首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
cDNA encoding an extracellular carbohydrate esterase (CcEst1) was cloned from the basidiomycete Coprinopsis cinerea. The recombinant CcEst1 expressed in Pichia pastoris acted on p-nitrophenyl acetate, α-naphthyl acetate, and methyl hydroxycinnamic acids, except for methyl sinapic acid. The enzyme released ferulic and acetic acids from wheat arabinoxylan and acetylated xylan respectively. Activity increased on the addition of endo-β-1,4-xylanase.  相似文献   

2.
Summary Of eight white-rot fungi examined, seven fungi grew on nitrogen-limited poplar wood meal medium and degraded 14C-lignin in wood meal to 14CO2. Increased oxygen enhanced both the rate and extent of degradation. However, whereas Pleurotus ostreatus, Pycnoporus cinnabarinus 115 and Pycnoporus cinnabarinus A-360 degraded 12–17% of 14C-(U)-lignin of poplar wood to 14CO2 also in an air atmosphere, Sporotrichum pulverulentum, Phlebia radiata 79 and Phanerochaete sordida 37 degraded only 1–5% under these conditions. Addition of cellulose and glucose to the poplar wood medium stimulated degradation of 14C-(RING)-lignin of poplar wood by Phlebia radiata 79 but repressed degradation by Polyporus versicolor and Pleurotus ostreatus. Cellulose added to the wood meal medium had no effect on the degradation of lignin by Phanerochaete sordida 37 and Sporotrichum pulverulentum but glucose slightly repressed lignin degradation by these fungi. Those white-rot fungi which were considered as preferentially lignin attacking fungi could degrade 14C-(RING)-lignin of poplar wood efficiently under 100% oxygen. They did not require an extra energy source in addition to wood meal polysaccharides for rapid ring cleavage and they degraded up to 50–60% of the 14C-lignin to 14CO2 in 6–7 weeks at a maximum rate of 3–4% per day.These results were reported in part at the Journées Internationales d'Etudes du Groupe Polyphenols, 29. 9.–1. 10. 1982, Université Paul Sabatier, Toulouse, France  相似文献   

3.
Microbial transformation of ferulic acid to acetovanillone was studied using growing cells of Rhizopus oryzae. Ferulic acid was added to the growing medium (0.5 g L?1) and incubated for 12 days. The progress of formation of metabolites was monitored by GC and GC-MS after extraction with ethyl acetate. The major metabolite was acetovanillone with minor metabolites formed, such as dihydroferulic acid, coniferyl alcohol and dihydroconiferyl alcohol. Traces of metabolites (≤1–3%), such as vanillin, vanillyl alcohol, vanillic acid and phenyl ethyl alcohol, were also produced. Formation of 4-vinyl guaiacol increased from day 1 (12.4%), reaching a maximum on day 4 (31.7%), and reducing to a minimum on day 12 (3.1%). The formation of acetovanillone increased only from day 2 onward, and reached a maximum (49.2%) on day 12. The optimum concentration of ferulic acid to be added into the medium was found to be only 0.5 g L?1, as any increase in concentration (0.75 and 1.0 g L?1) precipitated the precursor, resulting in no further degradation.  相似文献   

4.
We report the optimum conditions for the degradation of oat spelt arabinoxylan and a preliminary characterisation of the inducible xylan-degrading system of the lignin-degrading white-rot fungus Phanerochaete chrysosporium. Xylanase activity was optimal at pH 5.0 and 50°C; see attached sheet the maximum reaction velocity (Vmax) of the system was 3.86 units (U) mg–1 protein with arabinoxylan as substrate and the substrate concentration giving half Vmax (S0.5) was 0.52 mg ml–1. At concentrations of arabinoxylan greater than 15 mg ml–1 excess substrate inhibition was observed. Xylose at 0.9 mm inhibited activity to the extent of 50%. Xylanase activity increased as a function of the dilution of the enzyme preparation prior to assay. It was resolved into four peaks by using a DEAE-Biogel column; the material in these peaks differed with respect to xylan solubilisation and the formation of reducing sugars. Electrofocusing gels allowed visualisation of several bands of activity corresponding to each peak. The arabinoxylan degradation system of P. chrysosporium is therefore composed of multiple components. Correspondence to: P. Broda  相似文献   

5.
Production of extracellular beta-1,4-xylanase, alpha-L-arabinofuranosidase, feruloyl esterase, and acetyl xylan esterase from Aspergillus kawachii was higher in a culture supplemented with ferulic acid than in a counterpart. Culture supernatant grown on oat spelt xylan supplemented with ferulic acid exhibited an increase in ferulic acid-releasing activity from insoluble arabinoxylan relative as compared to that from the ferulic acid-free culture.  相似文献   

6.
Recent genome sequencing of Cellvibrio japonicas revealed the presence of two highly homologous ferulic acid esterases (FAEs), encoded by fee1A and fee1B. In this work, the putative FAE, Fee1B, was successfully cloned and expressed in an E. coli system and the purified enzyme was characterized as a type-D FAE with a pH and temperature optima of 6.5 and 35−40°C, respectively. Additionally, the two tandem N-terminal carbohydrate binding modules of the multi-domain enzyme were shown to be crucial for optimum enzyme activity. The potential of the enzyme in biomass processing was demonstrated with its high synergy with a xylanase in the release of reducing sugar from arabinoxylan and its ability to liberate ferulic acid from various complex xylan substrates.  相似文献   

7.
Summary The ligninolytic enzymes ofPhlebia radiata were produced in static conditions earlier developed forPhanerochaete chrysosporium. The production pattern of lignin peroxidases resembled that ofP. chrysosporium. The extracellular proteins ofPhlebia radiata were separated by isoelectric focusing. Four proteins with acidic isoelectric points (4.15) were detected by peroxidase staining. The peroxidases ofP. radiata reacted with antibodies produced against a peroxidase ofPhanerochaete chrysosporium and vice versa. Thus the lignin peroxidases of the two fungi have major similarities despite slight differences in their isoelectric points and molecular weights. Veratryl alcohol was produced by both fungi and degraded to veratraldehyde, two lactones and a quinone by the ligninolytic cultures.  相似文献   

8.
9.
10.
Changes in structural features of feraxan (feruloylated arabinoxylans) in cell walls during development of maize (Zea mays L.) coleoptiles were investigated by analysis of fragments released by feraxanase, a specific enzyme purified from Bacillus subtilis. The following patterns were identified: (a) The total quantity of carbohydrate dissociated from a given dry weight of cell wall by feraxanase remained rather constant throughout the initial 10 days of coleoptile development. However, during the same period the proportion of ferulic acid in the fraction increased 12-fold. The absolute amount of ferulic acid per coleoptile also increased rapidly during this developmental phase. (b) Fragments dissociated by the enzyme were resolved into feruloylated and nonferuloylated components by reversed phase chromatography. While the quantity of feruloylated fractions represented a small portion of the total arabinoxylan during the phase of maximum coleoptile elongation (days 2-4) this component increased in abundance to reach a plateau (after 8-10 days). In contrast, nonferuloylated fractions were most abundant during the stage of maximum elongation but declined to a constant level by day 6. (c) Glycosidic linkage analysis of carbohydrate reveals that substitution of the xylan backbone of feraxan by arabinosyl residues decreased during coleoptile growth. We conclude that significant incorporation of ferulic acid occurs and/or more feruloyated domains are added to the arabinoxylan during development. This augmentation in phenolic acids is accompanied by a concerted displacement of arabinosyl residues and/or a reduction in the incorporation of regions enriched in arabinosyl sidechains.  相似文献   

11.
A bacterial isolate identified as Xanthomonas sp. proved to be ligninolytic due to its ability to degrade 14C-labeled dehydropolymers of coniferyl alcohol (DHP) and [14C]lignocellulose complexes from corn plants (Zea mays). Several parameters of ligninolysis were evaluated and it was shown that resting cells degrade DHP as sole carbon source. Enhancement of DHP degradation in the presence of ferulic acid or water-soluble fractions of DHP or of dioxane lignin from wheat was demonstrated. It is shown that a dissociation of DHP takes place during incubation in the absence of the bacteria which is reflected in a shift of DHP to lower molecular weight fractions. Bacterial degradation of [14C] DHP results in the release of 14CO2 and in the incorporation of the 14C-label into the biomass of the bacteria, as shown by chemical and biological methods.Abbreviations Bq Becquerel, measure for radioactivity according to SI nomenclature - DHP dehydropolymers of coniferyl alcohol - DMF dimethylformamide - DMSO dimethyl sulfoxide - HPLC high performance liquid chromatography - TCA trichloroacetic acid - THF tetrahydrofuran  相似文献   

12.
Abstract

The gene encoding CtCBM6B of Clostridium thermocellum α-L-arabinofuranosidase (Ct43Araf) was cloned in pET-21a(+) vector, over-expressed using Escherichia coli BL-21(DE3) cells and purified by immobilized metal-ion affinity chromatography (IMAC). The recombinant CtCBM6B showed a molecular size close to 15 kDa by SDS-PAGE analysis, which was close to the expected size of 14.74 kDa. The ligand-binding affinity of CtCBM6B was assessed against ligands for which the catalytic enzyme, Ct43Araf showed maximum activity. The affinity-gel electrophoresis of CtCBM6B with rye arabinoxylan showed lower equilibrium association constant (Ka, 4.0% C? 1), whereas, it exhibited higher affinity (Ka, 19.6% C? 1) with oat spelt xylan. The ligand-binding analysis of CtCBM6B by fluorescence spectroscopy also revealed similar results with low Ka (3.26% C? 1) with rye arabinoxylan and higher affinity for oat spelt xylan (Ka, 17.9% C? 1) which was corroborated by greater blue-shift in case of oat spelt xylan binding. The CtCBM6B binding with insoluble wheat arabinoxylan by adsorption isotherm analysis showed significant binding affinity as reflected by the equilibrium association constant (Ka), 9.4 × 103 M? 1. The qualitative analysis by SDS-PAGE also corroborated the CtCBM6B binding with insoluble wheat arabinoxylan. The protein-melting curve of CtCBM6B displayed the peak shift from 53°C to 59°C in the presence of Ca2+ ions indicating that Ca2+ ions impart thermal stability to the CtCBM6B structure.  相似文献   

13.
We engineered a chimeric enzyme (AwFaeA-CBM42) comprising of type-A feruloyl esterase from Aspergillus awamori (AwFaeA) and family 42 carbohydrate-binding module (AkCBM42) from glycoside hydrolase family 54 α-l-arabinofuranosidase of Aspergillus kawachii. The chimeric enzyme was successfully produced in Pichia pastoris and accumulated in the culture broth. The purified chimeric enzyme had an apparent relative molecular mass (M r) of 53,000. The chimeric enzyme binds to arabinoxylan; this indicates that the AkCBM42 in AwFaeA-CBM42 binds to arabinofuranose side chain moiety of arabinoxylan. The thermostability of the chimeric enzyme was greater than that of AwFaeA. No significant difference of the specific activity toward methyl ferulate was observed between the AwFaeA and chimeric enzyme, but the release of ferulic acid from insoluble arabinoxylan by the chimeric enzyme was approximately 4-fold higher than that achieved by AwFaeA alone. In addition, the chimeric enzyme and xylanase acted synergistically for the degradation of arabinoxylan. In conclusion, the findings of our study demonstrated that the components of the AwFaeA-CBM42 chimeric enzyme act synergistically to bring about the degradation of complex substrates and that the family 42 carbohydrate-binding module has potential for application in the degradation of polysaccharides.  相似文献   

14.
Nocardia autotrophica was grown in a medium containing ferulic acid and 14C-ferulic acid, labelled in various parts of a particle as a main carbon source. After incubation, the products were analyzed by thin layer, high performance liqid and gas chromatography and by IR and NMR spectra methods. The products detected were caffeic acid, catechol, coniferyl alcohol, eugenol, guaiacol, hydrocaffeic acid, isoeugenol, isoferulic acid, isovanillic acid, p-hydroxybenzoic acid, protocatechuic acid and aldehyde, vanillic acid, and vinylguaiacol. A liberation of 14CO2 during cultivation was noticed.  相似文献   

15.
During growth on ferulic acid, Halomonas elongata DSM 2581T was capable of promoting the formation of a significant amount of vanillic acid. The products were confirmed by high-performance liquid chromatography and gas chromatography mass-spectrometry analyses. To enhance the formation of vanillic acid and prevent its degradation, a resting-cell method using Halomonas elongata was developed. The growth state of the culture utilized for biomass production, the concentration of the biomass, the amount of ferulic acid that was treated and the reutilization of the biomass were optimized. The optimal yield of vanillic acid (82%) was obtained after a 10-h reaction using 10 mM ferulic acid and 5 g/l of cell pregrown on ferulic acid and harvested at the end of the exponential phase.  相似文献   

16.
Transformation of veratric (3,4-dimethoxybenzoic) acid by the white rot fungus Phlebia radiata was studied to elucidate the role of ligninolytic, reductive, and demeth(ox)ylating enzymes. Under both air and a 100% O2 atmosphere, with nitrogen limitation and glucose as a carbon source, reducing activity resulted in the accumulation of veratryl alcohol in the medium. When the fungus was cultivated under air, veratric acid caused a rapid increase in laccase (benzenediol:oxygen oxidoreductase; EC 1.10.3.2) production, which indicated that veratric acid was first demethylated, thus providing phenolic compounds for laccase. After a rapid decline in laccase activity, elevated lignin peroxidase (ligninase) activity and manganese-dependent peroxidase production were detected simultaneously with extracellular release of methanol. This indicated apparent demethoxylation. When the fungus was cultivated under a continuous 100% O2 flow and in the presence of veratric acid, laccase production was markedly repressed, whereas production of lignin peroxidase and degradation of veratryl compounds were clearly enhanced. In all cultures, the increases in lignin peroxidase titers were directly related to veratryl alcohol accumulation. Evolution of 14CO2 from 3-O14CH3-and 4-O14CH3-labeled veratric acids showed that the position of the methoxyl substituent in the aromatic ring only slightly affected demeth(ox)ylation activity. In both cases, more than 60% of the total 14C was converted to 14CO2 under air in 4 weeks, and oxygen flux increased the degradation rate of the 14C-labeled veratric acids just as it did with unlabeled cultures.  相似文献   

17.
Effects of cell wall components on the functionality of wheat gluten   总被引:2,自引:0,他引:2  
Normal white wheat flours and especially whole meal flour contain solids from the inner endosperm cell walls, from germ, aleurone layer and the outer layers of cereal grains. These solids can prevent either gluten formation or gas cell structure. The addition of small amounts of pericarp layers (1–2%) to wheat flour had a marked detrimental effect on loaf volume. Microstructural studies indicated that in particular the epicarp hairs appeared to disturb the gas cell structure. The detrimental effects of insoluble cell walls can be prevented by using endoxylanases. It has been shown that some oxidative enzymes, naturally present in flour or added to the dough, will oxidise water-extractable arabinoxylans via ferulic acid bridges, and the resulting arabinoxylan gel will hinder gluten formation. The negative effects of water-unextractable arabinoxylans on gluten yield and rheological properties can be compensated by the addition of ferulic acid. Free ferulic acid can probably prevent arabinoxylan cross-linking via ferulic acid.  相似文献   

18.
Several aromatic compounds increased initial lignin degradation rates in cultures of Phanerochaete chrysosporium. This activation was connected to increased H2O2 production and glucose oxidation rates. Veratryl alcohol, a natural secondary metabolite of P. chrysosporium, also activated the lignin-degrading system. In the presence of added veratryl alcohol the ligninolytic system appeared 6–8 h earlier than in reference cultures. This effect was only seen when lignin was added after the primary growth was completed because lignin itself also caused earlier appearance of the degradative system. In cultures which received no added lignin or veratryl alcohol the ligninolytic activity only appeared once the alcohol started to accumulate. The degradation patterns of veratryl alcohol and lignin were similar. The activity levels of lignin degradation and glucose oxidation could be regulated by veratryl alcohol concentration. It is suggested that either veratryl alcohol itself or a metabolite derived from it is actually responsible for the low levels of ligninolytic activity in glucose grown cultures.  相似文献   

19.
Mineralization of polymeric wood lignin and its substructures is a result of complex reactions involving oxidizing and reducing enzymes and radicals. The degradation of methoxyl groups is an essential part of this process. The presence of wood greatly stimulates the demethoxylation of a non-phenolic lignin model compound (a [O14CH3]-labeled β-O-4 dimer) by the lignin-degrading white-rot fungi Phlebia radiata and Phanerochaete chrysosporium. When grown on wood, both fungi produced up to 47 and 40% 14CO2 of the applied 14C activity, respectively, under air and oxygen in 8 weeks. Without wood, the demethoxylation of the dimer by both fungi was lower, varying between 0.5 and 35%. Addition of nutrient nitrogen together with glucose decreased demethoxylation when the fungi were grown on spruce wood under air. Because the evolution of 14CO2 in the absence of wood was poor, the fungi may have preferably used wood as a carbon and nitrogen source. The amount of fungal mycelium, as determined by the ergosterol assay, did not show connection to demethoxylation. P. radiata also showed a high demethoxylation of [O14CH3]-labeled vanillic acid in the presence of birch wood. The degradation of lignin and lignin-related substances should be studied in the presence of wood, the natural substrate for white-rot fungi.  相似文献   

20.
A new strain Bacillus coagulans BK07 was isolated from decomposed wood-bark, based on its ability to grow on ferulic acid as a sole carbon source. This strain rapidly decarboxylated ferulic acid to 4-vinylguaiacol, which was immediately converted to vanillin and then oxidized to vanillic acid. Vanillic acid was further demethylated to protocatechuic acid. Above 95% substrate degradation was obtained within 7 h of growth on ferulic acid medium, which is the shortest period of time reported to date. The major degradation products, was isolated and identified by thin-layer chromatography, high performance liquid chromatography and 1H-nuclear magnetic resonance spectroscopy were 4-vinylguaiacol, vanillin, vanillic acid and protocatechuic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号