首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic rates, temperature acclimation, lipid deposition and temperature tolerance were investigated in two species of hylid treefrogs, the green treefrog (Hyla cinerea) and the coastal plain (Cope's) gray treefrog (Hyla chrysoscelis). The rate of oxygen consumption at rest differed between the two species only at 30 degrees C; there was no difference in respiratory metabolism at lower ambient temperatures. Hyla cinerea generally completed metabolic acclimation earlier than H. chrysoscelis, particularly at high temperatures; both species appeared to be fully acclimated in 6 days or less. The gray treefrog is less tolerant of high ambient temperatures than the green treefrog; mean upper lethal temperature was 41.5 degrees C for Hyla chrysoscelis and 43.7 degrees C for H. cinerea. Metabolized energy was higher at high ambient temperatures (i.e. 29 degrees C) for H. chrysoscelis than H. cinerea, while the reverse was true at 19 degrees C. The coefficient of utilization (100 X metabolized energy/gross energy intake) did not vary significantly between species or within species over the ambient temperature range of 19-24 degrees C; H. chrysoscelis had a significantly higher efficiency at 29 degrees C. Lipid reserves were generally similar in the two species throughout the summer. Differences in behavior, seasonal variation in activity and timing of reproduction are all related to thermal physiology and may play a role in determining the distributional limits of the two species.  相似文献   

2.
Signals used for mate choice and receiver preferences are often assumed to coevolve in a lock-step fashion. However, sender-receiver coevolution can also be nonparallel: even if species differences in signals are mainly quantitative, females of some closely related species have qualitatively different preferences and underlying mechanisms. Two-alternative playback experiments using synthetic calls that differed in fine-scale temporal properties identified the receiver criteria in females of the treefrog Hyla chrysoscelis for comparison with female criteria in a cryptic tetraploid species (H. versicolor); detailed preference functions were also generated for both species based on natural patterns of variation in temporal properties. The species were similar in three respects: (1) pulses of constant frequency were as attractive as the frequency-modulated pulses typical of conspecific calls; (2) changes in preferences with temperature paralleled temperature-dependent changes in male calls; and (3) preference functions were unimodal, with weakly defined peaks estimated at values slightly higher than the estimated means in conspecific calls. There were also species differences: (1) preference function slopes were steeper in H. chrysoscelis than in H. versicolor; (2) preferences were more intensity independent in H. chrysoscelis than in H. versicolor; (3) a synergistic effect of differences in pulse rate and shape on preference strength occurred in H. versicolor but not in H. chrysoscelis; and (4) a preference for the pulse shape typical of conspecific calls was expressed at the species-typical pulse duration in H. versicolor but not in H. chrysoscelis. However, females of H. chrysoscelis did express a preference based on pulse shape when tested with longer-than-average pulses, suggesting a hypothesis that could account for some examples of nonparallel coevolution. Namely, preferences can be hidden or revealed depending on the direction of quantitative change in a signal property relative to the threshold for resolving differences in that property. The results of the experiments reported here also predict patterns of mate choice within and between contemporary populations. First, intraspecific mate choice in both species is expected to be strongly influenced by variation in temperature among calling males. Second, simultaneous differences in pulse rate and pulse shape are required for effective species discrimination by females of H. versicolor but not by females of H. chrysoscelis. Third, there is greater potential for sexual selection within populations and for discrimination against calls produced by males in other geographically remote populations in H. chrysoscelis than in H. versicolor.  相似文献   

3.
Ribosomal RNA of the diploid amphibian species Hyla chrysoscelis and Odontophrynus americanus is structurally modified by hidden breaks. Phylogenetically polyploid related species like the tetraploid Hyla versicolor, the tetraploid Odontophrynus americanus and the octoploid Ceratophrys ornata do not show hidden breaks in ribosomal RNA. Structural modifications of rRNA molecules in diploid amphibians has no detectable effect on the ribosomal activity in vitro.  相似文献   

4.
The mating (advertisement) calls of two sibling species of gray treefrogs, Hyla versicolor and Hyla chrysoscelis, are spectrally identical but differ in trill rate; being higher for H. chrysoscelis. Single-unit recordings were made from the torus semicircularis of both species to investigate the neural mechanisms by which this species-specific temporal feature is analyzed. Using sinusoidally amplitude-modulated (AM) white noise as a stimulus, the temporal selectivity of these midbrain auditory neurons could be described by five response categories: 'AM nonselective' (34%); 'AM high-pass' (7%); 'AM low-pass' (6%); 'AM band-suppression' (12%); 'AM tuned' (40%). The distributions of temporal tuning values (i.e., modulation rate at which each AM-tuned unit responds maximally) are broad; in both species, neurons were found which were tuned to modulation rates greater than those found in their advertisement calls. Nevertheless, the temporal tuning values for H. versicolor (median = 25 Hz) were significantly lower than those for H. chrysoscelis (median = 32.5 Hz). The temporal selectivities of AM band-suppression neurons were found to be temperature dependent. The modulation rate at which a response minimum was observed shifted to higher values as the temperature was elevated. These results extend our earlier findings of temperature-dependent temporal selectivity in the gray treefrog. The selectivity of band-suppression and AM-tuned neurons to various rates of amplitude modulation was largely, but not completely, independent of whether sinusoidal or natural forms of AM were used.  相似文献   

5.
* BACKGROUND AND AIMS: The genus Hordeum exists at three ploidy levels (2x, 4x and 6x) and presents excellent material for investigating the patterns of polyploid evolution in plants. Here the aim was to clarify the ancestry of American polyploid species with the I genome. * METHODS: Chromosomal locations of 5S and 18S-25S ribosomal RNA genes were determined by fluorescence in situ hybridization (FISH). In both polyploid and diploid species, variation in 18S-25S rDNA repeated sequences was analysed by the RFLP technique. * KEY RESULTS: Six American tetraploid species were divided into two types that differed in the number of rDNA sites and RFLP profiles. Four hexaploid species were similar in number and location of both types of rDNA sites, but the RFLP profiles of 18S-25S rDNA revealed one species, H. arizonicum, with a different ancestry. * CONCLUSIONS: Five American perennial tetraploid species appear to be alloploids having the genomes of an Asian diploid H. roshevitzii and an American diploid species. The North American annual tetraploid H. depressum is probably a segmental alloploid combining the two closely related genomes of American diploid species. A hexaploid species, H. arizonicum, involves a diploid species, H. pusillum, in its ancestry; both species share the annual growth habit and are distributed in North America. Polymorphisms of rDNA sites detected by FISH and RFLP analyses provide useful information to infer the phylogenetic relationships of I-genome Hordeum species because of their highly conserved nature during polyploid evolution.  相似文献   

6.
The Hordeum marinum species group consists of two annual grasses of western Eurasian saline meadows or marshes. The two grasses split in the Quaternary about two million years ago. Hordeum marinum and the diploid of Hordeum gussoneanum (2x) co-occur throughout the Mediterranean basin, while the autotetraploid cytotype of H. gussoneanum (4x) overlaps with its diploid progenitor geographically only in the utmost Eastern Mediterranean, extending from there eastwards into Asia. Using chloroplast sequences of the trnL-F region, six newly developed chloroplast microsatellite loci, ecological predictive models based on climate data, and the present geographical distribution of the two species we analysed differentiation processes in the H. marinum group. The chloroplast data indicated clear differences in the history of both species. For H. marinum we found a subdivision between genetically variable populations from the Iberian Peninsula and the more uniform populations from the remaining Mediterranean. As an explanation, we assume Pleistocene fragmentation of an earlier widespread population and survival in an Iberian and a Central Mediterranean glacial refuge. Chloroplast variation was completely absent within the cytotypes of H. gussoneanum, indicating a severe and recent genetic bottleneck. Due to this lack of chloroplast variation only the combination of ecological habitat modelling with molecular data analyses allowed conclusions about the history of this taxon. The distribution areas of the two cytotypes of H. gussoneanum overlap today in parts of Turkey, indicating an area with similar climate conditions during polyploid formation. However, after its origin the polyploid cytotype underwent a pronounced ecological shift, compared to its diploid progenitor, allowing it to colonize mountainous inland habitats between the Mediterranean basin and Afghanistan. The extant sympatric occurrence of H. marinum and H. gussoneanum 2x in the Mediterranean region is interpreted as a result of secondary contact after fast Holocene range expansion out of different ice age refugia.  相似文献   

7.
Hyla versicolor (2n = 48) is a tetraploid counterpart to H. chrysoscelis (2n = 24). Cytochemical measurements revealed that no cytological parameter of the two species conformed to the expected 2:1 ratio. Every cytological factor of the tetraploid appeared to have been regulated toward the diploid level. H. veriscolor-to-H. chrysoscelis mean ratios and their standard errors were: DNA 1.90 +/- 0.03; nuclear histone, 1.70 +/- 0.18; nuclear RNA, 1.63 +/- 0.19; total nuclear protein, 1.46 +/- 0.05; nuclear sizes, 1.42 +/- 0.08.  相似文献   

8.
Several studies have demonstrated that polyploid species can form recurrently from their progenitors, but few studies have evaluated gene flow between the resultant polyploid lineages. Here we examine the possibility of hybridization between lineages of the tetraploid common gray treefrog (Hyla versicolor). We utilize a polymerase chain reaction (PCR) cloning approach to estimate the genotypes of tetraploid individuals and measure genetic differentiation between (1) sympatric populations of two lineages and (2) allopatric populations of a single lineage. We find that allele frequencies in sympatric populations of two lineages do not differ, suggesting that frogs of these two lineages hybridize in areas where they co-occur.  相似文献   

9.
The location of rDNA genes on the chromosomes of most species is identical within that species, usually occurring on the same chromosome or chromosomes. This is not the case in Cope's gray treefrog, Hyla chrysoscelis, where the rDNA genes are polymorphic for chromosome location. The occasions leading to this polymorphism have yet to be determined. The first step in understanding the nature of the polymorphism is the characterization of the ribosomal gene array. Here we describe the cloning, sequencing, and confirmation, by fluorescence in situ hybridization, of the 18S rDNA gene, a region which includes the end of the 18S rDNA gene, an internal transcribed spacer, and a portion of the 5' end of the 28S rDNA gene in H. chrysoscelis.  相似文献   

10.
For polyploid species to persist, they must be reproductively isolated from their diploid parental species, which coexist at the same time and place at least initially. In a complex of biparentally reproducing tetraploid and diploid tree frogs in North America, selective phonotaxis--mediated by differences in the pulse-repetition (pulse rate) of their mate-attracting vocalizations--ensures assortative mating. We show that artificially produced autotriploid females of the diploid species (Hyla chrysoscelis) show a shift in pulse-rate preference in the direction of the pulse rate produced by males of the tetraploid species (Hyla versicolor). The estimated preference function is centred near the mean pulse rate of the calls of artificially produced male autotriploids. Such a parallel shift, which is caused by polyploidy per se and whose magnitude is expected to be greater in autotetraploids, may have facilitated sympatric speciation by promoting reproductive isolation of the initially formed polyploids from their diploid parental forms. This process also helps to explain why tetraploid lineages with different origins have similar advertisement calls and freely interbreed.  相似文献   

11.
《Acta Oecologica》2007,31(2):168-173
The Digital Climatic Atlas and the Ecological and the Forestry Inventory of Catalonia (NE Spain) were analysed to study the climate effect on leaf mass per area (LMA) and leaf area index (LAI) on Quercus ilex L., one of the most widely spread tree species in the Mediterranean region. 195 sites in this region of 31,895 km2 were considered. The relationship between climatic variables (total annual rainfall, mean annual temperature, mean minimum winter temperatures, and mean annual solar radiation) and LMA and LAI were analysed by simple and multiple regressions. LMA was higher in the drier sites and specially in the colder sites. There was also a significant correlation between solar radiation and LMA. On the contrary, LAI values, which were negatively correlated with LMA values, were lower in drier and colder sites, and were not significantly affected by solar radiation. The results highlight that high LMA values do not seem to be a specific protection to dry conditions but to a wide range of environmental stress factors, including low temperatures.  相似文献   

12.
Populations of the diploid-tetraploid treefrogs Hyla chrysoscelis and H. versicolor can be defined by the polymorphic positions of the nucleolar organizing regions (NORs) on their chromosomes. Evidence from NOR positions and interstitial telomere sequence data shows that gene flow between H. chrysoscelis populations appears to be restricted, with contact occurring only in narrow "hybrid" zones. Hyla versicolor appears to have had multiple origins from H. chrysoscelis populations, and this, too, is reflected in the NOR positions. We used replication banding to determine if genetic isolation of H. chrysoscelis populations was accompanied by karyotype evolution in the populations or in contact zones. We also sought to detect karyotype alteration or replication differences associated with polyploidy in H. versicolor. Homologous chromosome pairs of all H. chrysoscelis studied displayed no differences in replication banding patterns, nor did they differ from those of H. versicolor. Although NOR positions differed between the populations studied, no disturbance of the replication banding patterns was found, indicating that structural rearrangements were not involved in creating the multiple NOR positions seen in populations of H. versicolor and H. chrysoscelis.  相似文献   

13.
Despite the well-documented historical importance of polyploidy, the mechanisms responsible for the establishment and evolutionary success of novel polyploid lineages remain unresolved. One possibility, which has not been previously evaluated theoretically, is that novel polyploid lineages are initially more resistant to pathogens than the diploid progenitor species. Here, we explore this possibility by developing and analysing mathematical models of interactions between newly formed polyploid lineages and their pathogens. We find that for the genetic mechanisms of pathogen resistance with the best empirical support, newly formed polyploid populations of hosts are expected to be more resistant than their diploid progenitors. This effect can be quite strong and, in the case of perennial species with recurrent polyploid formation, may last indefinitely, potentially providing a general explanation for the successful establishment of novel polyploid lineages.  相似文献   

14.
Hyla versicolor, a tetraploid treefrog, is reported to have originated via multiple hybridization events involving three diploid ancestors. Its complex reticulate history provides insights into the roles that polyploidy and hybridization can play in the origin of species.  相似文献   

15.
BackgroundWhereas the incidence or rate of polyploid speciation in flowering plants is modest, the production of polyploid individuals within local populations is widespread. Explanations for this disparity primarily have focused on properties or interactions of polyploids that limit their persistence.HypothesisThe emergence of local polyploid populations within diploid populations is similar to the arrival of invasive species at new, suitable sites, with the exception that polyploids suffer interference from their progenitor(s). The most consistent predictor of successful colonization by invasive plants is propagule pressure, i.e. the number of seeds introduced. Therefore, insufficient propagule pressure, i.e. the formation of polyploid seeds within diploid populations, ostensibly is a prime factor limiting the establishment of newly emergent polyploids within local populations. Increasing propagule number reduces the effects of genetic, environmental and demographic stochasticity, which thwart population survival. As with invasive species, insufficient seed production within polyploid populations limits seed export, and thus reduces the chance of polyploid expansion.ConclusionThe extent to which propagule pressure limits the establishment of local polyploid populations remains to be determined, because we know so little. The numbers of auto- or allopolyploid seed in diploid populations rarely have been ascertained, as have the numbers of newly emergent polyploid plants within diploid populations. Moreover, seed production by these polyploids has yet to be assessed.  相似文献   

16.
Polyploidy is a major feature of angiosperm evolution and diversification. Most polyploid species have formed multiple times, yet we know little about the genetic consequences of recurrent formations. Among the clearest examples of recurrent polyploidy are Tragopogon mirus and T. miscellus (Asteraceae), each of which has formed repeatedly in the last ~80 years from known diploid progenitors in western North America. Here, we apply progenitor‐specific microsatellite markers to examine the genetic contributions to each tetraploid species and to assess gene flow among populations of independent formation. These data provide fine‐scale resolution of independent origins for both polyploid species. Importantly, multiple origins have resulted in considerable genetic variation within both polyploid species; however, the patterns of variation detected in the polyploids contrast with those observed in extant populations of the diploid progenitors. The genotypes detected in the two polyploid species appear to represent a snapshot of historical population structure in the diploid progenitors, rather than modern diploid genotypes. Our data also indicate a lack of gene flow among polyploid plants of independent origin, even when they co‐occur, suggesting potential reproductive barriers among separate lineages in both polyploid species.  相似文献   

17.
Polyploid speciation has played an important role in evolutionary history across the tree of life, yet there remain large gaps in our understanding of how polyploid species form and persist. Although systematic studies have been conducted in numerous polyploid complexes, recent advances in sequencing technology have demonstrated that conclusions from data-limited studies may be spurious and misleading. The North American gray treefrog complex, consisting of the diploid Hyla chrysoscelis and the tetraploid H. versicolor, has long been used as a model system in a variety of biological fields, yet all taxonomic studies to date were conducted with only a few loci from nuclear and mitochondrial genomes. Here, we utilized anchored hybrid enrichment and high-throughput sequencing to capture hundreds of loci along with whole mitochondrial genomes to investigate the evolutionary history of this complex. We used several phylogenetic and population genetic methods, including coalescent simulations and testing of polyploid speciation models with approximate Bayesian computation, to determine that H. versicolor was most likely formed via autopolyploidization from a now extinct lineage of H. chrysoscelis. We also uncovered evidence of significant hybridization between diploids and tetraploids where they co-occur, and show that historical hybridization between these groups led to the re-formation of distinct polyploid lineages following the initial whole-genome duplication event. Our study indicates that a wide variety of methods and explicit model testing of polyploid histories can greatly facilitate efforts to uncover the evolutionary history of polyploid complexes.  相似文献   

18.
Cope's gray treefrog, Hyla chrysoscelis, is a freeze-tolerant anuran that accumulates cryoprotective glycerol during cold acclimation. H. chrysoscelis erythrocytes express the aquaglyceroporin HC-3, which facilitates transmembrane glycerol and water movement. Aquaglyceroporins have no pharmacological inhibitors, and no genetic knockout tools currently exist for H. chrysoscelis. A phosphorodiamidate morpholino oligo (PMO)-mediated expression knockdown approach was therefore pursued to provide a model for testing the role of HC-3. We describe a novel procedure optimized for specific, efficient knockdown of HC-3 expression in amphibian erythrocyte suspensions cultured at nonmammalian physiological temperatures using Endo-Porter. Our protocol includes three critical components: pre-incubation at 37°C, two rounds of Endo-Porter and HC-3 PMO administration at ~23°C, and continuous shaking at 190 rpm. This combination of steps resulted in 94% reduction in HC-3 protein expression (Western blot), substantial decrease in HC-3 expression in >65% of erythrocytes, and no detectable expression in an additional 30% of cells (immunocytochemistry).  相似文献   

19.
Population-scale drivers of individual arrival times in migratory birds   总被引:2,自引:1,他引:1  
1. In migratory species, early arrival on the breeding grounds can often enhance breeding success. Timing of spring migration is therefore a key process that is likely to be influenced both by factors specific to individuals, such as the quality of winter and breeding locations and the distance between them, and by annual variation in weather conditions before and during migration. 2. The Icelandic black-tailed godwit Limosa limosa islandica population is currently increasing and, throughout Iceland, is expanding into poorer quality breeding areas. Using a unique data set of arrival times in Iceland in different years for individuals of known breeding and wintering locations, we show that individuals breeding in lower quality, recently occupied and colder areas arrive later than those from traditionally occupied areas. The population is also expanding into new wintering areas, and males from traditionally occupied winter sites also arrive earlier than those occupying novel sites. 3. Annual variation in timing of migration of individuals is influenced by large-scale weather systems (the North Atlantic Oscillation), but between-individual variation is a stronger predictor of arrival time than the NAO. Distance between winter and breeding sites does not influence arrival times. 4. Annual variation in timing of migration is therefore influenced by climatic factors, but the pattern of individual arrival is primarily related to breeding and winter habitat quality. These habitat effects on arrival patterns are likely to operate through variation in individual condition and local-scale density-dependent processes. Timing of migration thus appears to be a key component of the intricate relationship between wintering and breeding grounds in this migratory system.  相似文献   

20.
We measured oxygen consumption of the diploid frog Hyla chrysoscelis and its recently evolved tetraploid cryptic species Hyla versicolor at rest and during forced locomotory exercise. We also measured whole-body lactic acid concentrations of individuals of the two species at rest and following 4 min of exercise. Contrary to predictions based on tissue-culture experiments, rates of organismal metabolism are not different in this diploid/tetraploid species pair: the diploid and tetraploid species did not differ in rates of oxygen consumption at rest or during exercise. Furthermore, whole-body lactate concentrations of frogs at rest and following forced locomotion were the same in the diploid and tetraploid species. For these species, polyploidy does not appear to be associated with lower maintenance costs at the level of the organism. However, polyploidy also does not appear to have metabolic consequences that would limit the behavioral or ecological repertoire of an anuran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号