首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intravenous infusion of ethomersol (50 mg/kg during 60 min) decreased cerebral tissue hypoxia at the end of acute cerebral ischemia in cats (30-min occlusion of both carotid and both vertebral arteries). In recirculatory period ethomersol prevented the postischemic hypoperfusion and especially hypo-oxygenation. Ethomersol-induced reduction of Hb-affinity to O2 was demonstrated.  相似文献   

2.
Diabetes mellitus is accompanied by several cardiovascular complications including atherosclerosis, cerebral ischaemia and stroke. We examined the neuroprotective effect of a 1,4-dihydropyridine derivative cerebrocrast (C, a new antidiabetic agent, synthesized in the Latvian Institute of Organic Synthesis) on the level of ATP in the brain, and on changes of the EEG and ECG, as well as blood pressure parameters in anaesthetized Wistar male rats before and during 10-min occlusion of both common carotid arteries. Cerebrocrast was administered i.v. at doses of 1.0 and 10 microg/kg in the v. femoralis 20 min prior to ischaemia. After 10-min ischaemia animals were decapitated and the brain was immediately frozen in liquid nitrogen and subsequently used for analysis of changes of ATP contention. Cerebrocrast, administered at doses of 1.0 and 10 microg/kg 20 min prior to occlusion of both common carotid arteries, completely prevented a fall in the ATP content of brain compared with the control rats. In control rats the content of ATP in brain during ischaemia decreased from 2.77 +/- 0.22 (basal level) to 1.74 +/- 0.20 micromol/g as a result of ischaemia. By administration of cerebrocrast 20 min before occlusion of the arteries, the content of ATP in the brain remained at the level of preischaemia (1.0 microg/kg C + ischaemia 2.82 +/- 0.36; 10 microg/kg C + ischaemia 2.42 +/- 0.22 micromol/g). Analysis of EEG parameters both before and during 10 min of occlusion showed that at a C dose of 1.0 microg/kg before occlusion produced a regular alpha rhythm during ischaemia and prevented cerebral bioelectric activity from significant changes. The depression of basal rhythm was observed at a C dose of 10 microg/kg during ischaemia in two rats out of six as well as an increase in the ECG ST segment above the isoelectric line. Blood pressure was decreased by about 10-20 mm Hg. We propose that pretreatment of rats with cerebrocrast at doses of 1.0 or 10 microg/kg 20 min prior to ischaemia can prevent ischaemic damage of rat brain, maintain necessary energy consumption, promote ATP production in brain cells, and prevent significant changes in EEG and ECG parameters. These properties are important in diabetes mellitus and its evoked cardiovascular complications as stroke, ischaemia, etc.  相似文献   

3.
In experiments on awake cats before and after intracerebral hemorrhage influence of cerebrocrast and nimodipine intravenous infusion (1 microgram/kg-1/min-1 during 60 min) on cerebral blood flow (CBF) in the cortex, thalamus and reticular formation and power of (alpha + beta)-, theta-, and delta-waves was investigated. During cerebrocrast infusion increasing CBF and improving bioelectrical activity were demonstrated.  相似文献   

4.
Polyamine Changes in Reversible Cerebral Ischemia   总被引:4,自引:4,他引:0  
Putrescine, spermidine, and spermine levels were measured in the cortex, caudoputamen, and hippocampus of rats during 30 min of severe forebrain ischemia (induced by occlusion of both carotid and vertebral arteries) and subsequent recirculation. During ischemia, polyamine levels did not change significantly. During postischemic recirculation, however, putrescine levels dramatically increased whereas those of spermine and spermidine did not change, with the exception of the severely damaged caudoputamen, where the concentration declined after 24 h. The increase of putrescine is explained by postischemic activation of ornithine decarboxylase and inhibition of S-adenosylmethionine decarboxylase. It is suggested that the accumulation of putrescine during postischemic recirculation may be responsible for the delayed neuronal death occurring after ischemia.  相似文献   

5.
Microsurgery was performed on 102 rats of both sexes weighing from 150 to 250 g. Anesthesia was induced by injecting 1% hexenal into the abdominal cavity (1 ml/100 g bw). By median incision of the inferior third of the neck and upper third of the pectoris bone an extrapleural access to the mediastinum was actieved, where the common carotid and subclavian arteries were constricted distally to the branching out of the intrathoracic and proximally to the vertebral arteries. The EEG stopped being recorded at the 23 +/- 5th s, respiration stopped at the 4 +/- 0.3th min of cerebral ischemia. Blood pressure and heart rates, after a brief rise, gradually decreased with ischemia prolongation. Appearance of the EEG and respiration and the ECG and blood pressure after 10 min of cerebral ischemia took place within the first 20 min of the postischemic period. After cerebral ischemia lasting over 10 min all the animals died.  相似文献   

6.
The effect of transient cerebral ischemia (from 15 to 180 min) by bilateral carotid arterial occlusion on postischemic mortality rate and the signs of nervous disorder in Fischer 344 rat was studied. Total mortality rate was 40 to 60% during 72 hr of reperfusion following 2 hr ischemia. Postischemic mortality rate did not vary distinctly with 10, 20 and 40 weeks-old.  相似文献   

7.
A transient brain ischemia of 10 min duration was produced in rats by electrocautery of the vertebral arteries and reversible occlusion of the carotid arteries. Ischemia reduced blood flow to 10-18% of the control values in forebrain structures (cortex, striatum, thalamus) and to 25-50% in the mesencephalon, cerebellum and brain stem. In these last structures, after 30 min of recirculation, the flow rates returned to normal values but a 20-35% reduction of blood flow was present in the forebrain structures, indicating that the development of the postischemic hypoperfusion was related to the severity of the preceding ischemia. After 30 min of recirculation, there was a near complete recovery of the high energy compounds but a residual metabolic dysfunction was evidenced by an increase in lactate/pyruvate ratio and an elevation of the glucose content, suggesting a depression of cerebral metabolism which may account for the brain hypoperfusion.  相似文献   

8.
Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease that is characterized by selective destruction of insulin secreting pancreatic islets beta-cells. The formation of cytokines (IL-1beta, IL-6, TNF-alpha, etc.) leads to extensive morphological damage of beta-cells, DNA fragmentation, decrease of glucose oxidation, impaired glucose-insulin secretion and decreased insulin action and proinsulin biosynthesis. We examined the protective effect of a 1,4-dihydropyridine (DHP) derivative cerebrocrast (synthesized in the Latvian Institute of Organic Synthesis) on pancreatic beta-cells in rats possessing diabetes induced with the autoimmunogenic compound streptozotocin (STZ). Cerebrocrast administration at doses of 0.05 and 0.5 mg/kg body weight (p.o.) 1 h or 3 days prior to STZ as well as at 24 and 48 h after STZ administration partially prevented pancreatic beta-cells from the toxic effects of STZ, and delayed the development of hyperglycaemia. Administration of cerebrocrast starting 48 h after STZ-induced diabetes in rats for 3 consecutive days at doses of 0.05 and 0.5 mg/kg body weight (p.o.) significantly decreased blood glucose level, and the effect remained 10 days after the last administration. Moreover, in these rats, cerebrocrast evoked an increase of serum immunoreactive insulin (IRI) level during 7 diabetic days as compared to both the control normal rats and the STZ-induced diabetic control rats. The STZ-induced diabetic rats that received cerebrocrast had a significantly high serum IRI level from the 14th to 21st diabetic days in comparison with the STZ-induced diabetic control.The IRI level in serum as well as the glucose disposal rate were significantly increased after stimulation of pancreatic beta-cells with glucose in normal rats that received cerebrocrast, administered 60 min before glucose. Glucose disposal rate in STZ-induced diabetic rats as a result of cerebrocrast administration was also increased in comparison with STZ-diabetic control rats. Administration of cerebrocrast in combination with insulin intensified the effect of insulin. The hypoglycaemic effect of cerebrocrast primarily can be explained by its immunomodulative properties. Moreover, cerebrocrast can act through extrapancreatic mechanisms that favour the expression of glucose transporters, de novo insulin receptors formation in several cell membranes as well as glucose uptake.  相似文献   

9.
The lack of efficient neuroprotective strategies for neonatal stroke could be ascribed to pathogenic ischemic processes differentiating adults and neonates. We explored this hypothesis using a rat model of neonatal ischemia induced by permanent occlusion of the left distal middle cerebral artery combined with 50 min of occlusion of both common carotid arteries (CCA). Postconditioning was performed by repetitive brief release and occlusion (30 s, 1 and/or 5 min) of CCA after 50 min of CCA occlusion. Alternative reperfusion was generated by controlled release of the bilateral CCA occlusion. Blood-flow velocities in the left internal carotid artery were measured using color-coded pulsed Doppler ultrasound imaging. Cortical perfusion was measured using laser Doppler. Cerebrovascular vasoreactivity was evaluated after inhalation with the hypercapnic gas or inhaled nitric oxide (NO). Whatever the type of serial mechanical interruptions of blood flow at reperfusion, postconditioning did not reduce infarct volume after 72 hours. A gradual perfusion was found during early re-flow both in the left internal carotid artery and in the cortical penumbra. The absence of acute hyperemia during early CCA re-flow, and the lack of NO-dependent vasoreactivity in P7 rat brain could in part explain the inefficiency of ischemic postconditioning after ischemia-reperfusion.  相似文献   

10.
Forebrain ischemia was induced in Mongolian gerbils by bilateral occlusion of the common carotid arteries for 30 minutes. These animals do not have a complete circulus arteriosus Willisii. Mitochondria were prepared from the forebrain tissue at the end of the 30 minutes occlusion period as well as at different time points after the release of the occlusion. Tissue blood flow in the forebrain was also determined by measuring the brain tissue accumulation of 14C-iodoantipyrine. Tissue blood flow in the forebrain decreased from a control level of 1.43 +/- 0.03 ml/min/gr to 0.13 +/- 0.03 ml/min/gr by the 30th minute of ischemia, increased to 1.12 +/- 0.25 ml/min/gr after 5 minutes of reflow, but decreased again to 0.41 +/- 0.07 ml/min/gr after 1 1/2 hours of reflow. Oxygen consumption rate of mitochondria prepared from the forebrain (glutamate + malate as substrates in the presence of ADP) was 98 +/- 13 nmoles O2/min/mg protein in control animals, decreased to 61 +/- 9 nmoles O2/min/mg protein after 30 minutes of occlusion, recovered to 106 +/- 9 nmoles O2/min/mg protein during the first 30 minutes of reperfusion. During extended reperfusion, mitochondrial respiratory activity declined reaching 20 +/- 5 nmoles O2/min/mg protein after 5 1/2 hours of reperfusion. Respiratory control ratio of the mitochondria (relative increase of respiration upon addition of ADP) was 9.2 +/- 1.3 in control animals, 7.0 +/- 1.5 after 30 minutes of carotid occlusion, 9.0 +/- 1.2 after 30 minutes of reperfusion, and 5.8 +/- 0.8 after 5 1/2 hours of reperfusion. Superoxide dismutase activity of the forebrain mitochondria was 5.10 +/- 0.7 I.U./mg protein in control animals, decreased to 3.3 +/- 1.6 I.U./mg protein after 30 minutes of occlusion and remained at this level throughout the reperfusion period. These data confirm earlier reports that deterioration of mitochondrial function may contribute to the development of ischemic and post-ischemic brain tissue damage. It also appears possible that postischemic damage of mitochondrial function develops secondary to postischemic deterioration of tissue blood flow.  相似文献   

11.
Arachidonic acid (AA) and its vasoactive metabolites have been implicated in the pathogenesis of brain damage induced by cerebral ischemia. The membrane AA concentrations can be reduced by changes in dietary fatty acid intake. The purpose of the present study was to investigate the effects of chronic ethyl docosahexaenoate (E-DHA) administration on the generation of eicosanoids of AA metabolism during the period of reperfusion after ischemia in gerbils. Weanling male gerbils were orally pretreated with either E-DHA (100, 200 mg/kg) or vehicle, once a day, for 10 weeks, and subjected to transient forebrain ischemia by bilateral common carotid occlusion for 10 min. E-DHA (200 mg/kg) pretreatment significantly decreased the content of brain lipid AA at the termination of treatment, prevented postischemic impaired regional cerebral blood flow (rCBF) and reduced the levels of brain prostaglandin (PG) PGF(2alpha) and 6-keto-PGF(1alpha), and thromboxane B(2) (TXB(2)), as well as leukotriene (LT) LTB(4) and LTC(4) at 30 and 60 min of reperfusion compared with the vehicle, which was well associated with the attenuated cerebral edema in the E-DHA-treated brain after 48 h of reperfusion. These data suggest that the E-DHA (200 mg/kg) pretreatment reduces the postischemic eicosanoid productions, which may be due to its reduction of the brain lipid AA content.  相似文献   

12.
Treatment of intracranial aneurysms by surgical clipping carries a risk of intraoperative ischemia, caused mainly by prolonged temporary occlusion of cerebral arteries. The objective of this study was to develop a near-infrared spectroscopy (NIRS) technique for continuous monitoring of cerebral blood flow (CBF) during surgery. With this approach, cerebral hemodynamics prior to clipping are measured by a bolus-tracking method that uses indocyanine green as an intravascular contrast agent. The baseline hemodynamic measurements are then used to convert the continuous Hb difference (HbD) signal (HbD = oxyhemoglobin - deoxyhemoglobin) acquired during vessel occlusion to units of CBF. To validate the approach, HbD signal changes, along with the corresponding CBF changes, were measured in pigs following occlusion of the common carotid arteries or a middle cerebral artery. For both occlusion models, the predicted CBF change derived from the HbD signal strongly correlated with the measured change in CBF. Linear regression of the predicted and measured CBF changes resulted in a slope of 0.962 (R(2) = 0.909) following carotid occlusion and 0.939 (R(2) = 0.907) following middle cerebral artery occlusion. These results suggest that calibrating the HbD signal by baseline hemodynamic measurements provides a clinically feasible method of monitoring CBF changes during neurosurgery.  相似文献   

13.
We studied reactions of astrocytes in the CA1 hippocampal zone of the mongolian gerbil (Meriones unguiculatus) after experimental short-lasting (7 min) cerebral ischemia resulting from bilateral occlusion of the carotid arteries. Immunocytochemical staining of hippocampal sections with antibodies against an astrocytes marker, glial fibrillary acidic protein (GFAP), was used. We measured the density of labelled cells in the layers of the CA1 zone at different time intervals (from 1 to 30 days) after cerebral ischemization. The number of labelled astrocytes within this period increased, and the dynamics of their density in different layers demonstrated significant dissimilarities. The earliest manifestations of reactive astrogliosis were observed in the hilus. The greatest rise in the number of astrocytes was found in the str. lacunosum-moleculare and str. moleculare on the 7th day, while in the str. pyramidale the maximum was reached only on the 14th day, which corresponded to the period of the highest intensity of delayed postischemic neuronal death. Thus, the intensity of morphological changes of the neurons and the level of reactivity of the astrocytes demonstrate a rather clear correlation; this fact can be one of the aspects of the dynamics of postischemic damage to the hippocampal neurons. Neirofiziologiya/Neurophysiology, Vol. 37, Nos. 5/6, pp. 410–415, September–December, 2005.  相似文献   

14.
The objective of this study was to determine whether administration of dichloroacetate (DCA), an activator of pyruvate dehydrogenase (PDH), improves recovery of energy metabolites following transient cerebral ischemia. Gerbils were pretreated with DCA, and cerebral ischemia was produced using bilateral carotid artery occlusion for 20 min, followed by reperfusion up to 4 h. DCA had no effect on the accumulation of lactic acid and the decrease in ATP and phosphocreatine (PCr) during the 20-min insult, nor on the recovery of these metabolites measured at 20 and 60 min reperfusion. However, at 4 h reperfusion, levels of ATP and PCr were significantly higher in DCA-treated animals than in controls, as PCr exhibited a secondary decrease in caudate nucleus of control animals. PDH was markedly inhibited at 20 min reperfusion in both groups, but was reactivated to a greater extent in DCA-treated animals at 60 min and 4 h reperfusion. These results demonstrate that DCA had no effect on the initial recovery of metabolites following transient ischemia. However, later in reperfusion, DCA enhanced the postischemic reactivation of PDH and prevented the secondary failure of energy metabolism in caudate nucleus. Thus, inhibition of PDH may limit the recovery of energy metabolism following cerebral ischemia.  相似文献   

15.
This study addresses the possible involvement of an agonist-induced postischemic hyperactivity in the delayed neuronal death of the CA1 hippocampus in the rat. In two sets of experiments, dialytrodes were implanted into the CA1 either acutely or chronically (24 h of recovery). During 20 min of cerebral ischemia (four-vessel occlusion model) and 8 h of reflow, we followed extracellular amino acids and multiple-unit activity. Multiple-unit activity ceased within 20 sec of ischemia and remained zero during the ischemic insult and for the following 1 h of reflow. During ischemia, extracellular aspartate, glutamate, taurine, and gamma-aminobutyric acid increased in both acute and chronic experiments (seven- to 26-fold). Multiple-unit activity recovered to preischemic levels following 4-6 h of reflow. In the group with dialytrodes implanted acutely, the continuous increase in multiple-unit activity reached 110% of basal at 8 h of reflow. In the group with dialytrodes implanted chronically, multiple-unit activity recovered faster and reached 140% of control at 8 h, paralleled by an increase in extracellular aspartate (5.5-fold) and glutamate (twofold). In conclusion, the postischemic increase of excitatory amino acids and the recovery of the neuronal activity may stress the CA1 pyramidal cells, which could be detrimental in combination with, e.g., postsynaptic impairments.  相似文献   

16.
Fifteen min after resumption of the blood flow in the common carotid arteries the arrest of which was caused by ligation, a considerable intensification of the blood supply in the hemispheres, diencephalon and the midbrain and its simultaneous reduction in the cerebellum and the medulla oblongata occurred. Sixty min later the cerebral blood supply in all the parts of the brain under study recovered completely, except the hemispheres. The complete postischemic recovery of the phospholipid metabolism intensity occurred in the brain regions showing a considerable diminution of the phospholipid metabolism during the ischemic period.  相似文献   

17.
Self-reactive natural Abs initiate injury following ischemia and reperfusion of certain tissues, but their role in ischemic stroke is unknown. We investigated neoepitope expression in the postischemic brain and the role of natural Abs in recognizing these epitopes and mediating complement-dependent injury. A novel IgM mAb recognizing a subset of phospholipids (C2) and a previously characterized anti-annexin IV mAb (B4) were used to reconstitute and characterize injury in Ab-deficient Rag1(-/-) mice after 60 min of middle cerebral artery occlusion and reperfusion. Reconstitution with C2 or B4 mAb in otherwise protected Rag1(-/-) mice restored injury to that seen in wild-type (wt) mice, as demonstrated by infarct volume, demyelination, and neurologic scoring. IgM deposition was demonstrated in both wt mice and reconstituted Rag1(-/-) mice, and IgM colocalized with the complement activation fragment C3d following B4 mAb reconstitution. Further, recombinant annexin IV significantly reduced infarct volumes in wt mice and in Rag1(-/-) mice administered normal mouse serum, demonstrating that a single Ab reactivity is sufficient to develop cerebral ischemia reperfusion injury in the context of an entire natural Ab repertoire. Finally, C2 and B4 mAbs bound to hypoxic, but not normoxic, human endothelial cells in vitro. Thus, the binding of pathogenic natural IgM to postischemic neoepitopes initiates complement-dependent injury following murine cerebral ischemia and reperfusion, and, based also on previous data investigating IgM reactivity in human serum, there appears to be a similar recognition system in both mouse and man.  相似文献   

18.
Previous investigations of age-associated changes in flow-mediated vasodilation (FMD) in women have been limited to the upper extremity and have not accounted for possible age differences in the stimulus for dilation. The purpose of the present study was to compare age differences in brachial and popliteal FMD and its stimulus (changes in shear rate following occlusion). Ultrasound-derived diameters and Doppler flow velocities of the brachial and popliteal arteries were measured in 14 young (20- to 30-yr-old) and 14 older (60- to 79-yr-old) healthy women at rest and during and after 5 min of distal cuff occlusion. Resting diameters were similar (both P > 0.39) in both age groups. Peak shear rate did not differ with age in either artery: approximately 1,300-1,400 and approximately 400-500 s(-1) in brachial and popliteal arteries, respectively. FMD (percent change above diameter measured during occlusion) was approximately 50-60% lower (P < 0.05) in the brachial (15.8 + 0.8% vs. 8.1 + 1.5%) and popliteal (4.6 +/- 0.7% vs. 1.8 +/- 0.4%) arteries of the older women. The normalized response of the brachial and popliteal arteries (%FMD per unit change in shear rate) was also reduced with age (55% and 53%, respectively) but did not exhibit limb specificity. Additionally, endothelium-independent dilation, as assessed by administration of nitroglycerin, was similarly blunted (by 45-65%) in brachial and popliteal arteries of older women. These results suggest that 1) brachial and popliteal artery FMD (after 5 min of distal occlusion) are similarly reduced with age, 2) when normalized to the change in shear stimulus, both arteries are equally responsive to 5 min of distal cuff occlusion in women, and 3) the age-associated decline in FMD may be attributable in part to diminished smooth muscle responsiveness.  相似文献   

19.
目的:观察凝闭双侧椎动脉与夹闭双侧颈总动脉之间的不同时间间隔对Pulsinelli四血管闭塞法全脑缺血模型的影响、以及在凝闭单侧椎动脉的基础上夹闭双侧颈总动脉后的脑缺血的特点。方法:84只Wistar大鼠.随机分为以下4组:对照组、双侧椎动脉凝闭组、全脑缺血组、单侧椎动脉凝闭+双侧颈总动脉夹闭组。全脑缺血组中,根据凝闭双侧椎动脉与夹闭双侧颈总动脉之间的时间间隔不同,又分为24h间隔、48h间隔和72h间隔3个亚组。观察大鼠脑缺血过程中的反应包括瞳孔散大、对光反射等情况,脑缺血后恢复翻正反射所需要的时间、以及动物的一般状况,并应用硫堇染色法观察海马CA1区锥体神经元迟发性死亡的情况:结果:全脑缺血72h间隔亚组的大鼠,脑缺血过程中的反应、脑缺血后的一般状况和锥体神经元迟发性死亡程度均明显重于全脑缺血24h间隔亚组及48h间隔亚组,但24h间隔亚组与48h间隔亚组之间无显著差异一单侧椎动脉凝闭+双侧颈总动脉夹闭组大鼠的凝闭侧瞳孔散大、对光反射消失、海马CA1区神经元大量死亡;而未凝闭侧未见上述相关变化。结论:凝闭双侧椎动脉本身也具有脑缺血预处理样作用,对其后48h内夹闭双侧颈总动脉所致的严重脑缺血具有一定程度的保护作用;大鼠椎动脉对脑干及海马的血液供应均存在明显的同侧优势效应,  相似文献   

20.
Rats were treated with alpha-methyl-para-tyrosine (AMT, 250 mg/kg, i.p), an hydroxylase inhibitor, in order to decrease brain levels of catecholamines. Six hours later, when cerebral dopamine (DA) and norepinephrine were reduced by about 80%, a transient forebrain ischemia of 30 min duration was induced by four-vessel occlusion technique. Evaluation of brain damage 72 hours after ischemia showed that AMT treatment significantly decreased neuronal necrosis in the striatum but had no cytoprotective effect in the CA1 sector of the hippocampus and in the neocortex. AMT treatment reduced mortality within the ischemic period but did not affect either the mortality within the recirculation period or the postischemic neurologic deficit. These results suggest that the striatal cytoprotective effect of AMT is linked to cerebral DA depletion and that excessive release of DA during ischemia or dopaminergic hyperactivity during recirculation play a detrimental role in the development of ischemic cell damage in the striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号