首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
4.
5.
Jasmonate (JA) induces the biosynthesis of anthocyanin and proanthocyanidin. MdMYB9 is essential for modulating the accumulation of both anthocyanin and proanthocyanidin in apple, but the molecular mechanism for induction of anthocyanin and proanthocyanidin biosynthesis by JA is unclear. In this study, we discovered an apple telomere-binding protein (MdTRB1) to be the interacting protein of MdMYB9. A series of biological assays showed that MdTRB1 acted as a positive modulator of anthocyanin and proanthocyanidin accumulation, and is dependent on MdMYB9. MdTRB1 interacted with MdMYB9 and enhanced the activation activity of MdMYB9 to its downstream genes. In addition, we found that the JA signaling repressor MdJAZ1 interacted with MdTRB1 and interfered with the interaction between MdTRB1 and MdMYB9, therefore negatively modulating MdTRB1-promoted biosynthesis of anthocyanin and proanthocyanidin. These results show that the JAZ1–TRB1–MYB9 module dynamically modulates JA-mediated accumulation of anthocyanin and proanthocyanidin. Taken together, our data further expand the functional study of TRB1 and provide insights for further studies of the modulation of anthocyanin and proanthocyanidin biosynthesis by JA.  相似文献   

6.
PHR1(PHOSPHATE STARVATION RESPONSE1)plays key roles in the inorganic phosphate(Pi)starvation response and in Pi deficiency-induced anthocyanin biosynthesis in plants. However, the post-translational regulation of PHR1 is unclear,and the molecular basis of PHR1-mediated anthocyanin biosynthesis remains elusive. In this study, we determined that MdPHR1 was essential for Pi deficiency-induced anthocyanin accumulation in apple(Malus × domestica). MdPHR1 interacted with MdWRKY75, a positive regulator...  相似文献   

7.
8.
9.
10.
11.
12.
Flavonoids are a large family of polyphenolic compounds with manifold functions in plants. Present in a wide range of vegetables and fruits, flavonoids form an integral part of the human diet and confer multiple health benefits. Here, we report on metabolic engineering of the flavonoid biosynthetic pathways in apple (Malus domestica Borkh.) by overexpression of the maize (Zea mays L.) leaf colour (Lc) regulatory gene. The Lc gene was transferred into the M. domestica cultivar Holsteiner Cox via Agrobacterium tumefaciens-mediated transformation which resulted in enhanced anthocyanin accumulation in regenerated shoots. Five independent Lc lines were investigated for integration of Lc into the plant genome by Southern blot and PCR analyses. The Lc-transgenic lines contained one or two Lc gene copies and showed increased mRNA levels for phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), flavanone 3 beta-hydroxylase (FHT), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin reductases (LAR), anthocyanidin synthase (ANS) and anthocyanidin reductase (ANR). HPLC-DAD and LC-MS analyses revealed higher levels of the anthocyanin idaein (12-fold), the flavan 3-ol epicatechin (14-fold), and especially the isomeric catechin (41-fold), and some distinct dimeric proanthocyanidins (7 to 134-fold) in leaf tissues of Lc-transgenic lines. The levels of phenylpropanoids and their derivatives were only slightly increased. Thus, Lc overexpression in Malus domestica resulted in enhanced biosynthesis of specific flavonoid classes, which play important roles in both phytopathology and human health.  相似文献   

13.
14.
15.
16.
5-Aminolevulinic acid (ALA) is an essential precursor of all tetrapyrrole compounds such as chlorophylls and heme in plants. It has also been suggested widely for applications to crops to enhance growth and production as a plant growth regulator. However, how successful ALA can be used in fruit production was rarely reported. We conducted a field experiment at eight locations in four provinces across eastern China; and the results showed that application of ALA solutions to ‘Fuji’ apple (Malus × domestica Borkh.) fruits 20 days prior to harvest significantly increased the anthocyanin content in the fruit skin. Also, ALA treatment increased the anthocyanin content of the detached apple skin in a growth chamber. Results from the semi-quantitive RT-PCR analysis showed that ALA induced gene expressions related to anthocyanin biosynthesis, including the structural genes Pal, Chs and Ufgt, and regulatory genes Myb, bHLH and Wd40. When levulinic acid (LA), an inhibitor of ALA dehydrase, was added, ALA promotion of anthocyanin accumulation and up-regulation of gene expressions were inhibited. Taken together, these results suggest that ALA promotion of anthocyanin accumulation in apples was facilitated by the up-regulation of gene expression, which might be related to the conversion of ALA to porphyrins.  相似文献   

17.
18.
19.
乙烯利处理对葡萄花色苷合成相关基因表达的影响   总被引:1,自引:0,他引:1  
于淼  赵权  王军 《植物研究》2012,32(2):183-190
利用荧光定量PCR技术分析‘京优’葡萄果实成熟过程中,花色苷生物合成途径相关酶基因mRNA转录水平的变化以及乙烯利处理对果皮中花色苷含量和关键酶基因转录水平的影响。结果显示,葡萄果实发育进入着色期,花色苷合成过程中主要相关基因(CHSsCHIsF3HsF3HF35HDFRLDOXUFGTOMTGST)和转录因子(MybA1MybA1-2)转录水平都显著提高,其中UFGTGSTMybA1CHSsCHIsF3Hs基因家族中的CHS3CHI2F3H2随着花色苷合成而大量转录;乙烯利处理能够增强花色苷合成相关基因的转录,使其转录时期前移和转录水平提高,其中对GSTUFGTMybA1转录的促进作用最明显。相关性分析表明,花色苷合成与一些花色苷合成相关基因(CHS3CHI2F3H2F35HUFGTGST)和转录因子(MybA1)的转录水平呈显著或极显著正相关;与CHS1CHS2CHI1F3H1DFRF3HLDOXOMT转录水平的相关性均不显著。本研究结果为进一步阐明花色苷生物合成机理和花色苷类色素的生产应用提供一定的理论依据。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号