首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The downregulation of E-cadherin function has fundamental consequences with respect to cancer progression, and occurs as part of the epithelial–mesenchymal transition (EMT). In this study, we show that the expression of the Discosoma sp. red fluorescent protein (DsRed)-tagged cadherin cytoplasmic domain in cells inhibited the cell surface localization of endogenous E-cadherin, leading to morphological changes, the inhibition of junctional assembly and cell dissociation. These changes were associated with increased cell migration, but were not accompanied by the down-regulation of epithelial markers and up-regulation of mesenchymal markers. Thus, these changes cannot be classified as EMT. The cadherin cytoplasmic domain interacted with β-catenin or plakoglobin, reducing the levels of β-catenin or plakoglobin associated with E-cadherin, and raising the possibility that β-catenin and plakoglobin sequestration by these constructs induced E-cadherin intracellular localization. Accordingly, a cytoplasmic domain construct bearing mutations that weakened the interactions with β-catenin or plakoglobin did not impair junction formation and adhesion, indicating that the interaction with β-catenin or plakoglobin was essential to the potential of the constructs. E-cadherin–α-catenin chimeras that did not require β-catenin or plakoglobin for their cell surface transport restored cell–cell adhesion and junction formation.  相似文献   

3.
Sperm–egg plasma membrane fusion is preceded by sperm adhesion to the egg plasma membrane. Cell–cell adhesion frequently involves multiple adhesion molecules on the adhering cells. One sperm surface protein with a role in sperm–egg plasma membrane adhesion is fertilin, a transmembrane heterodimer (α and β subunits). Fertilin α and β are the first identified members of a new family of membrane proteins that each has the following domains: pro-, metalloprotease, disintegrin, cysteine-rich, EGF-like, transmembrane, and cytoplasmic domain. This protein family has been named ADAM because all members contain a disintegrin and metalloprotease domain. Previous studies indicate that the disintegrin domain of fertilin β functions in sperm–egg adhesion leading to fusion. Full length cDNA clones have been isolated for five ADAMs expressed in mouse testis: fertilin α, fertilin β, cyritestin, ADAM 4, and ADAM 5. The presence of the disintegrin domain, a known integrin ligand, suggests that like fertilin β, other testis ADAMs could be involved in sperm adhesion to the egg membrane. We tested peptide mimetics from the predicted binding sites in the disintegrin domains of the five testis-expressed ADAMs in a sperm–egg plasma membrane adhesion and fusion assay. The active site peptide from cyritestin strongly inhibited (80–90%) sperm adhesion and fusion and was a more potent inhibitor than the fertilin β active site peptide. Antibodies generated against the active site region of either cyritestin or fertilin β also strongly inhibited (80–90%) both sperm–egg adhesion and fusion. Characterization of these two ADAM family members showed that they are both processed during sperm maturation and present on mature sperm. Indirect immunofluorescence on live, acrosome-reacted sperm using antibodies against either cyritestin or fertilin β showed staining of the equatorial region, a region of the sperm membrane that participates in the early steps of membrane fusion. Collectively, these data indicate that a second ADAM family member, cyritestin, functions with fertilin β in sperm–egg plasma membrane adhesion leading to fusion.  相似文献   

4.
5.
Growth factor deprivation of endothelial cells induces apoptosis, which is characterized by membrane blebbing, cell rounding, and subsequent loss of cell–matrix and cell–cell contacts. In this study, we show that initiation of endothelial apoptosis correlates with cleavage and disassembly of intracellular and extracellular components of adherens junctions. β-Catenin and plakoglobin, which form intracellular links between vascular endothelial cadherin (VE-cadherin) and actin-binding α-catenin in adherens junctions, are cleaved in apoptotic cells. In vitro incubations of cell lysates and immunoprecipitates with recombinant caspases indicate that CPP32 and Mch2 are involved, possibly by initiating proteolytic processing. Cleaved β-catenin from lysates of apoptotic cells does not bind to endogenous α-catenin, whereas plakoglobin retains its binding capacity. The extracellular portion of the adherens junctions is also altered during apoptosis because VE-cadherin, which mediates endothelial cell–cell interactions, dramatically decreases on the surface of cells. An extracellular fragment of VE-cadherin can be detected in the conditioned medium, and this “shedding” of VE-cadherin can be blocked by an inhibitor of metalloproteinases. Thus, cleavage of β-catenin and plakoglobin and shedding of VE-cadherin may act in concert to disrupt structural and signaling properties of adherens junctions and may actively interrupt extracellular signals required for endothelial cell survival.  相似文献   

6.
Epithelial tubulogenesis involves complex cell rearrangements that require control of both cell adhesion and migration, but the molecular mechanisms regulating these processes during tubule development are not well understood. Interactions of the cytoplasmic protein, β-catenin, with several molecular partners have been shown to be important for cell signaling and cell–cell adhesion. To examine if β-catenin has a role in tubulogenesis, we tested the effect of expressing NH2-terminal deleted β-catenins in an MDCK epithelial cell model for tubulogenesis. After one day of treatment, hepatocyte growth factor/scatter factor (HGF/ SF)-stimulated MDCK cysts initiated tubulogenesis by forming many long cell extensions. Expression of NH2-terminal deleted β-catenins inhibited formation of these cell extensions. Both ΔN90 β-catenin, which binds to α-catenin, and ΔN131 β-catenin, which does not bind to α-catenin, inhibited formation of cell extensions and tubule development, indicating that a function of β-catenin distinct from its role in cadherin-mediated cell–cell adhesion is important for tubulogenesis. In cell extensions from parental cysts, adenomatous polyposis coli (APC) protein was localized in linear arrays and in punctate clusters at the tips of extensions. Inhibition of cell extension formation correlated with the colocalization and accumulation of NH2-terminal deleted β-catenin in APC protein clusters and the absence of linear arrays of APC protein. Continued HGF/ SF treatment of parental cell MDCK cysts resulted in cell proliferation and reorganization of cell extensions into multicellular tubules. Similar HGF/SF treatment of cysts derived from cells expressing NH2-terminal deleted β-catenins resulted in cells that proliferated but formed cell aggregates (polyps) within the cyst rather than tubules. Our results demonstrate an unexpected role for β-catenin in cell migration and indicate that dynamic β-catenin–APC protein interactions are critical for regulating cell migration during epithelial tubulogenesis.  相似文献   

7.
Cell death by apoptosis is a tightly regulated process that requires coordinated modification in cellular architecture. The caspase protease family has been shown to play a key role in apoptosis. Here we report that specific and ordered changes in the actin cytoskeleton take place during apoptosis.

In this context, we have dissected one of the first hallmarks in cell death, represented by the severing of contacts among neighboring cells. More specifically, we provide demonstration for the mechanism that could contribute to the disassembly of cytoskeletal organization at cell–cell adhesion. In fact, β-catenin, a known regulator of cell–cell adhesion, is proteolytically processed in different cell types after induction of apoptosis. Caspase-3 (cpp32/apopain/yama) cleaves in vitro translated β-catenin into a form which is similar in size to that observed in cells undergoing apoptosis. β-Catenin cleavage, during apoptosis in vivo and after caspase-3 treatment in vitro, removes the amino- and carboxy-terminal regions of the protein. The resulting β-catenin product is unable to bind α-catenin that is responsible for actin filament binding and organization. This evidence indicates that connection with actin filaments organized at cell–cell contacts could be dismantled during apoptosis. Our observations suggest that caspases orchestrate the specific and sequential changes in the actin cytoskeleton occurring during cell death via cleavage of different regulators of the microfilament system.

  相似文献   

8.
In this work, we show several previously unknown features of p120-catenin in a cadherin–catenin complex that are critical for our understanding of cadherin-based adhesion and signaling. We show that in human epithelial A-431 cells, nearly all p120 molecules engage in high-affinity interaction with E-cadherin–catenin complexes located at the cellular surface. p120 is positioned in proximity to α-catenin in the complex with cadherin. These findings suggest a functional cooperation between p120 and α-catenin in cadherin-based adhesion. A low level of cadherin-free p120 molecules, in contrast, could facilitate p120-dependent signaling. Finally, we present compelling evidence that p120 is a key linker cementing the E-cadherin–catenin complex with the transmembrane protease γ-secretase. The cell–cell contact location of this supercomplex makes it an important candidate for conducting different signals that rely on γ-secretase proteolytic activity.  相似文献   

9.
β-Catenin is essential for the function of cadherins, a family of Ca2+-dependent cell–cell adhesion molecules, by linking them to α-catenin and the actin cytoskeleton. β-Catenin also binds to adenomatous polyposis coli (APC) protein, a cytosolic protein that is the product of a tumor suppressor gene mutated in colorectal adenomas. We have expressed mutant β-catenins in MDCK epithelial cells to gain insights into the regulation of β-catenin distribution between cadherin and APC protein complexes and the functions of these complexes. Full-length β-catenin, β-catenin mutant proteins with NH2-terminal deletions before (ΔN90) or after (ΔN131, ΔN151) the α-catenin binding site, or a mutant β-catenin with a COOH-terminal deletion (ΔC) were expressed in MDCK cells under the control of the tetracycline-repressible transactivator. All β-catenin mutant proteins form complexes and colocalize with E-cadherin at cell–cell contacts; ΔN90, but neither ΔN131 nor ΔN151, bind α-catenin. However, β-catenin mutant proteins containing NH2-terminal deletions also colocalize prominently with APC protein in clusters at the tips of plasma membrane protrusions; in contrast, full-length and COOH-terminal– deleted β-catenin poorly colocalize with APC protein. NH2-terminal deletions result in increased stability of β-catenin bound to APC protein and E-cadherin, compared with full-length β-catenin. At low density, MDCK cells expressing NH2-terminal–deleted β-catenin mutants are dispersed, more fibroblastic in morphology, and less efficient in forming colonies than parental MDCK cells. These results show that the NH2 terminus, but not the COOH terminus of β-catenin, regulates the dynamics of β-catenin binding to APC protein and E-cadherin. Changes in β-catenin binding to cadherin or APC protein, and the ensuing effects on cell morphology and adhesion, are independent of β-catenin binding to α-catenin. These results demonstrate that regulation of β-catenin binding to E-cadherin and APC protein is important in controlling epithelial cell adhesion.  相似文献   

10.
E-cadherin is highly phosphorylated within its β-catenin–binding region, and this phosphorylation increases its affinity for β-catenin in vitro. However, the identification of key serines responsible for most cadherin phosphorylation and the adhesive consequences of modification at such serines have remained unknown. In this study, we show that as few as three serines in the β-catenin–binding domain of E-cadherin are responsible for most radioactive phosphate incorporation. These serines are required for binding to β-catenin and the mutual stability of both E-cadherin and β-catenin. Cells expressing a phosphodeficient (3S>A) E-cadherin exhibit minimal cell–cell adhesion due to enhanced endocytosis and degradation through a lysosomal compartment. Conversely, negative charge substitution at these serines (3S>D) antagonizes cadherin endocytosis and restores wild-type levels of adhesion. The cadherin kinase is membrane proximal and modifies the cadherin before it reaches the cell surface. Together these data suggest that E-cadherin phosphorylation is largely constitutive and integral to cadherin–catenin complex formation, surface stability, and function.  相似文献   

11.
IntroductionEngagement of the homotypic cell-to-cell adhesion molecule cadherin-11 on rheumatoid arthritis (RA) synovial fibroblasts with a chimeric molecule containing the cadherin-11 extracellular binding domain stimulated cytokine, chemokine, and matrix metalloproteinases (MMP) release, implicating cadherin-11 signaling in RA pathogenesis. The objective of this study was to determine if cadherin-11 extracellular domain fragments are found inside the joint and if a physiologic synovial fibroblast cleavage pathway releases those fragments.MethodsCadherin-11 cleavage fragments were detected by western blot in cell media or lysates. Cleavage was interrupted using chemical inhibitors or short-interfering RNA (siRNA) gene silencing. The amount of cadherin-11 fragments in synovial fluid was measured by western blot and ELISA.ResultsSoluble cadherin-11 extracellular fragments were detected in human synovial fluid at significantly higher levels in RA samples compared to osteoarthritis (OA) samples. A cadherin-11 N-terminal extracellular binding domain fragment was shed from synovial fibroblasts after ionomycin stimulation, followed by presenilin 1 (PSN1)-dependent regulated intramembrane proteolysis of the retained membrane-bound C-terminal fragments. In addition to ionomycin-induced calcium flux, tumor necrosis factor (TNF)-α also stimulated cleavage in both two- and three-dimensional fibroblast cultures. Although cadherin-11 extracellular domains were shed by a disintegrin and metalloproteinase (ADAM) 10 in several cell types, a novel ADAM- and metalloproteinase-independent activity mediated shedding in primary human fibroblasts.ConclusionsCadherin-11 undergoes ectodomain shedding followed by regulated intramembrane proteolysis in synovial fibroblasts, triggered by a novel sheddase that generates extracelluar cadherin-11 fragments. Cadherin-11 fragments were enriched in RA synovial fluid, suggesting they may be a marker of synovial burden and may function to modify cadherin-11 interactions between synovial fibroblasts.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0647-9) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
In Xenopus laevis development, β-catenin plays an important role in the Wnt-signaling pathway by establishing the Nieuwkoop center, which in turn leads to specification of the dorsoventral axis. Cadherins are essential for embryonic morphogenesis since they mediate calcium-dependent cell–cell adhesion and can modulate β-catenin signaling. α-catenin links β-catenin to the actin-based cytoskeleton. To study the role of endogenous α-catenin in early development, we have made deletion mutants of αN-catenin. The binding domain of β-catenin has been mapped to the NH2-terminal 210 amino acids of αN-catenin. Overexpression of mutants lacking the COOH-terminal 230 amino acids causes severe developmental defects that reflect impaired calcium-dependent blastomere adhesion. Lack of normal adhesive interactions results in a loss of the blastocoel in early embryos and ripping of the ectodermal layer during gastrulation. The phenotypes of the dominant-negative mutants can be rescued by coexpressing full-length αN-catenin or a mutant of β-catenin that lacks the internal armadillo repeats.

We next show that coexpression of αN-catenin antagonizes the dorsalizing effects of β-catenin and Xwnt-8. This can be seen phenotypically, or by studying the effects of expression on the downstream homeobox gene Siamois. Thus, α-catenin is essential for proper morphogenesis of the embryo and may act as a regulator of the intracellular β-catenin signaling pathway in vivo.

  相似文献   

14.
The cadherin family of cell adhesion molecules demonstrates calcium-dependent hemophilic binding, leading to cellular recognition and adhesion. The adhesion mediated by the classical type 1 cadherins is strengthened through catenin-mediated coupling of the cytoplasmic domain to the cytoskeleton. This cytoskeletal interaction may not be essential for the adhesion promoted by all cadherins, several of which lack cytosolic catenin-binding sequences. Cadherin-11, a classical cadherin, possesses a cytoplasmic domain that interacts with catenins, but may also occur as a variant form expressing a truncated cytoplasmic domain. To study the role of the cytoplasmic sequence in cadherin-11 mediated adhesion we have constructed and expressed a truncated cadherin-11 protein lacking the cytoplasmic domain and unable to bind β-catenin. Expression of the truncated cadherin-11 in MDA-MB-435S human mammary carcinoma cells reduced their motility and promoted calcium-dependent cell aggregation, frequent cell contacts, and functional gap-junctions. We conclude that the intracellular catenin-binding domain of cadherin-11, and by inference cytoskeletal interaction, is not required for the initiation and formation of cell adhesion.  相似文献   

15.
β-Catenin functions as a downstream component of the Wnt/Wingless signal transduction pathway and as an effector of cell–cell adhesion through its association with cadherins. To explore the in vivo effects of β-catenin on proliferation, cell fate specification, adhesion, and migration in a mammalian epithelium, a human NH2-terminal truncation mutant (ΔN89β-catenin) was expressed in the 129/Sv embryonic stem cell–derived component of the small intestine of adult C57Bl/6–ROSA26↔ 129/Sv chimeric mice. ΔN89β-Catenin was chosen because mutants of this type are more stable than the wild-type protein, and phenocopy activation of the Wnt/Wingless signaling pathway in Xenopus and Drosophila. ΔN89β-Catenin had several effects. Cell division was stimulated fourfold in undifferentiated cells located in the proliferative compartment of the intestine (crypts of Lieberkühn). The proliferative response was not associated with any discernible changes in cell fate specification but was accompanied by a three- to fourfold increase in crypt apoptosis. There was a marked augmentation of E-cadherin at the adherens junctions and basolateral surfaces of 129/Sv (ΔN89β-catenin) intestinal epithelial cells and an accompanying slowing of cellular migration along crypt-villus units. 1–2% of 129/Sv (ΔN89β-catenin) villi exhibited an abnormal branched architecture. Forced expression of ΔN89β-catenin expression did not perturb the level or intracellular distribution of the tumor suppressor adenomatous polyposis coli (APC). The ability of ΔN89β-catenin to interact with normal cellular pools of APC and/or augmented pools of E-cadherin may have helped prevent the 129/Sv gut epithelium from undergoing neoplastic transformation during the 10-mo period that animals were studied. Together, these in vivo studies emphasize the importance of β-catenin in regulating normal adhesive and signaling functions within this epithelium.  相似文献   

16.
The α-catenin molecule links E-cadherin/ β-catenin or E-cadherin/plakoglobin complexes to the actin cytoskeleton. We studied several invasive human colon carcinoma cell lines lacking α-catenin. They showed a solitary and rounded morphotype that correlated with increased invasiveness. These round cell variants acquired a more normal epithelial phenotype upon transfection with an α-catenin expression plasmid, but also upon treatment with the protein kinase C (PKC) activator 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Video registrations showed that the cells started to establish elaborated intercellular junctions within 30 min after addition of TPA. Interestingly, this normalizing TPA effect was not associated with α-catenin induction. Classical and confocal immunofluorescence showed only minor TPA-induced changes in E-cadherin staining. In contrast, desmosomal and tight junctional proteins were dramatically rearranged, with a conversion from cytoplasmic clusters to obvious concentration at cell–cell contacts and exposition at the exterior cell surface. Electron microscopical observations revealed the TPA-induced appearance of typical desmosomal plaques. TPA-restored cell–cell adhesion was E-cadherin dependent as demonstrated by a blocking antibody in a cell aggregation assay. Addition of an antibody against the extracellular part of desmoglein-2 blocked the TPA effect, too. Remarkably, the combination of anti–E-cadherin and anti-desmoglein antibodies synergistically inhibited the TPA effect.

Our studies show that it is possible to bypass the need for normal α-catenin expression to establish tight intercellular adhesion by epithelial cells. Apparently, the underlying mechanism comprises upregulation of desmosomes and tight junctions by activation of the PKC signaling pathway, whereas E-cadherin remains essential for basic cell–cell adhesion, even in the absence of α-catenin.

  相似文献   

17.
Cadherin-11 is a cell–cell adhesion molecule whose expression is often correlated with cellular migratory phenomena. We recently demonstrated that cadherin-11 activation by immobilized cad11–Fc (cadherin-11 ectodomain fused to Fc fragment) promotes axonal extension of spinal cord explants. Here, we show that this induced neurite outgrowth is dependent on the FGF receptor (FGFR) activity. Downstream, DAG lipase/CAM kinase and PI3 kinase pathways are required, but not the MAP kinase signalling. We also demonstrate that a tagged form of FGFR1 co-immunoprecipitates with β-catenin containing cadherin-11 immunocomplexes. FGFR1 and β-catenin show colocalization and enhanced association during cadherin-11 engagement, suggesting that FGFR1 interaction with cadherin-11 adhesion complexes is reinforced during cell contact formation. In vitro pull-down experiments using recombinant ectodomains suggest that cadherin-11/FGFR interact directly through their extracellular domains. Altogether, we propose that cadherin-11 recruits the FGFR upon adhesive engagement at nascent contacts, triggering the activation of downstream pathways involved in growth cone progression.  相似文献   

18.
The β1-integrin cytoplasmic domain consists of a membrane proximal subdomain common to the four known isoforms (“common” region) and a distal subdomain specific for each isoform (“variable” region). To investigate in detail the role of these subdomains in integrin-dependent cellular functions, we used β1A and β1B isoforms as well as four mutants lacking the entire cytoplasmic domain (β1TR), the variable region (β1COM), or the common region (β1ΔCOM-B and β1ΔCOM-A). By expressing these constructs in Chinese hamster ovary and β1 integrin-deficient GD25 cells (Wennerberg et al., J Cell Biol 132, 227–238, 1996), we show that β1B, β1COM, β1ΔCOM-B, and β1ΔCOM-A molecules are unable to support efficient cell adhesion to matrix proteins. On exposure to Mn++ ions, however, β1B, but none of the mutants, can mediate cell adhesion, indicating specific functional properties of this isoform. Analysis of adhesive functions of transfected cells shows that β1B interferes in a dominant negative manner with β1A and β3/β5 integrins in cell spreading, focal adhesion formation, focal adhesion kinase tyrosine phosphorylation, and fibronectin matrix assembly. None of the β1 mutants tested shows this property, indicating that the dominant negative effect depends on the specific combination of common and B subdomains, rather than from the absence of the A subdomain in the β1B isoform.  相似文献   

19.
β-Catenin is a multifunctional protein with critical roles in cell–cell adhesion, Wnt signaling, and the centrosome cycle. Whereas the regulation of β-catenin in cell–cell adhesion and Wnt signaling are well understood, how β-catenin is regulated at the centrosome is not. NIMA-related protein kinase 2 (Nek2), which regulates centrosome disjunction/splitting, binds to and phosphorylates β-catenin. Using in vitro and cell-based assays, we show that Nek2 phosphorylates the same regulatory sites in the N-terminus of β-catenin as glycogen synthase kinase 3β (GSK3β), which are recognized by a specific phospho-S33/S37/T41 antibody, as well as additional sites. Nek2 binding to β-catenin appears to inhibit binding of the E3 ligase β-TrCP and prevents β-catenin ubiquitination and degradation. Thus β-catenin phosphorylated by Nek2 is stabilized and accumulates at centrosomes in mitosis. We further show that polo-like kinase 1 (Plk1) regulates Nek2 phosphorylation and stabilization of β-catenin. Taken together, these results identify a novel mechanism for regulating β-catenin stability that is independent of GSK3β and provide new insight into a pathway involving Plk1, Nek2, and β-catenin that regulates the centrosome cycle.  相似文献   

20.
In epithelial cells, α-, β-, and γ-catenin are involved in linking the peripheral microfilament belt to the transmembrane protein E-cadherin. α-Catenin exhibits sequence homologies over three regions to vinculin, another adherens junction protein. While vinculin is found in cell–matrix and cell–cell contacts, α-catenin is restricted to the latter. To elucidate, whether vinculin is part of the cell–cell junctional complex, we investigated complex formation and intracellular targeting of vinculin and α-catenin. We show that α-catenin colocalizes at cell–cell contacts with endogenous vinculin and also with the transfected vinculin head domain forming immunoprecipitable complexes. In vitro, the vinculin NH2-terminal head binds to α-catenin, as seen by immunoprecipitation, dot overlay, cosedimentation, and surface plasmon resonance measurements. The Kd of the complex was determined to 2–4 × 10−7 M. As seen by overlays and affinity mass spectrometry, the COOH-terminal region of α-catenin is involved in this interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号