Rate vs substrate concentration dependencies were markedly nonhyperbolic in the range of 0.1-150 microM MgPPi at fixed Mg2+ levels of 0.05-10 mM provided that the enzyme had been preequilibrated with Mg2+. Imidodiphosphate, hydroxymethylenebisphosphonate, and phosphate eliminated the deviations from the Michaelis-Menten kinetics and inhibited PPi hydrolysis in a manner consistent with their binding at both active and regulatory sites. The results agreed with a model in which binding of uncomplexed PPi at the regulatory site markedly increases enzyme affinity for the activating Mg2+ ion. Ultrafiltration studies revealed the binding of at least 3 mol of the inhibitory hydroxymethylenebisphosphonate and of 2 mol of noninhibitory methylenebisphosphonate per mole of the dimeric enzyme.  相似文献   

4.
Escherichia coli inorganic pyrophosphatase (PPase) is a one-domain globular enzyme characterized by its ability to easily undergo minor structure rearrangements involving flexible segments of the polypeptide chain. To elucidate a possible role of these segments in catalysis, catalytic properties of mutant variants of E. coli PPase Gly100Ala and Gly147Val with substitutions in the conservative loops II and III have been studied. The main result of the mutations was a sharp decrease in the rates of conformational changes required for binding of activating Mg2+ ions, whereas affinity of the enzyme for Mg2+ was not affected. The pH-independent parameters of MgPP(i) hydrolysis, kcat and kcat/Km, have been determined for the mutant PPases. The values of kcat for Gly100Ala and Gly147Val variants were 4 and 25%, respectively, of the value for the native enzyme. Parameter kcat/Km for both mutants was two orders of magnitude lower. Mutation Gly147Val increased pH-independent Km value about tenfold. The study of synthesis of pyrophosphate in the active sites of the mutant PPases has shown that the maximal level of synthesized pyrophosphate was in the case of Gly100Ala twofold, and in the case of Gly147Val fivefold, higher than for the native enzyme. The results reported in this paper demonstrate that the flexibility of the loops where the residues Gly100 and Gly147 are located is necessary at the stages of substrate binding and product release. In the case of Gly100Ala PPase, significant impairment of affinity of enzyme effector site for PP(i) was also found.  相似文献   

5.
R Lahti  M Jokinen 《Biochemistry》1985,24(14):3526-3530
Kinetic studies of the less active form of Streptococcus faecalis inorganic pyrophosphatase (EC 3.6.1.1), together with computational analysis, indicated that cooperativity in ligand binding contributes in a significant way to the behavior of this enzyme. The simplest model applicable to our data was a Monod-Wyman-Changeux-type, allosteric model, in which the enzyme is proposed to exist in two states, referred to as R and T states, respectively. In the absence of ligands, 94% of the enzyme was in the T state. MgPPi2- was the only substrate for the enzyme in the R form. This substrate was bound equally well by both enzyme forms, but it was hydrolyzed 5 times more efficiently by the R form than it was by the T form. Mg2PPi was bound exclusively to the T state of the enzyme, and it was hydrolyzed 25% as rapidly as MgPPi2- by the T form. Mg2PPi inhibited the hydrolysis of the more efficient substrate, MgPPi2-, by competing with MgPPi2- for the enzyme in the T form and by shifting the R----T equilibrium in favor of the T form. Mg2+ stabilized the R state, thus activating the hydrolysis of MgPPi2- and inhibiting that of Mg2PPi.  相似文献   

6.
Escherichia coli inorganic pyrophosphatase (E-PPase) is a homohexamer formed from two trimers related by a two-fold axis. The residue Asp26 participates in intertrimeric contacts. Kinetics of MgPPi hydrolysis by a mutant Asp26Ala E-PPase is found to not obey Michaelis-Menten equation but can be described within the scheme of activation of hydrolysis by a free PPi binding at an effectory subsite. Existence of such a subsite is confirmed by the finding that the free form of methylenediphosphonate activates MgPPi hydrolysis though its magnesium complex is a competitive inhibitor. The Asp26Ala variant is the first example of hexameric E-PPase demonstrated to have an activatory subsite.  相似文献   

7.
Inhibition of inorganic pyrophosphatase of animal mitochondria by calcium   总被引:1,自引:0,他引:1  
Calcium ion is an uncompetitive inhibitor of the inorganic pyrophosphatases of bovine heart and rat liver mitochondria with respect to substrate MgPPi at pH 8.5 and a non-competitive inhibitor of the former enzyme at pH 7.2. The concentration of Ca2+ required to decrease the maximal velocities for both enzymes at pH 8.5, 0.4 mM Mg2+ was about 10 microM. The inhibition results from the binding of two Ca2+ ions to both free enzymes and their complexes with the substrate. The results suggest that Ca2+ regulates pyrophosphatase activity and hence PPi level in mammalian mitochondria.  相似文献   

8.
We have developed two methods for quantitatively measuring inorganic pyrophosphate (PPi) in the presence of 10(3)--10(4) molar excesses of inorganic phosphate (Pi) and used them to measure the extent of enzyme-bound pyrophosphate (EPPi) formation in solutions of yeast inorganic pyrophosphatase and Pi. We have also measured the rate of enzyme-catalyzed H2O--phosphate oxygen exchange. We find both processes to have essentially identical dependence on Mg2+ and Pi concentrations, thus providing important confirmation for the recent proposal by Janson et al. (1979) that oxygen exchange proceeds via EPPi formation. Our results are consistent with a model in which three Mg2+ per active site are required for EPPi formation but inconsistent with a model requiring only two Mg2+ per active site and permit the formulation of an overall scheme for inorganic pyrophosphatase catalysis of PPi--Pi equilibration as well as the evaluation of equilibrium and rate constants in this scheme. The major results and conclusions of our work are the following: (a) the equilibrium constant for PPi (enzyme-bound) in equilibrium with 2Pi (enzyme-bound) is 4.8; (b) following PPi hydrolysis, the first released Pi contains an oxygen from solvent water; (c) the steps for PPi hydrolysis on the enzyme and for release of both product Pi's are all partially rate determining in overall enzyme-catalyzed PPi hydrolysis; (d) PPi formation on the enzyme is rate determining for H2O--Pi oxygen exchange; (e) PPi dissociation from the enzyme is very slow and is the rate-determining step in Pi--PPi exchange (Cohn, 1958; Janson et al., 1979). This also accounts for the observation that the calculated dissociation constant for MgPPi complex binding to enzyme is considerably lower than the measured Km for enzyme-catalyzed MgPPi hydrolysis.  相似文献   

9.
A computer-assisted analysis of the molecule of Escherichia coli pyrophosphatase was earlier used to localize the site capable of binding free pyrophosphate or methylene diphosphonate, a PPi analogue, and thereby activating the enzyme. A cluster of positively charged amino acid residues (Lys146, Lys148, Lys115, and Arg43) was revealed, and Lys115Ala, Lys148Gln, and Arg43Gln mutant pyrophosphatases (PPases) were obtained. It was shown that the kinetics of hydrolysis of the magnesium pyrophosphate (MgPPi) substrate by these mutant variants does not obey the Michaelis-Menten equation, which is expressed in two slopes in the double-reciprocal plot of the enzyme reaction rate vs. substrate concentration. The two regions on the curves correspond to the ranges of high and low MgPPi concentrations. This suggests that, in all mutant variants of the enzyme, the binding of PPi at the effector site becomes worse, whereas the affinity of MgPPi for the active site remains practically unchanged. Other properties of the enzymes, such as its oligomeric state, resistance to thermal denaturation, and resistance to the denaturing agent guanidine hydrochloride, were thoroughly studied. The constants of binding of Mg2+ to mutant enzymes in the absence of the substrate and to enzyme-substrate complexes were determined. The introduction of amino acid substitutions was shown to stabilize the protein globule. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 3; see also http://www.maik.ru.  相似文献   

10.
The membrane-bound proton-pumping inorganic pyrophosphatase from Rhodospirillum rubrum was heterologously expressed in Escherichia coli C43(DE3) cells and was inhibited by 4-bromophenacyl bromide (BPB), N,N'-dicyclohexylcarbodiimid (DCCD), diethyl pyrocarbonate (DEPC) and fluorescein 5'-isothiocyanate (FITC). In each case, the enzyme activity was rather well protected against inhibitory action by the substrate Mg(2)PPi. Site-directed mutagenesis was employed in attempts to identify target residues for these inhibitors. D217 and K469 appear to be the prime targets for DCCD and FITC, respectively, and may thus be involved in substrate binding. No major effect on enzyme activities was seen when any one of the four histidine residues present in the enzyme were substituted. Nevertheless, a mutant with all of the four charged histidine residues replaced retained only less than 10% of the hydrolysis and proton-pumping activities. Substitution of D217 with A or H yielded an enzyme with at least an order of magnitude lower hydrolysis activity. In contrast with the wild-type, these variants showed higher hydrolysis rates at lower concentrations of Mg(2+), possibly reflecting a change in substrate preference from Mg(2)PPi to MgPPi. BPB is a H(+)-pyrophosphatase inhibitor that apparently has not been used previously as an inhibitor of these enzymes.  相似文献   

11.
The kinetic mechanism of yeast inorganic pyrophosphatase (PPase) was examined by carrying out initial velocity studies. Ca2+ and Rh(H2O)4(methylenediphosphonate) (Rh(H2O)4PCP) were used as dead-end inhibitors to study the order of binding of Cr(H2O)4PP to the substrate site and Mg2+ to the "low affinity" activator site on the enzyme. Competitive inhibition was observed for Ca2+ vs Mg2+ (Kis = 0.93 +/- 0.03 mM), for Rh(H2O)4PCP vs Cr(H2O)4PP (Kis = 0.25 +/- 0.07 mM), and for RH(H2O)4PCP vs Mg2+ (Kis = 0.38 +/- 0.03 mM). Uncompetitive inhibition was observed for Ca2+ vs Cr(H2O)4PP (Kii = 0.49 +/- 0.01). On the basis of these results a rapid equilibrium ordered mechanism in which Cr(H2O)4PP binding precedes Mg2+ ion binding is proposed. The inert substrate analog, Mg(imidodiphosphate) (MgPNP) was shown to induce Mg2+ inhibition of the PPase-catalyzed hydrolysis of MgPP. The Mg2+ inhibition observed was competitive vs MgPP and partial. These results suggest that Mg2+/MgPNP release from the enzyme occurs in preferred rather than strict order and that the Mg2+/MgPP-binding steps are at steady state. Zn2+, Co2+, and Mn2+ (but not Mg2+) displayed activator inhibition of the PPase-catalyzed hydrolysis of PPi (this study) and of Cr(H2O)4PP (W.B. Knight, S. Fitts, and D. Dunaway-Mariano, (1981) Biochemistry 20, 4079). These findings suggest that cofactor release from the low affinity cofactor site on the enzyme must precede product release and that Zn2+, Mn2+, and Co2+ (but not Mg2+) have high affinities for the cofactor sites on both the PPase.M.MPP and PPase.M.M(P)2 complexes. The role of the metal cofactor in determining PPase substrate specificity was briefly explored by testing the ability of the Mg2+ complex of tripolyphosphate (PPPi) (a substrate for the Zn2+-activated enzyme but not the Mg2+-activated enzyme) to induce Mg2+ inhibition of PPase-catalyzed hydrolysis of MgPP. MgPPP was shown to be as effective as MgPNP in inducing competitive Mg2+ inhibition (vs MgPP). This result suggests that the low affinity Mg2+ cofactor-binding site present in the enzyme-MgPP complex is maintained in the enzyme-MgPPP complex. Thus, failure of Mg2+ to bind to the enzyme-MgPPP complex was ruled out as a possible explanation for the failure of the Mg2+-activated enzyme to catalyze the hydrolysis of MgPPP.  相似文献   

12.
Earlier it has been demonstrated that inactivation of inorganic pyrophosphatase (PPase) of S. cerevisiae by 7-chloro-4-nitronbenzofurasane is due to modification of Tyr89. The effect of pH and active center ligands on this reaction has been studied. It was found that pK for Tyr89 does not exceed 8.5; the phosphate-metal complex binding to the high affinity center protects Tyr89 from inactivation. Activating ions (Mg2+ and Zn2+) do not influence the inactivation, whereas the PPase inhibitor, Ca2+, enhances this process after saturation of the high affinity binding site. Saturation of two binding sites with Ca2+ has a protective effect on the enzyme. An increase in the rate of Tyr89 binding to the inhibitor in the presence of low concentrations of Ca2+ is due to the decrease of Tyr89 pK. The data obtained suggest that Tyr89 is located near the high affinity binding site for phosphate. The high reactivity of Tyr89 and its tight binding in the active center point to the presence of a hydrogen bondage with the substrate and suggest a role of a proton donor whose acceptor is the product of the enzymatic reaction, i.e., phosphate.  相似文献   

13.
Terbium ions bind with a 2:1 stoichiometry per subunit to inorganic pyrophosphatase from bakers' yeast (EC 3.6.1.1) as measured by an increase of terbium fluorescence. The Tb3+ inhibition of the Mg2+ activated pyrophosphate hydrolysis is caused by a competitive binding at the substrate site of the active centre. The second Mg2+ binding site--the so-called "stabilization site"--is discussed as an additional binding site for Tb3+. Thereby, Tb3+ causes also a stabilization of the enzyme against heat denaturation. The dissociation constants of the terbium-pyrophosphatase interaction are in the micromolar range.  相似文献   

14.
Aldose-ketose isomerization by xylose isomerase requires bivalent cations such as Mg2+, Mn2+, or Co2+. The active site of the enzyme from Actinoplanes missouriensis contains two metal ions that are involved in substrate binding and in catalyzing a hydride shift between the C1 and C2 substrate atoms. Glu 186 is a conserved residue located near the active site but not in contact with the substrate and not with a metal ligand. The E186D and E186Q mutant enzymes were prepared. Both are active, and their metal specificity is different from that of the wild type. The E186Q enzyme is most active with Mn2+ and has a drastically shifted pH optimum. The X-ray analysis of E186Q was performed in the presence of xylose and either Mn2+ or Mg2+. The Mn2+ structure is essentially identical to that of the wild type. In the presence of Mg2+, the carboxylate group of residue Asp 255, which is part of metal site 2 and a metal ligand, turns toward Gln 186 and hydrogen bonds to its side-chain amide. Mg2+ is not bound at metal site 2, explaining the low activity of the mutant with this cation. Movements of Asp 255 also occur in the wild-type enzyme. We propose that they play a role in the O1 to O2 proton relay accompanying the hydride shift.  相似文献   

15.
In order to probe the role of Asp-49 in the active site of porcine pancreatic phospholipase A2 two mutant proteins were constructed containing either Glu or Lys at position 49. Their enzymatic activities and their affinities for substrate and for Ca2+ ions were examined in comparison with the native enzyme. Enzymatic characterization indicated that the presence of Asp-49 is essential for effective hydrolysis of phospholipids. Conversion of Asp-49 to either Glu or Lys strongly reduces the binding of Ca2+ ions in particular for the lysine mutant but the affinity for substrate analogues is hardly affected. Extensive purification of [Lys49]phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus yielded a protein which was 4000 times less active than the basic [Asp49]phospholipase A2 from this venom. Inhibition studies with p-bromophenacyl bromide showed that this residual activity was due to a small amount of contaminating enzyme and that the Lys-49 homologue itself is inactive. The results obtained both with the porcine pancreatic phospholipase A2 mutants and with the native venom enzymes show that Asp-49 is essential for the catalytic action of phospholipase A2.  相似文献   

16.
Soluble inorganic pyrophosphatases (PPases) comprise two evolutionarily unrelated families (I and II). These two families have different specificities for metal cofactors, which is thought to be because of the fact that family II PPases have three active site histidines, whereas family I PPases have none. Here, we report the structural and functional characterization of a unique family I PPase from Mycobacterium tuberculosis (mtPPase) that has two His residues (His21 and His86) in the active site. The 1.3-A three-dimensional structure of mtPPase shows that His86 directly interacts with bound sulfate, which mimics the product phosphate. Otherwise, mtPPase is structurally very similar to the well studied family I hexameric PPase from Escherichia coli, although mtPPase lacks the intersubunit metal binding site found in E. coli PPase. The cofactor specificity of mtPPase resembles that of E. coli PPase in that it has high activity in the presence of Mg2+, but it differs from the E. coli enzyme and family II PPases because it has much lower activity in the presence of Mn2+ or Zn2+. Replacements of His21 and His86 in mtPPase with the residues found in the corresponding positions of E. coli PPase had either no effect on the Mg2+- and Mn2+-supported reactions (H86K) or reduced Mg2+-supported activity (H21K). However, both replacements markedly increased the Zn2+-supported activity of mtPPase (up to 11-fold). In the double mutant, Zn2+ was a 2.5-fold better cofactor than Mg2+. These results show that the His residues in mtPPase are not essential for catalysis, although they determine cofactor specificity.  相似文献   

17.
We have shown a dual role for Mg2+ in the hydrolysis of PPi catalysed by inorganic pyrophosphatase (PPase; EC 3.6.1.1) of Streptococcus faecalis; Mg2+ is necessary for the formation of the substrates, Mg1PPi2- and Mg2PPi0, and it also acts as an allosteric activator [Lahti + Jokinen (1985) Biochemistry 24, 3526-3530]. No activity can be observed with S. faecalis PPase in the absence of bivalent cations, which indicates that free PPi cannot serve as a substrate for this enzyme. However, significant activities were observed in the presence of spermine and spermidine, even though no bivalent cations were present. It was shown by particle-induced gamma-ray emission and particle-induced X-ray-emission analysis that the polyamines used were not contaminated with Mg2+ or any other bivalent cations that could support PPase activity. Hence it is obvious that polyamines are able to form a complex with PPi that serves as a substrate for PPase. The apparent stability constants for the 1:1 adducts of spermine and spermidine were estimated by a resin competition method. The values obtained at pH 7.5 were 2.7 X 10(3) M-1 and 6.4 X 10(2) M-1 respectively. Kinetic results further suggested that polyamines can also substitute for Mg2+ as an activator in vitro. The physiological significance of these polyamine effects were discussed.  相似文献   

18.
To elucidate the roles of conserved Asp residues of Bacillus cereus sphingomyelinase (SMase) in the kinetic and binding properties of the enzyme toward various substrates and Mg2+, the kinetic data on mutant SMases (D126G and D156G) were compared with those of wild type (WT) enzyme. The stereoselectivity of the enzyme in the hydrolysis of monodispersed short-chain sphingomyelin (SM) analogs and the binding of Mg2+ to the enzyme were not affected by the replacement of Asp126 or Asp156. The pH-dependence curves of kinetic parameters (1/Km and kcat) for D156G-catalyzed hydrolysis of micellar SM mixed with Triton X-100 (1:10) and of micellar 2-hexadecanoylamino-4-nitrophenylphosphocholine (HNP) were similar in shape to those for WT enzyme-catalyzed hydrolysis. On the other hand, the curves for D126G lacked the transition observed for D156G and WT enzymes. Comparison of the values and the shape of pH-dependence curves of kinetic parameters indicated that Asp126 of WT SMase enhances the enzyme's catalytic activity toward both substrates and its binding of HNP but not SM. The deprotonation of Asp126 enhances the substrate binding and slightly suppresses the catalytic activity toward both substrates. Asp156 of WT SMase acts to decrease the binding of both substrates and the catalytic activity to HNP but not SM. From the present study and the predicted three-dimensional structure of B. cereus SMase, Asp126 was thought to be located close to the active site, and its ionization was shown to affect the catalytic activity and substrate binding.  相似文献   

19.
Escherichia coli inorganic pyrophosphatase (PPase) is a hexamer of identical subunits. This work shows that trimeric form of PPase exhibits the interaction of the active sites in catalysis. Some trimer subunits demonstrate high substrate binding affinity typical for hexamer whereas the rest of subunits reveal more than 300-fold substrate affinity decrease. This fact indicates the appearance of negative cooperativity of trimer subunits upon substrate binding. Association of the wild-type (WT) trimer with catalytically inactive, but still substrate binding mutant trimer into hexameric chimera restores the high activity of the first trimer, characteristic of trimer incorporated in the hexamer of WT PPase. Interaction of PPase active sites suggests that there are pathways for information transmission between the active sites, providing the perfect organization and concerted functioning of the hexameric active sites in catalysis.  相似文献   

20.
DNA polymerase I (Pol I) is an enzyme of DNA replication and repair containing three active sites, each requiring divalent metal ions such as Mg2+ or Mn2+ for activity. As determined by EPR and by 1/T1 measurements of water protons, whole Pol I binds Mn2+ at one tight site (KD = 2.5 microM) and approximately 20 weak sites (KD = 600 microM). All bound metal ions retain one or more water ligands as reflected in enhanced paramagnetic effects of Mn2+ on 1/T1 of water protons. The cloned large fragment of Pol I, which lacks the 5',3'-exonuclease domain, retains the tight metal binding site with little or no change in its affinity for Mn2+, but has lost approximately 12 weak sites (n = 8, KD = 1000 microM). The presence of stoichiometric TMP creates a second tight Mn2+ binding site or tightens a weak site 100-fold. dGTP together with TMP creates a third tight Mn2+ binding site or tightens a weak site 166-fold. The D424A (the Asp424 to Ala) 3',5'-exonuclease deficient mutant of the large fragment retains a weakened tight site (KD = 68 microM) and has lost one weak site (n = 7, KD = 3500 microM) in comparison with the wild-type large fragment, and no effect of TMP on metal binding is detected. The D355A, E357A (the Asp355 to Ala, Glu357 to Ala double mutant of the large fragment of Pol I) 3',5'-exonuclease-deficient double mutant has lost the tight metal binding site and four weak metal binding sites. The binding of dGTP to the polymerase active site of the D355A,E357A double mutant creates one tight Mn2+ binding site with a dissociation constant (KD = 3.6 microM), comparable with that found on the wild-type enzyme, which retains one fast exchanging water ligand. Mg2+ competes at this site with a KD of 100 microM. It is concluded that the single tightly bound Mn2+ on Pol I and a weakly bound Mn2+ which is tightened 100-fold by TMP are at the 3',5'-exonuclease active site and are essential for 3',5'-exonuclease activity, but not for polymerase activity. Additional weak Mn2+ binding sites are detected on the 3',5'-exonuclease domain, which may be activating, and on the polymerase domain, which may be inhibitory. The essential divalent metal activator of the polymerase reaction requires the presence of the dNTP substrate for tight metal binding indicating that the bound substrate coordinates the metal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号