首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paratuberculosis (ParaTB), caused by Mycobacterium avium subspecies paratuberculosis (MAP) is a chronic enteritis of ruminants and may contribute to Crohn's disease in humans. Key features of host immunity to MAP infection include an early pro-inflammatory (Th1-like) response that eventually gives way to a predominant anti-inflammatory (Th2-like) response. Many studies have been conducted to understand the underlying mechanism of misdirected host immune response, however, these studies mainly focused on cattle. The present study is the first attempt to test the hypothesis of shift in Th1 to Th2 like responses during the progression of ParaTB in caprine species (small ruminant). Ten healthy male kids (<6 months old) of the same breed were selected for this study. Of the 10 kids, 6 were experimentally infected with native strain (S5) of MAP (“Indian Bison Type”) and the remaining 4 kids were control. Kids were monitored for a period of 12 months post infection (MPI) and were tested for establishment of infection. Expression levels of IFNG, IL2, IL12, IL4, and IL10 genes were estimated before infection and at 4, 8, and 12 MPI in stimulated peripheral blood mononuclear cells (PBMCs) of infected and control kids. The study demonstrated the expression of IFNG and IL2 as classic Th1-like pro-inflammatory signatures; whereas, IL10 exhibited itself as classical Th2-like signature. The study also reports unexpected lowered expression of the IL12 gene simultaneously with increased expression of IFNG, lowered expression of the IL2 gene (compared to IFNG), and suppressed expression of the IL4.  相似文献   

2.
Bovine X hamster and bovine X mouse hybrid somatic cells have been used to investigate the syntenic relationship of nine loci in the bovine that have homologous loci on human chromosome 12. Eight loci, including A2M, GLI, HOX3, IFNG, INT1, KRAS2, NKNB, and PAH, were assigned to the previously identified bovine syntenic group U3 represented by GAPD. However, a single locus from the q-terminus of HSA 12, ALDH2, mapped to a new, previously unidentified autosomal syntenic group. These results indicate the existence of a very large ancestral syntenic group spanning from the p-terminus to q24 of HSA 12 and containing over 4% of the mammalian genome. Additionally, the results predict that ALDH2 is distal to PAH and IFNG on HSA 12, the type II keratin gene complex will reside between q11 and q21 of HSA 12, A2M will map to MMU 6, and LALBA and GLI will map to MMU 15.  相似文献   

3.
Epidemiological studies suggest that chronic exposure to air pollution increases susceptibility to respiratory infections, including tuberculosis in humans. A possible link between particulate air pollutant exposure and antimycobacterial immunity has not been explored in human primary immune cells. We hypothesized that exposure to diesel exhaust particles (DEP), a major component of urban fine particulate matter, suppresses antimycobacterial human immune effector cell functions by modulating TLR-signaling pathways and NF-κB activation. We show that DEP and H37Ra, an avirulent laboratory strain of Mycobacterium tuberculosis, were both taken up by the same peripheral human blood monocytes. To examine the effects of DEP on M. tuberculosis-induced production of cytokines, PBMC were stimulated with DEP and M. tuberculosis or purified protein derivative. The production of M. tuberculosis and purified protein derivative-induced IFN-γ, TNF-α, IL-1β, and IL-6 was reduced in a DEP dose-dependent manner. In contrast, the production of anti-inflammatory IL-10 remained unchanged. Furthermore, DEP stimulation prior to M. tuberculosis infection altered the expression of TLR3, -4, -7, and -10 mRNAs and of a subset of M. tuberculosis-induced host genes including inhibition of expression of many NF-κB (e.g., CSF3, IFNG, IFNA, IFNB, IL1A, IL6, and NFKBIA) and IFN regulatory factor (e.g., IFNG, IFNA1, IFNB1, and CXCL10) pathway target genes. We propose that DEP downregulate M. tuberculosis-induced host gene expression via MyD88-dependent (IL6, IL1A, and PTGS2) as well as MyD88-independent (IFNA, IFNB) pathways. Prestimulation of PBMC with DEP suppressed the expression of proinflammatory mediators upon M. tuberculosis infection, inducing a hyporesponsive cellular state. Therefore, DEP alters crucial components of antimycobacterial host immune responses, providing a possible mechanism by which air pollutants alter antimicrobial immunity.  相似文献   

4.
To better understand the control of T helper (TH) 1-expressed genes, we compared and contrasted acetylation and expression for three key genes, IFNG, TBET, and IL18RAP and found them to be distinctly regulated. The TBET and the IFNG genes, but not the IL18RAP gene, showed preferential acetylation of histones H3 and H4 during TH1 differentiation. Analysis of acetylation of specific histone residues revealed that H3(Lys-9), H4(Lys-8), and H4(Lys-12) were preferentially modified in TH1 cells, suggesting a possible contribution of acetylation of these residues for induction of these genes. On the other hand, the acetylation of IL18RAP gene occurred both in TH1 and TH2 cells the similar kinetics and on the same with residues, demonstrating that selective histone acetylation was not universally the case for all TH1-expressed genes. Histone H3 acetylation of IFNG and TBET genes occurred with different kinetics, however, and was distinctively regulated by cytokines. Interleukin (IL)-12 and IL-18 enhanced the histone acetylation of the IFNG gene. By contrast, histone acetylation of the TBET gene was markedly suppressed by IL-4, whereas IL-12 and IL-18 had only modest effects suggesting that histone acetylation during TH1 differentiation is a process that is regulated by various factors at multiple levels. By treating Th2 cells with a histone deacetylase inhibitor, we restored histone acetylation of the IFNG and TBET genes, but it did not fully restore their expression in TH2 cells, again suggesting that histone acetylation explains one but not all the aspects of TH1-specific gene expression.  相似文献   

5.
Radiation hybrid mapping was used in conjunction with a natural deletion mapping panel to predict the order of and distance between 13 loci in the distal portion of the long arm of human chromosome 5. A panel of irradiation hybrids containing fragments of 5q was generated from an HPRT+ Chinese hamster-human cell hybrid containing a derivative chromosome 5 [der(5)t(4;5)(5qter----5p15.1::4p15.1----4pter)] as its only human DNA. One hundred nine radiation hybrids containing human DNA were screened with polymerase chain reaction primer sets representing nine genes encoding growth factors, growth factor receptors, or hormone receptors (IL3, IL4, IL5, CSF1R, FGFA, ADRB2, GRL, GABRA1, and DRD1) as well as four other loci (FER, SPARC, RPS14, and CD14) to generate a radiation hybrid map of the area 5q21-q35. A physical map predicting the order of and distance between the 13 loci was constructed based on segregation of the 13 loci in hybrid clones. The radiation hybrid panel will be useful as a mapping tool for determining the location and order of other genes and polymorphic loci in this region as well as for generating new DNA probes from specific regions.  相似文献   

6.
Breeding for disease resistance to Salmonella enteritidis (SE) could be an effective approach to control Salmonella in poultry. The candidate gene approach is a useful method to investigate genes that are involved in genetic resistance. In this study, 12 candidate genes that are involved in the pathogenesis of Salmonella infection were investigated using five different genetic groups of meat-type chicken. The genes were natural resistance associated macrophage protein 1 (SLC11A1, previously known as NRAMP1), inhibitor of apoptosis protein 1 (IAP1), prosaposin (PSAP), Caspase-1 (CASP1), inducible nitric oxide production (iNOS), interferon-gamma (IFNG), interleukin-2 (IL2), immunoglobulin light chain (IGL), ZOV3, and transforming growth factors B2, B3 and B4 (TGFB2, B3 and B4). In total, 117 birds of all groups were challenged with SE at the age of 3 weeks. In all birds at 7-day post-infection SE load in caecum content, spleen and liver were quantified. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assays were used to genotype all animals for each gene. Overall we found the most significant associations with caecum content, nine of 12 genes showed a significant association (SLC11A1, IAP1, PSAP, CASP1, iNOS, IL2, IGL, TGFB2 and TGFB4). For liver, five genes (SLC11A1, CASP1, IL2, IGL, and TGFB4) and for spleen, only one gene (TGFB3) showed a significant association with SE load. By showing associations of 12 PCR-RFLP assays with SE load after a pathogen challenge, this study confirmed the polygenic nature of disease resistance to SE.  相似文献   

7.
The aim of the present study was to detect quantitative trait loci (QTL) for innate and adaptive immunity in pigs. For this purpose, a Duroc × Pietrain F2 resource population (DUPI) with 319 offspring was used to map QTL for the immune traits blood antibodies and interferon-gamma using 122 microsatellites covering all autosomes. Antibodies response to Mycoplasma hyopneumoniae and tetanus toxoid vaccine and the interferon-gamma (IFNG) serum concentration were measured at three different time points and were used as phenotypes. The differences of antibodies and interferon concentration between different time points were also used for the linkage mapping. Line-cross and imprinting QTL analysis, including two-QTL, were performed using QTL Express. A total of 30 QTL (12, 6, and 12 for mycoplasma, tetanus antibody, and IFNG, respectively) were identified at the 5% chromosome-wide-level significant, of which 28 were detected by line-cross and 2 by imprinting model. In addition, two QTL were identified on chromosome 5 using the two-QTL approach where both loci were in repulsion phase. Most QTL were detected on pig chromosomes 2, 5, 11, and 18. Antibodies were increased over time and immune traits were found to be affected by sex, litter size, parity, and month of birth. The results demonstrated that antibody and IFNG concentration are influenced by multiple chromosomal areas. The flanking markers of the QTL identified for IFNG on SSC5 did incorporate the position of the porcine IFNG gene. The detected QTL will allow further research in these QTL regions for candidate genes and their utilization in selection to improve the immune response and disease resistance in pig.  相似文献   

8.
Production of prostaglandins (PGs) and expression of their receptors have been demonstrated in bovine corpus luteum (CL). The aim of the present study was to determine whether PGE2 and PGF2alpha have roles in bovine luteal steroidogenic cell (LSC) apoptosis. Cultured bovine LSCs obtained at the midluteal stage (Days 8-12 of the cycle) were treated for 24 h with PGE2 (0.001-1 microM) and PGF2alpha (0.001-1 microM). Prostaglandin E2 (1 microM) and PGF2alpha (1 microM) significantly stimulated progesterone (P4) production and reduced the levels of cell death in the cells cultured with or without tumor necrosis factor alpha (TNF)/interferon gamma (IFNG), in the presence and absence of FAS ligand (P < 0.05). Furthermore, DNA fragmentation induced by TNF/IFNG was observed to be suppressed by PGE2 and PGF2alpha. Prostaglandin E2 and PGF2alpha also attenuated mRNA expression of caspase 3 and caspase 8, as well as caspase 3 activity (P < 0.05) in TNF/IFNG-treated cells. FAS mRNA and protein expression were decreased only by PGF2alpha (P < 0.05). A specific P4 receptor antagonist (onapristone) attenuated the apoptosis-inhibitory effects of PGE2 and PGF2alpha in the absence of TNF/IFNG (P < 0.05). A PG synthesis inhibitor (indomethacin) reduced cell viability in PGE2- and PGF2alpha-treated cells (P < 0.05). A specific inhibitor of cyclooxygenase (PTGS), PTGS2 (NS-398), also reduced cell viability, whereas an inhibitor of PTGS1 (FR122047) did not affect it. The overall results suggest that PGE2 and PGF2alpha locally play luteoprotective roles in bovine CL by suppressing apoptosis of LSCs.  相似文献   

9.
10.
Proinflammatory cytokines TNF, IFNG, and IL17 play an important role in eruption of psoriasis. The activation of epidermal keratinocytes with the named cytokines alters their terminal differentiation program and causes their hyperproliferation in the diseased skin. HaCaT cells, which are immortalized human keratinocytes, are often used as a cellular model of psoriasis. The aim of this study was to evaluate changes in gene expression and the proliferation rates in cultured HaCaT cells treated with TNF, IFNG, and IL17. We found that HaCaT cells decrease their proliferation rate in response to either IL17 or a combination TNF and IFNG. The analysis of microarray data discovered a group of 12 genes, which were downregulated in HaCaT after treatments with the named cytokines and upregulated in psoriatic lesional skin. Eight genes were important for DNA replication and they also contributed to two larger networks that regulated cell progression through the cell cycle. We conclude that HaCaT cells have a sufficient limitation as a cellular model of psoriasis due to their treatment with proinflammatory cytokines, namely TNF, IFNG, and IL17 does not increase their proliferation rate. Thus, the studies of psoriasis based on HaCaT cells as an experimental model shall take in account this important phenomenon.  相似文献   

11.
12.
During the implantation period, the porcine conceptus secretes interleukin-1beta (IL1B) that may be involved in the establishment of pregnancy in pigs. However, the regulatory mechanism for IL1B receptor expression and the function of IL1B in the uterine endometrium are not well elucidated. In this study, we determined IL1B receptor expression in the uterine endometrium of pigs during pregnancy. IL1B receptor subtypes, IL1 receptor type I (IL1R1) and IL1 receptor accessory protein (IL1RAP) were expressed in the uterine endometrium with the expression being most abundant on Day 12 of pregnancy primarily in the luminal and glandular epithelial cells. Expression of IL1R1 mRNA increased in response to IL1B in a dose-dependent manner, and expression of IL1RAP mRNA increased in response to both IL1B and estradiol, indicating that expression of endometrial IL1B receptors was regulated cooperatively by IL1B and estrogen of conceptus origin. During the peri-implantation period, the porcine uterine endometrium actively synthesizes and secretes prostaglandins (PGs). IL1B increased expression of PTGS1 and PTGS2 genes that are rate-limiting for PG synthesis in the uterine endometrium. Collectively, the results indicated that IL1B regulates expression of IL1R1 and IL1RAP and stimulates expression of PTGS1 and PTGS2 that are considered to be the most rate-limiting enzymes for endometrial synthesis of PGs during the peri-implantation period of pregnancy in pigs.  相似文献   

13.
14.
Complex association analysis of copaxone (glatiramer acetate) immunotherapy efficacy with allelic polymorphism in the number of immune response genes, which encode interferone beta (IFNB1), transforming growth factor beta1 (TGFB1), interferone gamma (IFNG), tumor necrosis factor (TNF), interferon alpha/beta receptor 1 (IFNAR1), CC chemokine receptor 5 (CCR5), interleukin 7 receptor alpha subunit (IL7RA), cytotoxic T-lymphocyte antigen 4 (CTLA4) and HLA class II histocompatibility antigen beta chain (DRB1) was performed with APSampler algorithm for 285 multiple sclerosis patients of Russian ethnicity. The results show evidence for the contribution of polymorphic variants in CCRS, DRB1, IFNG, TGFB1, IFNAR1, IL7RA and, probably, TNF and CTLA4 genes to copaxone treatment response. Single alleles of CCR5 and DRB1 genes are reliably associated with treatment efficacy. Carriage of allelic variants of other above mentioned genes contribute with reliable effect to copaxone treatment response as part of bi- and three-allelic combinations only. Present investigation may support basis toward the future possibility of prognostic test realization, which can provide a personal choice of immunomodulatory treatment for a patient with multiple sclerosis.  相似文献   

15.
Swine-specific sequence tagged (microsatellite) sites, STS and STMS, were assigned chromosomally by polymerase chain reaction analysis of a somatic cell hybrid panel. This study confirms the localization from genetic mapping of seven anonymous microsatellites and the genes ANPEP, ATP2, CGA, DAGK, FSHB, IFNG, IGF1, IL1B and SPP1. New assignment for the gene BNP1 to chromosome 6 is reported. The confirmed and the new assignments extend the information of the previously established linkage maps and provide framework loci on which to order additional informative markers.  相似文献   

16.
During mycobacterial infection, macroautophagy/autophagy, a process modulated by cytokines, is essential for mounting successful host responses. Autophagy collaborates with human immune responses against Mycobacterium tuberculosis (Mt) in association with specific IFNG secreted against the pathogen. However, IFNG alone is not sufficient to the complete bacterial eradication, and other cytokines might be required. Actually, induction of Th1 and Th17 immune responses are required for protection against Mt. Accordingly, we showed that IL17A and IFNG expression in lymphocytes from tuberculosis patients correlates with disease severity. Here we investigate the role of IFNG and IL17A during autophagy in monocytes infected with Mt H37Rv or the mutant MtΔRD1. Patients with active disease were classified as high responder (HR) or low responder (LR) according to their T cell responses against Mt. IL17A augmented autophagy in infected monocytes from HR patients through a mechanism that activated MAPK1/ERK2-MAPK3/ERK1 but, during infection of monocytes from LR patients, IL17A had no effect on the autophagic response. In contrast, addition of IFNG to infected monocytes, increased autophagy by activating MAPK14/p38 α both in HR and LR patients. Interestingly, proteins codified in the RD1 region did not interfere with IFNG and IL17A autophagy induction. Therefore, in severe tuberculosis patients' monocytes, IL17A was unable to augment autophagy because of a defect in the MAPK1/3 signaling pathway. In contrast, both IFNG and IL17A increased autophagy levels in patients with strong immunity to Mt, promoting mycobacterial killing. Our findings might contribute to recognize new targets for the development of novel therapeutic tools to fight the pathogen.  相似文献   

17.
Genes located on human chromosome 12 (HSA12) are conserved on pig chromosomes 5 and 14 (SSC5 and SSC14), with HSA12q23.3-->q24.11 harboring the evolutionary breakpoint between these chromosomes. For this study, pig sequence-tagged sites (STS) were developed for nine HSA12 genes flanking this breakpoint. Radiation hybrid (RH) mapping using the IMpRH panel revealed that COL2A1, DUSP6, KITLG, PAH and STAB2 map to SSC5, while PXN, PLA2G1B, SART3 and TCF1 map to SSC14. Polymorphisms identified in COL2A1, DUSP6, PAH, PLA2G1B and TCF1 were used for genetic linkage mapping and confirmed the map locations for these genes. Our results indicate that the HSA12 evolutionary breakpoint occurs between STAB2 and SART3 in a region spanning less than five million basepairs. These results refine the comparative map of the HSA12 evolutionary breakpoint region and help to further elucidate the extensive gene order rearrangements between HSA12 and SSC5 and 14.  相似文献   

18.
A physical map of the CXC chemokine locus on chromosome 4 has been constructed by PCR analysis and PFGE mapping of YAC clones. The genes for IL8, GRO1, PPBP, PF4, SCYB5 (ENA-78) and SCYB6 (GCP-2) have been co-localized on a 335-kb genomic fragment. The GRO2 and GRO3 genes did not map within this region and based on analysis of a YAC contig overlapping IL8 we speculate that GRO2 and GRO3 map downstream of this region. We have also assigned the novel CXC chemokine gene, SCYB9B (alias H174/betaR1) to chromosome 4q21, upstream and within 12 kb of INP10. Like INP10 and MIG, INP10 and SCYB9B are arranged in a head to tail manner. The chromosomal arrangement of these genes appears to reflect the evolution of this multigene family and supports the theory that it arose by gene duplication.  相似文献   

19.
This report contains the first map of the complete Ig H chain constant (IGHC) gene region of the horse (Equus caballus), represented by 34 overlapping clones from a new bacterial artificial chromosome library. The different bacterial artificial chromosome inserts containing IGHC genes were identified and arranged by hybridization using overgo probes specific for individual equine IGHC genes. The analysis of these IGHC clones identified two previously undetected IGHC genes of the horse. The newly found IGHG7 gene, which has a high homology to the equine IGHG4 gene, is located between the IGHG3 and IGHG4 genes. The high degree of conservation shared between the nucleotide sequences of the IGHG7 and IGHG4 genes is unusual for the IGHG genes of the horse and suggests that these two genes duplicated most recently during evolution of the equine IGHG genes. Second, we present the genomic nucleotide sequence of the equine IGHD gene, which is located downstream of the IGHM gene. Both the IGHG7 and IGHD genes were found to be expressed at the mRNA level. The order of the 11 IGHC genes in the IGH-locus of the horse was determined to be 5'-M-D-G1-G2-G3-G7-G4-G6-G5-E-A-3', confirming previous studies using lambda phage clones, with the exception that the IGHG5 gene was found to be the most downstream-located IGHG gene. Fluorescence in situ hybridization was used to localize the IGHC region to Equus caballus (ECA) 24qter, the horse chromosome corresponding to human chromosome 14, where the human IGH locus is found.  相似文献   

20.
The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号