首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To determine the initiation strategy of the hepatitis E virus (HEV) open reading frame 3 (ORF3), we constructed five HEV mutants with desired mutations in the ORF1 and ORF2 junction region and tested their levels of in vivo infectivity in pigs. A mutant with a C-terminally truncated ORF3 is noninfectious in pigs, indicating that an intact ORF3 is required for in vivo infectivity. Mutations with substitutions in the first in-frame AUG in the junction region or with the same T insertion at the corresponding position of HEV genotype 4 did not affect the virus infectivity or rescue, although mutations with combinations of the two affected virus recovery efficiency, and a single mutation at the third in-frame AUG completely abolished virus infectivity in vivo, indicating that the third in-frame AUG in the junction region is required for virus infection and is likely the authentic initiation site for ORF3. A conserved double stem-loop RNA structure, which may be important for HEV replication, was identified in the junction region. This represents the first report of using a unique homologous pig model system to study the molecular mechanism of HEV replication and to systematically and definitively identify the authentic ORF3 initiation site.  相似文献   

2.
Marek's disease (MD) in chickens is caused by the alphaherpesvirus MD virus (MDV) and is characterized by the development of lymphoblastoid tumors in multiple organs. The recent identification and cloning of RLORF4 and the finding that four of six attenuated strains of MDV contained deletions within RLORF4 suggested that it is involved in the attenuation process of MDV. To assess the role of RLORF4 in MD pathogenesis, its coding sequence was deleted in the pRB-1B bacterial artificial chromosome clone. Additionally, RLORF5a was deleted separately to examine its importance for oncogenesis. The sizes of plaques produced by MDV reconstituted from pRB-1BdeltaRLORF5a (rRB-1BdeltaRLORF5a) were similar to those produced by the parental pRB-1B virus (rRB-1B). In contrast, virus reconstituted from pRB-1BDeltaRLORF4 (rRB-1BdeltaRLORF4) produced significantly larger plaques. Replication of the latter virus in cultured cells was higher than that of rRB-1B or rRB-1BdeltaRLORF5a using quantitative PCR (qPCR) assays. In vivo, both deletion mutants and rRB-1B replicated at comparable levels at 4, 7, and 10 days postinoculation (p.i.), as determined by virus isolation and qPCR assays. At 14 days p.i., the number of PFU of virus isolated from chickens infected with rRB-1BdeltaRLORF4 was comparable to that from chickens infected with highly attenuated RB-1B and significantly lower than that from rRB-1B-infected birds. The number of tumors and kinetics of tumor production in chickens infected with rRB-1BdeltaRLORF5a were similar to those of P2a chickens infected with rRB-1B. In stark contrast, none of the chickens inoculated with rRB-1BdeltaRLORF4 died up to 13 weeks p.i.; however, two chickens had tumors at the termination of the experiment. The data indicate that RLORF4 is involved in attenuation of MDV, although the function of RLORF4 is still unknown.  相似文献   

3.
4.
Human T-lymphotropic virus type 1 (HTLV-1) is a complex retrovirus encoding regulatory and accessory genes in four open reading frames (ORF I to IV) of the pX region. Emerging evidence indicates an important role for the pX ORF I-encoded accessory protein p12(I) in viral replication, but its contribution to viral pathogenesis remains to be defined. p12(I) is a conserved, membrane-associated protein containing four SH3-binding motifs (PXXP). Its interaction with the interleukin-2 (IL-2) receptor beta- and gamma-chains implies an involvement of p12(I) in intracellular signaling pathways. In addition, we have demonstrated that expression of pX ORF I p12(I) is essential for persistent infection in rabbits. In contrast, standard in vitro systems have thus far failed to demonstrate a contribution of p12(I) to viral infectivity and ultimately cellular transformation. In this study we developed multiple in vitro coculture assays to evaluate the role of p12(I) in viral infectivity in quiescent peripheral blood mononuclear cells to more accurately reflect the virus-cell interactions as they occur in vivo. Using these assays, we demonstrate a dramatic reduction in viral infectivity in quiescent T lymphocytes for a p12 mutant viral clone (ACH.p12) in comparison to the wild-type clone ACH. Moreover, addition of IL-2 and phytohemagglutinin during the infection completely rescued the ability of ACH.p12 to infect primary lymphocytes. When newly infected primary lymphocytes are used to passage virus, ACH.p12 also exhibited a reduced ability to productively infect activated lymphocytes. Our data are the first to demonstrate a functional role for pX ORF I in the infection of primary lymphocytes and suggest a role for p12(I) in activation of host cells during early stages of infection.  相似文献   

5.
The varicella-zoster virus (VZV) open reading frame 61 (ORF61) protein is the homolog of herpes simplex virus type 1 (HSV-1) ICP0. Both genes are located in similar parts of the genome, their predicted products share a cysteine-rich motif, and cell lines expressing VZV ORF61 are able to complement an HSV-1 ICP0 deletion mutant (H. Moriuchi, M. Moriuchi, H. A. Smith, S. E. Straus, and J. I. Cohen, J. Virol. 66:7303-7308, 1992). In transient expression assays, HSV-1 ICP0 is a transactivator alone and transactivates in synergy with another viral transactivator, ICP4. However, VZV ORF61 represses the activation by VZV-encoded proteins ORF62 (the homolog of ICP4) and ORF4. To further characterize the function of VZV ORF61 and its role(s) in regulation of viral gene expression, we performed transient expression assays using target promoters from VZV, HSV-1, and unrelated viruses. In the absence of other viral activators, VZV ORF61 transactivated most promoters tested. In addition, a cell line stably expressing VZV ORF61 complemented the HSV-1 mutant in 1814, which lacks the transactivating function of VP16. The cell line expressing VZV ORF61 enhanced the infectivity of HSV-1 virion DNA. Moreover, transient expression of VZV ORF61 also enhanced the infectivity of VZV DNA. These results indicate that VZV ORF61 can stimulate expression of HSV-1 and VZV genes at an early stage in the viral replicative cycle and that ORF61 has an important role in VZV gene regulation.  相似文献   

6.
7.
The hepatitis E virus causes acute viral hepatitis endemic in much of the developing world and is a serious public health problem. However, due to the lack of an in vitro culture system or a small animal model, its biology and pathogenesis are poorly understood. We have shown earlier that the ORF3 protein (pORF3) of hepatitis E virus activates ERK, a member of the MAPK superfamily. Here we have explored the mechanism of pORF3-mediated ERK activation and demonstrated it to be independent of the Raf/MEK pathway. Using biochemical assays, yeast two-hybrid analysis, and intracellular fluorescence resonance energy transfer we showed that pORF3 binds Pyst1, a prototypic member of the ERK-specific MAPK phosphatase. The binding regions in the two proteins were mapped to the N terminus of pORF3 and a central portion of Pyst1. Expression of pORF3 protected ERK from the inhibitory effects of ectopically expressed Pyst1. This is the first example of a viral protein regulating ERK activation by inhibition of its cognate dual specificity phosphatase.  相似文献   

8.
Mo C  Suen J  Sommer M  Arvin A 《Journal of virology》1999,73(5):4197-4207
Varicella-zoster virus (VZV) is an alphaherpesvirus that is the causative agent of chickenpox and herpes zoster. VZV open reading frame 5 (ORF5) encodes glycoprotein K (gK), which is conserved among alphaherpesviruses. While VZV gK has not been characterized, and its role in viral replication is unknown, homologs of VZV gK in herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV) have been well studied. To identify the VZV ORF5 gene product, we raised a polyclonal antibody against a fusion protein of ORF5 codons 25 to 122 with glutathione S-transferase and used it to study the protein in infected cells. A 40,000-molecular-weight protein was detected in cell-free virus by Western blotting. In immunogold electron microscopic studies, VZV gK was in enveloped virions and was evenly distributed in the cytoplasm in infected cells. To determine the function of VZV gK in virus growth, a series of gK deletion mutants were constructed with VZV cosmid DNA derived from the Oka strain. Full and partial deletions in gK prevented viral replication when the gK mutant cosmids were transfected into melanoma cells. Insertion of the HSV-1 (KOS) gK gene into the endogenous VZV gK site did not compensate for the deletion of VZV gK. The replacement of VZV gK at a nonnative AvrII site in the VZV genome restored the phenotypic characteristics of intact recombinant Oka (rOka) virus. Moreover, gK complementing cells transfected with a full gK deletion mutant exhibited viral plaques indistinguishable from those of rOka. Our results are consistent with the studies of gK proteins of HSV-1 and PRV showing that gK is indispensable for viral replication.  相似文献   

9.
10.
A reverse genetic system was recently established for the coronavirus mouse hepatitis virus strain A59 (MHV-A59), in which cDNA fragments of the RNA genome are assembled in vitro into a full-length genome cDNA, followed by electroporation of in vitro-transcribed genome RNA into cells with recovery of viable virus. The "in vitro-assembled" wild-type MHV-A59 virus (icMHV-A59) demonstrated replication identical to laboratory strains of MHV-A59 in tissue culture; however, icMHV-A59 was avirulent following intracranial inoculation of C57BL/6 mice. Sequencing of the cloned genome cDNA fragments identified two single-nucleotide mutations in cloned genome fragment F, encoding a Tyr6398His substitution in open reading frame (ORF) 1b p59-nsp14 and a Leu94Pro substitution in the ORF 2a 30-kDa protein. The mutations were repaired individually and together in recombinant viruses, all of which demonstrated wild-type replication in tissue culture. Following intracranial inoculation of mice, the viruses encoding Tyr6398His/Leu94Pro substitutions and the Tyr6398His substitution alone demonstrated log10 50% lethal dose (LD50) values too great to be measured. The Leu94Pro mutant virus had reduced but measurable log10 LD5), and the "corrected" Tyr6398/Leu94 virus had a log10 LD50 identical to wild-type MHV-A59. The experiments have defined residues in ORF 1b and ORF 2a that attenuate virus replication and virulence in mice but do not affect in vitro replication. The results suggest that these proteins serve roles in pathogenesis or virus survival in vivo distinct from functions in virus replication. The study also demonstrates the usefulness of the reverse genetic system to confirm the role of residues or proteins in coronavirus replication and pathogenesis.  相似文献   

11.
12.
Six recombinants were constructed which expressed portions of the bovine papillomavirus E1 open reading frame as OmpF/E1/beta-galactosidase tribrid fusion proteins in Escherichia coli. Rabbit sera containing E1-specific antibodies were generated against five of these six fusion proteins (which together constitute 74% of the full-length E1 open reading frame). The individual fusion proteins and their cognate antisera will be useful reagents for defining the structure and function of the BPV E1 protein(s).  相似文献   

13.
The N terminus of hepatitis C virus (HCV) envelope glycoprotein E2 contains a hypervariable region (HVR1) which has been proposed to play a role in viral entry. Despite strong amino acid variability, HVR1 is globally basic, with basic residues located at specific sequence positions. Here we show by analyzing a large number of HVR1 sequences that the frequency of basic residues at each position is genotype dependent. We also used retroviral pseudotyped particles (HCVpp) harboring genotype 1a envelope glycoproteins to study the role of HVR1 basic residues in entry. Interestingly, HCVpp infectivity globally increased with the number of basic residues in HVR1. However, a shift in position of some charged residues also modulated HCVpp infectivity. In the absence of basic residues, infectivity was reduced to the same level as that of a mutant deleted of HVR1. We also analyzed the effect of these mutations on interactions with some potential HCV receptors. Recognition of CD81 was not affected by changes in the number of charged residues, and we did not find a role for heparan sulfates in HCVpp entry. The involvement of the scavenger receptor class B type I (SR-BI) was indirectly analyzed by measuring the enhancement of infectivity of the mutants in the presence of the natural ligand of SR-BI, high-density lipoproteins (HDL). However, no correlation between the number of basic residues within HVR1 and HDL enhancement effect was observed. Despite the lack of evidence of the involvement of known potential receptors, our results demonstrate that the presence of basic residues in HVR1 facilitates virus entry.  相似文献   

14.
15.
Qiu Z  Yao J  Cao H  Gillam S 《Journal of virology》2000,74(14):6637-6642
Rubella virus (RV) virions contain three structural proteins, a capsid protein that interacts with viral genomic RNA to form a nucleocapsid and two membrane glycoproteins, E2 and E1. We found that substitution of either an aspartic acid residue at Gly93 (G93D) or a glycine residue at Pro104 (P104G) in the internal hydrophobic domain of E1 affected virus infectivity but not virus assembly. Viruses carrying G93D and P104G mutations had impaired infectivity, reduced 1,000-fold and 10-fold, respectively. A revertant was isolated from the G93D mutant. Sequencing analysis showed that the substituted aspartic acid residue in G93D mutant had reverted to the original glycine residue, suggesting the involvement of Gly93 in membrane fusion during viral entry.  相似文献   

16.
17.
An infectious cDNA clone of hepatitis E virus was mutated in order to prevent synthesis of either open reading frame 2 (ORF2) protein or ORF3 protein. HuH-7 cells transfected with an ORF2-null mutant produced ORF3, and those transfected with an ORF3-null mutant produced ORF2. Silent mutations introduced into a highly conserved nucleotide sequence in the ORF3 coding region eliminated the synthesis of both ORF2 and ORF3 proteins, suggesting that it comprised a cis-reactive element. A mutant that was not able to produce ORF3 protein did not produce a detectable infection in rhesus macaques. However, a mutant that encoded an ORF3 protein lacking a phosphorylation site reported to be critical for function was able to replicate its genome in cell culture and to induce viremia and seroconversion in rhesus monkeys, suggesting that phosphorylation of ORF3 protein was not necessary for genome replication or for production of infectious virions.  相似文献   

18.
19.
丙型肝炎病毒( HCV)包膜E2蛋白氨基端的高变区1(HVR1)由27个氨基酸组成,是HCV蛋白中变异频率最高的肽段.HVR1含中和抗体表位,同时对HCV细胞侵入起重要作用,其结构与功能的关系目前尚不清楚.本研究对H77株包膜蛋白基因中的HVR1进行了一系列缺失突变,然后将突变体表达质粒与假病毒包装质粒共转染人胚肾(H...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号