首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Type 2 diabetes mellitus results from the complex association of insulin resistance and pancreatic β-cell failure. Obesity is the main risk factor for type 2 diabetes mellitus, and recent studies have shown that, in diet-induced obesity, the hypothalamus becomes inflamed and dysfunctional, resulting in the loss of the perfect coupling between caloric intake and energy expenditure. Because pancreatic β-cell function is, in part, under the control of the autonomic nervous system, we evaluated the role of hypothalamic inflammation in pancreatic islet function. In diet-induced obesity, the earliest markers of hypothalamic inflammation are present at 8 weeks after the beginning of the high fat diet; similarly, the loss of the first phase of insulin secretion is detected at the same time point and is restored following sympathectomy. Intracerebroventricular injection of a low dose of tumor necrosis factor α leads to a dysfunctional increase in insulin secretion and activates the expression of a number of markers of apoptosis in pancreatic islets. In addition, the injection of stearic acid intracerebroventricularly, which leads to hypothalamic inflammation through the activation of tau-like receptor-4 and endoplasmic reticulum stress, produces an impairment of insulin secretion, accompanied by increased expression of markers of apoptosis. The defective insulin secretion, in this case, is partially dependent on sympathetic signal-induced peroxisome proliferator receptor-γ coactivator Δα and uncoupling protein-2 expression and is restored after sympathectomy or following PGC1α expression inhibition by an antisense oligonucleotide. Thus, the autonomic signals generated in concert with hypothalamic inflammation can impair pancreatic islet function, a phenomenon that may explain the early link between obesity and defective insulin secretion.  相似文献   

2.
The aim of the study was to evaluate whether a selective increase in portal vein blood glucose concentration can affect pancreatic islet blood flow. Anesthetized rats were infused (0.1 ml/min for 3 min) directly into the portal vein with saline, glucose, or 3-O-methylglucose. The infused dose of glucose (1 mg. kg body wt(-1). min(-1)) was chosen so that the systemic blood glucose concentration was unaffected. Intraportal infusion of D-glucose increased insulin release and islet blood flow; the osmotic control substance 3-O-methylglucose had no such effect. A bilateral vagotomy performed 20 min before the infusions potentiated the islet blood flow response and also induced an increase in whole pancreatic blood flow, whereas the insulin response was abolished. Administration of atropine to vagotomized animals did not change the blood flow responses to intraportal glucose infusions. When the vagotomy was combined with a denervation of the hepatic artery, there was no stimulation of islet blood flow or insulin release after intraportal glucose infusion. We conclude that a selective increase in portal vein blood glucose concentration may participate in the islet blood flow increase in response to hyperglycemia. This effect is probably mediated via periarterial nerves and not through the vagus nerve. Furthermore, this blood flow increase can be dissociated from changes in insulin release.  相似文献   

3.
4.
The time course of stress-induced testicular hyposensitivity to gonadotropins was studied in hypophysectomized or naloxone-treated rats exposed to various periods of immobilization. Blood was collected from a chronically indwelling intra-atrial catheter every hour for luteinizing hormone (LH) and testosterone (T) measurement. Eight hours of immobilization completely suppressed T secretion without significant effect on LH. Human chorionic gonadotropin (hCG, 5 IU/rat, i.m.) induced a marked increase in plasma T levels in normal control groups 3 h post-injection while in immobilized rats the response was completely abolished, even after only 30 min of stress. In hypophysectomized rats, as expected, plasma T levels were undetectable, but, contrary to results obtained in normal animals, hCG induced a similar increase of plasma T levels both in control and stressed rats. Immobilization stress failed to inhibit plasma T values in hypophysectomized rats pretreated for 4 days with human menopausal gonadotropin (hMG) + hCG, while it did so in similarly treated normal animals. Naloxone induced a rise of plasma LH and T levels in control rats, but did not antagonize the stress-induced fall of plasma T concentration. In all groups, steroid testicular content mimicked variations of plasma T values. In particular, in stressed animals the lack of accumulation of testicular 17-hydroxyprogesterone probably reflected a normal activity of 17-20 lyase. These results indicate that stress induces very rapidly a state of Leydig cell hyposensitivity to gonadotropins and a blockade of T biosynthesis. The causal relationship between the two effects is presently not clear but these events seem to be due to stress-induced release of an inhibitory factor of pituitary origin other that endorphin.  相似文献   

5.
M A Wahl  R G Waldner  H P Ammon 《Life sciences》1992,51(21):1631-1637
Potassium channels of fetal rat islets have been recently reported to be inadequately regulated by stimulation with glucose when compared to islets of adult rats. Though in patch clamp experiments the properties of their KATP-channels were shown to be comparable to those from adult rats, until now no closure could be demonstrated with the technique measuring the 86Rb+ efflux. Using this technique, in the presence of a basal (3 mM) glucose concentration the 86Rb+ efflux was completely insensitive to a stimulation with glucose (5.6 mM) or tolbutamide. In contrast, in islets perifused in the absence of glucose the introduction of a low glucose concentration (3 mM) or stimulation with tolbutamide alone inhibited the 86Rb+ efflux, confirming the presence of functioning KATP-channels. The absolute value of the 86Rb+ efflux rate in the absence of glucose was, however, much lower in fetal rat islets as normally observed in adult rat islets. Apart from this, the ATP content of fetal rat islets remained unchanged at either glucose concentration tested. It is suggested that in islets of fetal rats a K+ permeability is present and can be inhibited by glucose and tolbutamide but in contrast to islets of adult rats the K+ efflux is already maximally inhibited in the presence of 3 mM glucose. This may be one reason why pancreatic islets of fetal rats do not respond to glucose-stimulation with an adequate calcium uptake and insulin release.  相似文献   

6.
Calsyntenins are members of the cadherin superfamily of cell adhesion molecules. They are present in postsynaptic membranes of excitatory neurons and in vesicles in transit to neuronal growth cones. In the current study, calsyntenin-1 (CST-1) and calsyntenin-3 (CST-3) were identified by mass spectrometric analysis (LC-MS/MS) of integral membrane proteins from highly enriched secretory granule preparations from bovine anterior pituitary gland. Immunofluorescence microscopy on thin frozen sections of rat pituitary revealed that CST-1 was present only in gonadotropes where it colocalized with follicle-stimulating hormone in secretory granules. In contrast, CST-3 was present not only in gonadotrope secretory granules but also in those of somatotropes and thyrotropes. Neither protein was detected in mammatropes. In addition, CST-1 was also localized to the glucagon-containing secretory granules of alpha cells in the pancreatic islets of Langerhans. Results indicate that calsyntenins function outside the nervous system and potentially are modulators of endocrine function.  相似文献   

7.
8.
Several studies have revealed that physiological concentrations of biotin are required for the normal expression of critical carbohydrate metabolism genes and for glucose homeostasis. However, the different experimental models used in these studies make it difficult to integrate the effects of biotin deficiency on glucose metabolism. To further investigate the effects of biotin deficiency on glucose metabolism, we presently analyzed the effect of biotin deprivation on glucose homeostasis and on pancreatic islet morphology. Three-week-old male BALB/cAnN Hsd mice were fed a biotin-deficient or a biotin-control diet (0 or 7.2 μmol of free biotin/kg diet, respectively) over a period of 8 weeks. We found that biotin deprivation caused reduced concentrations of blood glucose and serum insulin concentrations, but increased plasma glucagon levels. Biotin-deficient mice also presented impaired glucose and insulin tolerance tests, indicating defects in insulin sensitivity. Altered insulin signaling was linked to a decrease in phosphorylated Akt/PKB but induced no change in insulin receptor abundance. Islet morphology studies revealed disruption of islet architecture due to biotin deficiency, and an increase in the number of α-cells in the islet core. Morphometric analyses found increased islet size, number of islets and glucagon-positive area, but a decreased insulin-positive area, in the biotin-deficient group. Glucagon secretion and gene expression increased in islets isolated from biotin-deficient mice. Our results suggest that biotin deficiency promotes hyperglycemic mechanisms such as increased glucagon concentration and decreased insulin secretion and sensitivity to compensate for reduced blood glucose concentrations. Variations in glucose homeostasis may participate in the changes observed in pancreatic islets.  相似文献   

9.
Summary Glucose-induced electrical activity in canine pancreatic islet B cells is distinct from that in rodent islets, though both display Ca2+-dependent insulin secretion. Rodent islet B cells undergo regular bursts of Ca2+-dependent action potentials, while canine islet B cells generate isolated Na+-dependent action potentials which often give way to a plateau depolarization. Here we present evidence to reconcile the species difference in electrical activity with the similarity of Ca2+ dependence of secretion. (i) In canine B cells increasing glucose concentrations produce membrane depolarization and increasing frequency of Nao-dependent action potentials until a background membrane potential (-40mV) is reached where Na+ currents are inactivated. (ii) Voltage-dependent Ca2+ currents are present which are activated over the voltage excursion of the action potential (–50 to +20 mV) and inactivate slowly, (over seconds) in the range of the plateau depolarization (–40 to –25 mV). Hence, they are available to contribute to both phases of depolarization. (iii) Tetrodotoxin (TTX) reduces by half an early transient phase of glucosestimulated insulin secretion but not a subsequent prolonged plateau phase. The transient phase of secretion often corresponds well in time to the period of initial high frequency action potential activity. These latter results suggest that in canine B cells voltagedependent Na+ and Ca2+ currents mediate biphasic glucose-induced insulin secretion. The early train of Na+-dependent action potentials, by transiently activating Ca2+ channels and allowing pulsatile Ca2+ entry, may promote an early transient phase of insulin secretion. The subsequent sustained plateau depolarization, by allowing sustained Ca2+ entry, may permit steady insulin release.  相似文献   

10.
11.
12.
13.
In the present study the morphogenesis and differentiation processes in embryonic pancreatic gland implants into Wistar line rat anterior eye chamber have been investigated. The conditions therein were found to be favourable for the endocrine tissue functioning; a number of morphogenetic changes resulting in the formation of islet structure acting as a morphophysiological unit were noted as well. Endocrine cells possess some selective properties as compared to the exocrine tissue. Alloxan diabetic animals demonstrated the most optimum conditions for the endocrine cells development and functioning.  相似文献   

14.
15.
Islet cell cultures obtained from the pancreas of human embryos were transplanted to the spleen pulp of rats with alloxan diabetes mellitus. During 1-2 weeks after transplantation, 6 of the 8 recipients manifested a decrease in glycemia to normal or almost normal. The antidiabetic effect of xenotransplantation of islet cell cultures was well preserved throughout the entire observation period (up to 4 months). Two recipient rats with stable normoglycemia were subjected to splenectomy. One week after operation the animals manifested the recurrent grave diabetic status. Histological study of the removed spleen has shown the red pulp to contain the accumulations of implanted islet cells.  相似文献   

16.
17.
18.
Dynamics of structural changes was studied in the hypothalamus, reticular formation and the hypophysis of rats, depending on the phases of development in them of 9m10-dimethyl-1,2-benzanthracene-induced tumours. The phase of subcutaneous tumours appearance proved to be accompanied by structural and functional changes in the hypothalamus, reticular formation and the hypophysis.  相似文献   

19.
20.
Differentiation and localization of corticotrophic cells in the human fetus hypophysis (5-30 weeks of development) have been studied. The immune cytochemical reaction is performed in sagittal and horizontal sections 5 mcm thick. Rabbit anti adrenocorticotrophic hormone (ACTH)-, anti ACTH- and anti ACTH-sera are used. In the hypophysis anlage of a 6-week-old fetus single immune positive ACTH-cells are revealed situating at the border where the intermediate part gets into the anterior part. With age, the number of the corticotrophic cells increases and till the first third of the intrauterine development they are mainly localized along the periphery of the epithelial cords and the adenoid- or other parts of the adenohypophysis. During the second part of the intrauterine development the corticotrophic cells localize in the same places as in a mature person. The hormone-producing ability of the hypophysis coincides with the beginning of its organogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号