首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interaction of trifluoperazine with the zwitterionic lipids dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine and with anionic dimyristoylphosphatidylglycerol was studied by means of microcalorimetry and fluorescence spectroscopy. Intercalation of drug molecules into the lipid bilayers was confirmed by the observed differential scanning calorimetry peak broadening and the decrease in chain-melting temperatures. For trifluoperazine:lipid mole ratios higher than 0.4 and 0.6 (for dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine, respectively) the deconvolution of transition profiles into two Gaussian components was possible, which suggests phase separation in the studied mixtures. Deconvolution of the thermograms was not possible for any of the drug:dimyristoylphosphatidylglycerol mole ratios studied. To confirm the existence of phase separation in trifluoperazine-phosphatidylcholine mixtures fluorescence spectroscopy experiments were performed using Laurdan as a probe. From the generalised polarisation versus excitation wavelength dependences, recorded at different temperatures, we conclude that a phase separation occurs in the gel state of the studied trifluoperazine-phosphatidylcholine mixtures. We attribute the existence of domains in the bilayer to the dissimilar interactions of two protonation forms of trifluoperazine with phosphatidylcholine molecules. Structural defects present at domain boundaries could be related to the trifluoperazine induced increase of membrane permeability and fluidity. This may partially explain the mechanism of multidrug resistance modulation by trifluoperazine.  相似文献   

2.
Pressure versus distance relations have been obtained for solid (gel) and neat (liquid-crystalline) phase uncharged lipid bilayers by the use of x-ray diffraction analysis of osmotically stressed monoglyceride aqueous dispersions and multilayers. For solid phase monoelaidin bilayers, the interbilayer repulsive pressure decays exponentially from a bilayer separation of approximately 7 A at an applied pressure of 3 x 10(7) dyn/cm2 to a separation of approximately 11 A at zero applied pressure, where an excess water phase forms. The decay length is approximately 1.3 A, which is similar to the value previously measured for gel phase phosphatidylcholine bilayers. This implies that the decay length of the hydration pressure does not depend critically on the presence of zwitterionic head groups in the bilayer surface. For liquid-crystalline monocaprylin, the repulsive pressure versus distance curve has two distinct regions. In the first region, for bilayer separations of approximately 3-8 A and applied pressures of 3 x 10(8) to 4 x 10(6) dyn/cm2, the pressure decays exponentially with a decay length of approximately 1.3 A. In the second region, for bilayer separations of approximately 8-22 A and applied pressures of 4 x 10(6) to 1 x 10(5) dyn/cm2, the pressure decays much more gradually and is inversely proportional to the cube of the distance between bilayers. These data imply that two repulsive pressures operate between liquid-crystalline monocaprylin bilayers, the hydration pressure, which dominates at small (3-8 A) bilayer separations, and the fluctuation pressure, which dominates at larger bilayer separations (greater than 8 A) and strongly influences the hydration properties of the liquid-crystalline bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A Gow  W Auton  R Smith 《Biochemistry》1990,29(5):1142-1147
The binding of myelin basic protein to lysolauroylphosphatidylcholine (lysoLPC) and lysolauroylphosphatidylethanolamine was investigated at neutral pH using gel partition chromatography and equilibrium dialysis at 20 and 37 degrees C. The results show that the protein-lysolipid interactions are highly cooperative and that the free lysolipid concentration at which the binding commences is markedly influenced by both the chemical structure of the lysolipids and the temperature. The binding begins just below the critical micelle concentration for both lysolipids, which suggests that the forces governing micellization and the binding are similar. Circular dichroism (CD) spectroscopy was used to follow changes in the conformation of the protein caused by lysomyristoylphosphatidylcholine and lysoLPC. The CD results indicate that lysolipid association with the protein commences below the critical micelle concentration and continues above this concentration. Mechanisms for the lysolipid-protein interaction, which are consistent with the binding and CD data, are discussed.  相似文献   

4.
The effect of two ubiquinones of different side chain length (Q-3; Q-9), on the fluidity of phospholipid vesicles has been investigated using stearic acid spin labels. While both oxidized quinones have a disordering effect on the lipid bilayers, the reduced forms behave in an opposite way, in that Q-3 enhances and Q-9 decreases the order of the bilayer. The ordering effect of reduced Q-3 and the attendant decreased motional freedom in the bilayer might be the result of the insertion and stacking of the quinone between the phospholipid molecules in the bilayer. Such insertion might be related to the incapability of short-chain quinones in restoring NADH oxidation in Q-depleted mitochondria.  相似文献   

5.
The synthetic 25-residue signal peptide of cytochrome c oxidase subunit IV was labelled with the fluorophor 7-nitrobenz-2-oxa-1,3-diazole (NBD) at its single cysteine residue. Addition of small unilamellar vesicles of 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC) to the labelled peptide resulted in a shift of the NBD excitation and emission spectra to shorter wavelengths. Binding of the peptide to the vesicles was measured by the increase in the fluorescence emission yield. A surface partition constant of (3.9 +/- 0.5) x 10(3) M-1 was derived from these titrations. When the membrane contained, in addition to POPC, negatively charged 1-palmitoyl 2-oleoyl phosphatidylglycerol (POPG), the NBD fluorescence spectra were further shifted to shorter wavelengths and exhibited increased quantum yields. The apparent partition constants were increased to 10(4)-10(5) M-1 for vesicles with 20 or 100 mol% POPG. Lateral diffusion of the peptide was measured by fluorescence recovery after photobleaching in multibilayers of POPC, POPG, POPC/POPG (4:1) and 1,2-dimyristoyl phosphatidylcholine. The lateral diffusion coefficients of the peptide in bilayers of POPC (8 x 10(-8) cm2/s at 21 degrees C) were 1.5-1.6-fold greater than those of NBD-labelled phospholipids (5 x 10(-8) cm2/s at 21 degrees C), but 1.5-1.8-fold smaller (3 x 10(-8) cm2/s in 20% POPG and at 21 degrees C) than the lipid diffusion coefficients in the negatively charged bilayers. It is concluded that the signal peptide associates with phospholipid bilayers in two different forms, which depend on the lipid charge. The experiments with POPC bilayers are well explained by a model in which the peptide partitions into the region of the phospholipid head-groups and diffuses along the membrane/water interface. If POPG is present in the membrane, electrostatic attractions between the basic residues of the peptide and the acidic lipid head-groups result in a deeper penetration of the bilayer. For this case, two models that are both consistent with the experimental data are discussed, in which the peptide either forms an oligomer of three to six partially helical membrane-spanning monomers, or inserts into the bilayer with its amphiphilic helical segment aligned parallel to the plane of the membrane and located near the head-group and outer hydrocarbon region of the bilayer.  相似文献   

6.
The influence of molecular characteristics on the mutual interaction between peptides and nonionic surfactants has been investigated by studying the effects of surfactants on amphiphilic, random copolymers of alpha-L-amino acids containing lysine residues as the hydrophilic parts. The hydrophobic residues were either phenylalanine or tyrosine. The peptide-surfactant interactions were studied by means of circular dichroism spectroscopy and binding isotherms, as well as by 1D and 2D NMR. The binding of surfactant to the peptides was found to be a cooperative process, appearing at surfactant concentrations just below the critical micellar concentration. However, a certain degree of peptide hydrophobicity is necessary to obtain an interaction with nonionic surfactant. When this prerequisite is fulfilled, the peptide mainly interacts with self-assembled, micelle-like surfactant aggregates formed onto the peptide chain. Therefore, the peptide-surfactant complex is best described in terms of a necklace model, with the peptide interacting primarily with the palisade region of the micelles via its hydrophobic side chains. The interaction yields an increased amount of alpha-helix conformation in the peptide. Surfactants that combine small headgroups with a propensity to form small, nearly spherical micelles were shown to give the largest increase in alpha-helix content.  相似文献   

7.
Summary Bilayer membranes formed from lipids dissolved in decane were exposed to glycophorin, a sialoglycoprotein which had been extracted from human red cell membranes. The interaction with the bilayer produced an increase in the steady state electrical conductance of the membrane proportional to the amount added. Fluctuations in membrane current when the electrical potential difference was constant were observed concommitantly with this increase in membrane conductance. The minimum size of the fluctuations corresponds to a conductance of 10–10 mho. The increase in conductance as well as the current fluctuations persisted after extensive washout of the chamber containing the protein (cisside). Subsequent addition of lectins (wheat germ agglutinin and phytohemoagglutinin) to the cis-side produced rupture of the membranes, whilst these hemoagglutinins added to the trans-side failed to produce an effect. Measurements of changes in surface potential using K+ nonactin as a probe indicated that glycophorin induces a negative surface charge. At high protein concentrations, the magnitude of the induced surface potential became independent of glycophorin concentration. The maximum number of charges introduced onto the membrane under these conditions was 1.4×105/m2. Cis (but not trans)-side addition of neuraminidase abolished these charges, indicating that they can be ascribed to the sialic acid residues that the protein bears. These results suggest that glycophorin incorporates into bilayer membranes with its N-terminal end (where the sialic acid and carbohydrates are located) facing the cis-side. Spectrin reversibly lowered the glycophorin-induced membrane conductance when added to the trans-side. Cis-side additions failed to produce an effect. Trypsin present on the trans-side irreversibly lowered the membrane conductance. These results indicate that parts of the glycophorin molecule, probably the C-terminal end, are accessible to reagents in the solution bathing the trans-side of the membrane. Thus glycophorin spans the planar bilayer in much the same way as it spans the red cell membrane.  相似文献   

8.
Uncharged and charged liposomes, consisting of pure phosphatidyl choline (PC) or PC with phosphatidic acid (PA) are shown by electron microscopy to form structures consistent with the occurrence of membrane fusion upon exposure to small amounts of the n-alkyl bromides. Control vesicles similarly treated with n-hexane or calcium ions showed no evidence of fusion.  相似文献   

9.
Molecular partitioning into biomembranes is of fundamental importance in diverse biochemical processes and reactions. The majority of aqueous/membrane partition data using model membrane systems, is obtained with pure phosphatidylcholine bilayers, being lipid mixtures less used, while studies involving bilayers containing zwitterionic/anionic mixtures of phospholipids are even more scarce. In this study, the solvatochromic effects of 1-pyrenesulfonate observed at 375 nm in aqueous liposome suspensions, and monitored by second derivative absorption spectrophotometry, enabled the determination of its partition constants into defined phospholipid bilayers. We compare, under cautiously settled experimental conditions, the partition of the anionic amphiphile PSA into fluid zwitterionic bilayers of POPC (Kp=6.7 x 10(3), at 25 degrees C), and into fluid mixed zwitterionic/anionic bilayers containing small proportions of anionic phospholipids. At the same temperature, we found increasing K(p) values in parallel with the proportion of POPS mixed with POPC (Kp=3.4 x 10(4) and Kp=7.3 x 10(4), with 5 and 10 mol% of POPS, respectively). Our interpretation is based on the interfacial properties of fluid and flexible mixed zwitterionic/anionic phospholipid bilayers.  相似文献   

10.
11.
Surface pressure-area isotherms of l-diacylglycerophosphoethanolamines were measured at the n-alkane/water interfaces for alkanes ranging from n-hexane to n-hexadecane. Transition pressures from the expanded film to the condensed state varied largely depending on the chain length of the n-alkane in the oil phase. The phase transition temperature and the entropy were studied by differential scanning calorimetry in presence of n-alkanes for the same lipid. The temperatures of gel-to-liquid crystalline phase transitions were changed in the same way as the monolayers reflecting the chain lengths of the n-alkanes present. The effects of the n-alkanes on monolayers and bilayers were entirely parallel; they are discussed taking the mixing of the lipids and the n-alkanes into account in the condensed films for the former and in the gel phase for the latter.  相似文献   

12.
H D B?uerle  J Seelig 《Biochemistry》1991,30(29):7203-7211
The membrane location and the binding mechanism of two Ca2+ channel antagonists, amlodipine and nimodipine, in pure lipid membranes were investigated with deuterium and phosphorus-31 nuclear magnetic resonance, with thermodynamic methods such as high-sensitivity titration calorimetry, and by measuring the membrane surface charge via the zeta-potential. The two drugs exhibit quite different physical-chemical properties. The noncharged nimodipine is strongly hydrophobic, and selective deuteration of the lipid membrane reveals a homogeneous distribution of nimodipine across the whole hydrocarbon layer, but no interaction at the lipid headgroup level. The membrane behavior of the amiphiphilic amlodipine (electric charge z = +1) is distinctly more complex. Deuterium magnetic resonance demonstrates that amlodipine adopts a well-defined position in the bilayer membrane. In particular, the charged ethanolamine side group of amlodipine is located near the water-lipid interface, interacting with the dipoles of the headgroup region according to a nonspecific, electrostatic mechanism and inducing a reorientation of the phosphocholine dipoles toward the water phase. At the level of the hydrocarbon segment, the nonpolar ring system of amlodipine interacts specifically with the cis double bond of the membrane lipid, forming a weak association complex. With increasing amlodipine concentration the deuterium signal of the cis double bond gradually loses intensity, a phenomenon previously observed only in related studies on protein-lipid interactions. The binding equilibrium of amlodipine to phosphatidylcholine membranes was studied by measuring the electrophoretic mobility of lipid vesicles and with a centrifugation assay. Hydrophobic interactions of the nonpolar ring systems and electrostatic repulsions at the membrane surface contribute to the binding energy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Differences in binding of oligo C to charged and uncharged tRNA   总被引:5,自引:0,他引:5  
  相似文献   

14.
Using a microeV neutron spectrometer we have studied the mobility of water in gels formed by two polysaccharides: agarose and hyaluronic acid. Agarose is a nearly uncharged polysaccharide; its gels are fairly stiff, quasi-random networks of fibre bundles. Hyaluronic acid is a highly charged polysaccharide capable of retaining large amounts of water in entangled meshworks with unusual rheological properties. We have analysed sets of quasi-elastic lineshapes broadened by two proton populations with different degrees of freedom. The resulting microscopic mobility parameters and their temperature dependence reveal a complex behaviour. The overall effect of the biopolymer network is to increase translational as well as rotational relaxation times, but the changes observed are not dramatic and cannot fully account for the strikingly different macroscopic properties of these gels. Local electrostatic interactions (over 3 to 20 A) do not appear to influence significantly the rheological behaviour.  相似文献   

15.
A theoretical model describing the dielectric properties of the lipid membrane-water interface region was developed. The rotating polar head groups (e.g. phosphatidylcholine) were simulated as a collection of interacting dipoles imbedded in a nonhomogeneous dielectric. The interactions between the nearest neighborhood were explicitly taken into account, while the other interactions were evaluated by means of the continuum theories. The values of the dielectric constant, its anisotropy and the spontaneous polarization of the interface were evaluated. As an application, we calculated the energy of interaction between an ion and the membrane polar head group region. The results indicate a small spontaneous polarization of the interface (1-1.7 Debyes per lipid molecule) due to the tilting angle of the choline residue with respect to the membrane surface. This dipolar field partially compensates that of opposite orientation originating from the ester group region, giving calculated overall dipolar potentials in better agreement with the experimental data. Our model suggests also a very strong dielectric anisotropy of the interface region, the component of the dielectric constant perpendicular to the membrane plane being much smaller than the parallel component.  相似文献   

16.
17.
Depression is one of the most common psychiatric diseases in the population. Agomelatine is a novel antidepressant drug with melatonin receptor agonistic and serotonin 5-HT2C antagonistic properties. Furthermore, being a melatonergic drug, agomelatine has the potential of being used in therapeutic applications like melatonin as an antioxidant, anti-inflammatory and antiapoptotic drug. The action mechanism of agomelatine on the membrane structure has not been clarified yet. In the present study, we aimed to investigate the interaction of agomelatine with model membranes of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylgylcerol (DPPG) by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). We found that agomelatine interacts with the head group in such a manner that it destabilizes the membrane architecture to a large extent. Thus, agomelatine causes alterations in the order, packing and dynamics of the DPPC and DPPG model membranes. Our results suggest that agomelatine strongly interacts with zwitterionic and charged membrane phospholipids. Because lipid structure and dynamics may have influence on the structure of membrane bound proteins and affect the signal transduction systems of membranes, these effects of agomelatine may be important in its action mechanism.  相似文献   

18.
Molecular dynamics computer simulations have been performed to investigate dynamical and structural properties of a lidocaine local anesthetic. Both charged and uncharged forms of the lidocaine molecule were investigated. Properties such as membrane area per lipid, diffusion, mass density, bilayer penetration and order parameters have been examined. An analysis of the lidocaine interaction with the lipid surrounding according to a simple mean field theory has also been performed. Almost all examined properties were found to depend on which of the two forms of lidocaine, charged or uncharged, is studied. The overall picture is a rather static behavior determined by the lipids for the charged molecules and more mobile situation of the uncharged form with higher diffusion and lower orientational and positional order.  相似文献   

19.
High-sensitivity scanning calorimetry has been used to examine the thermotropic behavior of mixtures combining dipalmitoylphosphatidylcholine (DPPC), phosphatidylethanolamine (DPPE) and O-methylphosphatidic acid (DPPA-OMe) with the double-chain cationic amphiphiles N,N-dihexadecyl-N,N- dimethylammonium chloride (DHDAC), 1,2-dipalmitoyloxy-3-(trimethylammonio)propane (DPTAP) and the corresponding monomethylated tertiary amino compounds (DHMMA-H+ and DPDAP-H+). At physiological ionic strength, mixtures of these cationic amphiphiles with the anionic phospholipid DPPA-OMe can show gel-to-liquid-crystalline phase transitions at considerably higher temperatures than do either of the pure components. Surprisingly, binary mixtures of DPPC and these cationic amphiphiles also show strongly nonideal mixing, with phase diagrams exhibiting pronounced maxima in their solidus and liquidus curves. Similar behavior is not observed for mixtures of DPPC with DPPA-OMe, which closely resembles DPTAP and DPDAP-H+ in backbone configuration and polar headgroup size. The present results suggest that perturbation of the orientation of the phosphatidylcholine headgroup by cationic amphiphiles, as demonstrated previously by Seelig and co-workers (Biochemistry 28 [1989], 7720-7728), can significantly affect the thermotropic behavior of phospholipids such as DPPC. Such effects may exert a generally important (though not always easily recognizable) influence on the organization and thermotropic behavior of systems where zwitterionic phospholipids are combined with charged bilayer-associated molecules.  相似文献   

20.
L K Tamm 《Biochemistry》1986,25(23):7470-7476
The interaction of the chemically synthesized 25-residue signal peptide of subunit IV of yeast cytochrome c oxidase with synthetic and natural phospholipids was studied by using a monolayer technique. Incorporation of the peptide into phospholipid monolayers was measured as surface area increase at constant surface pressure. The peptide was readily soluble in aqueous buffer, yet spontaneously inserted from an aqueous subphase into phospholipid monolayers up to limiting pressures of 30-40 mN/m. The incorporation of the positively charged peptide was strongly enhanced by the presence of negatively charged phospholipids. The molecular area of the signal peptide in monolayers was determined with a 14C-labeled signal peptide and was 560 +/- 170 A2. This is consistent with a 25-residue alpha-helical peptide incorporating with its long axis parallel to the plane of the monolayer. Incorporation isotherms into synthetic phosphatidylcholine and phosphatidylglycerol monolayers at different charge densities were analyzed in terms of a simple incorporation/binding model, involving partitioning of the peptide into the monolayer and an in-plane binding reaction of the negatively charged phospholipids to the partitioned peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号