首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the epithelium of rat distal colon the acetylcholine analogue carbachol induces a transient increase of short-circuit current (Isc) via stimulation of cellular K+ conductances. Inhibition of the turnover of inositol-1,4,5-trisphosphate (IP3) by LiCl significantly reduced both the amplitude and the duration of this response. When the apical membrane was permeabilized with nystatin, LiCl nearly abolished the carbachol-induced activation of basolateral K+ conductances. In contrast, in epithelia, in which the basolateral membrane was bypassed by a basolateral depolarization, carbachol induced a biphasic increase in the K+ current across the apical membrane consisting of an early component carried by charybdotoxin- and tetraethylammonium-sensitive K+ channels followed by a sustained plateau carried by channels insensitive against these blockers. Only the latter was sensitive against LiCl or inhibition of protein kinases. In contrast, the stimulation of the early apical K+ conductance by carbachol proved to be resistant against inhibition of phospholipase C or protein kinases. However, apical dichlorobenzamil, an inhibitor of Na+/Ca2+ exchangers, or a Ca2+-free mucosal buffer solution significantly reduced the early component of the carbachol-induced apical K+ current. The presence of an apically localized Na+/Ca2+-exchanger was proven immunohistochemically. Taken together these experiments reveal divergent regulatory mechanisms for the stimulation of apical Ca2+-dependent K+ channels in this secretory epithelium, part of them being activated by an inflow of Ca2+ across the apical membrane.
G. SchultheissEmail:
  相似文献   

2.
3.
4.
Crush syndrome (CS) results from severe traumatic damage to the organism that is characterized by stress, acute homeostatic failure of the tissues, and myoglobinuria with severe intoxication. This leads to an acute impairment of kidneys and heart. The peripheral and central nervous systems are also the subject of significant changes in CS. Na+, K+-ATPase is a critical enzyme in neuron that is essential for the regulation of neuronal membrane potential, cell volume as well as transmembrane fluxes of Ca++ and Excitatory Amino Acids. In the present study, Na+, K+-ATPase activity of rat brain regions [Olfactory lobes (OL), Cerebral cortex (CC), Cerebellum (CL), and Medulla oblongata (MO)] during CS was investigated. Experimental model of CS in albino rats was induced by 2-h of compression followed by 2, 24, and 48-h of decompression of femoral muscle tissue. In this study, we have observed elevation in Na+, K+-ATPase activity above normal/control levels in all parts of brain (OL: 34.4%; CC: 1.0%; CL: 3.3% and MO: 45%) during 2-h compression in comparison to controls.  相似文献   

5.
The effect of ANG II on pHi, [Ca2+]i and cell volume was investigated in T84 cells, a cell line originated from colon epithelium, using the probes BCECF-AM, Fluo 4-AM and acridine orange, respectively. The recovery rate of pHi via the Na+/H+ exchanger was examined in the first 2 min following the acidification of pHi with a NH4Cl pulse. In the control situation, the pHi recovery rate was 0.118 ± 0.001 (n = 52) pH units/min and ANG II (10−12 M or 10−9 M) increased this value (by 106% or 32%, respectively) but ANG II (10−7 M) decreased it to 47%. The control [Ca2+]i was 99 ± 4 (n = 45) nM and ANG II increased this value in a dose-dependent manner. The ANG II effects on cell volume were minor and late and should not interfere in the measurements of pHi recovery and [Ca2+]i. To document the signaling pathways in the hormonal effects we used: Staurosporine (a PKC inhibitor), W13 (a calcium-dependent calmodulin antagonist), H89 (a PKA inhibitor) or Econazole (an inhibitor of cytochrome P450 epoxygenase). Our results indicate that the biphasic effect of ANG II on Na+/H+ exchanger is a cAMP-independent mechanism and is the result of: 1) stimulation of the exchanger by PKC signaling pathway activation (at 10−12 – 10−7 M ANG II) and by increases of [Ca2+]i in the lower range (at 10−12 M ANG II) and 2) inhibition of the exchanger at high [Ca2+]i levels (at 10−9 – 10−7 M ANG II) through cytochrome P450 epoxygenase-dependent metabolites of the arachidonic acid signaling pathway.  相似文献   

6.
Reed plants (Phragmites australis Trinius) grow not only in fresh and brackish water areas but also in arid and high salinity regions. Reed plants obtained from a riverside (Utsunomiya) were damaged by 257 mM NaCl, whereas desert plants (Nanpi) were not. When the plants were grown under salt stress, the shoots of the Utsunomiya plants contained high levels of sodium and low levels of potassium, whereas the upper part of the Nanpi plants contained low levels of sodium and high levels of potassium. One month salt stress did not affect potassium contents in either Utsunomiya or Nanpi plants, but it did dramatically increase sodium contents only in the Utsunomiya plants. The ratio of K+ to Na+ was maintained at a high level in the upper parts of the Nanpi plants, whereas the ratio markedly decreased in the Utsunomiya plants in the presence of NaCl. Accumulation of Na+ in the roots and Na+ efflux from the roots were greater in the Nanpi plants than in the Utsunomiya plants. These results suggest that the salt tolerance mechanisms of Nanpi reed plants include an improved ability to take up K+ to prevent an influx of Na+ and an improved ability to exclude Na+ from the roots.  相似文献   

7.
The isolation of a soluble brain fraction which behaves as an endogenous ouabain-like substance, termed endobain E, has been described. Endobain E contains two Na+, K+-ATPase inhibitors, one of them identical to ascorbic acid. Neurotransmitter release in the presence of endobain E and ascorbic acid was studied in non-depolarizing (0 mM KCl) and depolarizing (40 mM KCl) conditions. Synaptosomes were isolated from cerebral cortex of male Wistar rats by differential centrifugation and Percoll gradient. Synaptosomes were preincubated in HEPES-saline buffer with 1 mM d-[3H]aspartate (15 min at 37°C), centrifuged, washed, incubated in the presence of additions (60 s at 37°C) and spun down; radioactivity in the supernatants was quantified. In the presence of 0.5–5.0 mM ascorbic acid, d-[3H]aspartate release was roughly 135–215% or 110–150%, with or without 40 mM KCl, respectively. The endogenous Na+, K+-ATPase inhibitor endobain E dose-dependently increased neurotransmitter release, with values even higher in the presence of KCl, reaching 11-times control values. In the absence of KCl, addition of 0.5–10.0 mM commercial ouabain enhanced roughly 100% d-[3H]aspartate release; with 40 mM KCl a trend to increase was recorded with the lowest ouabain concentrations to achieve statistically significant difference vs. KCl above 4 mM ouabain. Experiments were performed in the presence of glutamate receptor antagonists. It was observed that MPEP (selective for mGluR5 subtype), failed to decrease endobain E response but reduced 50–60% ouabain effect; LY-367385 (selective for mGluR1 subtype) and dizocilpine (for ionotropic NMDA glutamate receptor) did not reduce endobain E or ouabain effects. These findings lead to suggest that endobain E effect on release is independent of metabotropic or ionotropic glutamate receptors, whereas that of ouabain involves mGluR5 but not mGluR1 receptor subtype. Assays performed at different temperatures indicated that in endobain E effect both exocytosis and transporter reversion are involved. It is concluded that endobain E and ascorbic acid, one of its components, due to their ability to inhibit Na+, K+-ATPase, may well modulate neurotransmitter release at synapses.  相似文献   

8.
K+ channels play an important role in pump-leak coupling and volume regulation in the renal proximal tubule. Previous experiments have identified a barium-sensitive K+ conductance (GBa) in proximal tubule cells isolated from frog kidneys. In this paper we examine the regulation of GBa by ATP. GBa was measured in single cells isolated from frog kidney using the whole-cell patch-clamp technique. GBa was activated by 2 mM intracellular ATP. This activation was enhanced by inhibition of protein kinase C and attenuated by inhibition of protein kinase A, indicating reciprocal regulation by these kinases. Activation by ATP was reduced in the presence of a hypertonic bath solution, suggesting that cell swelling was required. However, after activation to steady-state, GBa was not sensitive to cell-volume changes. Hypotonic shock-induced volume regulation was inhibited by barium and quinidine, inhibitors of GBa. The effect of maximal inhibitory concentrations of barium and quinidine on volume regulation was similar and addition of both blockers together did not augment the inhibitory response. GBa was also activated by ADP, via a mechanism dependent on the presence of Mg2+. However, the responses to ADP and ATP were not additive, suggesting that these nucleotides may share a common mechanism of activation. The regulation of GBa by ATP was biphasic, with a half-maximal activating concentration of 0.89 mM and a half maximal inhibitory concentration of 6.71 mM. The sensitivity to nucleotides suggests that GBa may be regulated by the metabolic state of the cell. Furthermore, the sensitivity to solution osmolality, coupled with the blocker profile of inhibition of volume regulation, suggests that GBa could play a role in volume regulation.  相似文献   

9.
A ouabain sensitive inward current occurs in Xenopus oocytes in Na+ and K+ -free solutions. Several laboratories have investigated the properties of this current and suggested that acidic extracellular pH (pHo) produces a conducting pathway through the Na+/K+ pump that is permeable to H+ and blocked by [Na+]o. An alternative suggestion is that the current is mediated by an electrogenic H+-ATPase. Here we investigate the effect of pHo and [Na+]o on both transient and steady-state ouabain-sensitive current. At alkaline or neutral pHo the relaxation rate of pre-steady-state current is an exponential function of voltage. Its U-shaped voltage dependence becomes apparent at acidic pHo, as predicted by a model in which protonation of the Na+/K+ pump reduces the energy barrier between the internal solution and the Na+ occluded state. The model also predicts that acidic pHo increases steady-state current leak through the pump. The apparent pK of the titratable group(s) is 6, suggesting that histidine is involved in induction of the conductance pathway. 22Na efflux experiments in squid giant axon and current measurements in oocytes at acidic pHo suggest that both Na+ and H+ are permeant. The acid-induced inward current is reduced by high [Na+]o, consistent with block by Na+. A least squares analysis predicts that H+ is four orders of magnitude more permeant than Na+, and that block occurs when 3 Na+ ions occupy a low affinity binding site (K 0.5=130±30 mM) with a dielectric coefficient of 0.23±0.03. These data support the conclusion that the ouabain-sensitive conducting pathway is a result of passive leak of both Na+ and H+ through the Na+/K+ pump.  相似文献   

10.
This study addresses the mechanisms of oxygen-induced regulation of ion transport pathways in mouse erythrocyte, specifically focusing on the role of cellular redox state and ATP levels. Mouse erythrocytes possess Na+/K+ pump, K+-Cl and Na+-K+-2Cl cotransporters that have been shown to be potential targets of oxygen. The activity of neither cotransporter changed in response to hypoxia-reoxygenation. In contrast, the Na+/K+ pump responded to hypoxic treatment with reversible inhibition. Hypoxia-induced inhibition was abolished in Na+-loaded cells, revealing no effect of O2 on the maximal operation rate of the pump. Notably, the inhibitory effect of hypoxia was not followed by changes in cellular ATP levels. Hypoxic exposure did, however, lead to a rapid increase in cellular glutathione (GSH) levels. Decreasing GSH to normoxic levels under hypoxic conditions abolished hypoxia-induced inhibition of the pump. Furthermore, GSH added to the incubation medium was able to mimic hypoxia-induced inhibition. Taken together these data suggest a pivotal role of intracellular GSH in oxygen-induced modulation of the Na+/K+ pump activity.  相似文献   

11.
Summary Hypothetical model based on deficient glutamatergic neurotransmission caused by hyperactive glutamate transport in astrocytes surrounding excitatory synapses in the prefrontal cortex is examined in relation to the aetiology of schizophrenia. The model is consistent with actions of neuroleptics, such as clozapine, in animal experiments and it is strongly supported by recent findings of increased expression of glutamate transporter GLT in prefrontal cortex of patients with schizophrenia. It is proposed that mechanisms regulating glutamate transport be investigated as potential targets for novel classes of neuroactive compounds with neuroleptic characteristics. Development of new efficient techniques designed specifically for the purpose of studying rapid activity-dependent translocation of glutamate transporters and associated molecules such as Na+, K+-ATPase is essential and should be encouraged.  相似文献   

12.
Summary Arecaidine propargyl ester (APE) was developed as a potential candidate compound for the treatment of Alzheimer’s disease. APE has been shown to have cardiovascular effects. APE produces negative chronotropic and inotropic effects in isolated atria. However, the ionic mechanisms underlying the cardiovascular effects of APE in guinea-pig atria are unclear. The aims of this study were: (1) to examine the shortening effect of APE on action potential duration (APD) and to compare the difference in potency between APE and muscarine in isolated single guinea-pig atrial myocytes by using the current clamp method, (2) to examine by using patch clamp techniques the ionic mechanisms underlying the cardiac effects of APE, and (3) to determine whether the cardiac effects caused by APE affect the usefulness of APE as a potential candidate for the treatment of Alzheimer’s disease. The APE significantly reduced the APD in guinea-pig atria and produced no direct effect on ventricular myocytes. APE is approximately 20 times as potent as muscarine in shortening the APD. Attenuation of the APD was consistently accompanied by a hyperpolarization of the resting membrane potential in a concentration-dependent manner. The APE activated muscarinic K+ channels and increased potassium conductance in guinea-pig atrial myocytes. In the cell-attached configuration, the APE contained in the pipette increased the channel-opening probability and decreased the closed-state time interval. The proposal that APE can be used as a potential remedy for the treatment of Alzheimer’s disease should be taken into consideration the undesirable cardiovascular side effects that APE causes at lower concentrations.  相似文献   

13.
Palytoxin (PTX) inhibits the (Na(+) + K+)-driven pump and simultaneously opens channels that are equally permeable to Na+ and K+ in red cells and other cell membranes. In an effort to understand the mechanism by which PTX induces these fluxes, we have studied the effects of PTX on: 1) K+ and Na+ occlusion by the pump protein; 2) phosphorylation and dephosphorylation of the enzyme when a phosphoenzyme is formed from ATP and from P(i); and 3) p-nitro phenyl phosphatase (p-NPPase) activity associated with the (Na+, K+)-ATPase. We have found that palytoxin 1) increases the rate of deocclusion of K+(Rb+) in a time- and concentration-dependent manner, whereas Na+ occluded in the presence of oligomycin is unaffected by the toxin; 2) makes phosphorylation from P(i) insensitive to K+, and 3) stimulates the p-NPPase activity. The results are consistent with the notion that PTX produces a conformation of the Na+, K(+)-pump that resembles the one observed when ATP is bound to its low-affinity binding site. Further, they suggest that the channels that are formed by PTX might arise as a consequence of a perturbation in the ATPase structure, leading to the loss of control of the outside "gate" of the enzyme and hence to an uncoupling of the ion transport from the catalytic function of the ATPase.  相似文献   

14.
The midgut of the tobacco hornworm, Manduca sexta, actively secretes potassium ions. This can be measured as short-circuit current (Isc) with the midgut mounted in an Ussing chamber and superfused with a high-K+ saline containing as its major osmolyte 166 mM sucrose. Iso-osmotic substitution of sucrose by non-metabolisable compounds (mannitol, urea, NaCl and the polyethylene glycols 200, 400 and 600) led to a dramatic, though reversible, drop in the current. Acarbose, a specific inhibitor of invertase (sucrase) in vertebrates and insects, had no detectable influence on Isc. Unexpectedly, after replacing sucrose iso-osmotically with the saccharides glucose, fructose, trehalose or raffinose, the K+ current could no longer be supported. However, all osmolytes smaller than sucrose (except for NaCl), metabolisable or not, initiated an immediate, quite uniform but transient, increase in Isc by about 20%, before its eventual decline far below the control value. Hypo-osmotic treatment by omission of sucrose also transiently increased the K+ current. Small osmolytes substituted for sucrose caused no transient Isc stimulation when the epithelium had been challenged before with hypo-osmolarity; however, the eventual decline in Isc could not be prevented. Our data seem inconsistent with a role of sucrose as energiser or simple osmolyte. Rather, we discuss here its possible role as analogous to that of sucrose in lower eukaryotes or plants, as an extra- and/or intracellular compatible osmolyte that stabilises structure and/or function of the proteins implicated in K+ transport.Communicated by G. Heldmaier  相似文献   

15.
K+ channels in the renal proximal tubule play an important role in salt reabsorption. Cells of the frog proximal tubule demonstrate an inwardly rectifying, ATP-sensitive K+ conductance that is inhibited by Ba2+, GBa. In this paper we have investigated the importance of phosphorylation state on the activity of GBa in whole-cell patches. In the absence of ATP, GBa decreased over time; this fall in GBa involved phosphorylation, as rundown was inhibited by alkaline phosphatase and was accelerated by the phosphatase inhibitor F(10 mM). Activation of PKC using the phorbol ester PMA accelerated rundown via a mechanism that was dependent on phosphorylation. In contrast, the inactive phorbol ester PDC slowed rundown. Inclusion of the PKC inhibitor PKC-ps in the pipette inhibited rundown. These data indicate that PKC-mediated phosphorylation promotes channel rundown. Rundown was prevented by the inclusion of PIP-2 in the pipette. PIP-2 also abrogated the PMA-mediated increase in rundown, suggesting that regulation of GBa by PIP-2 occurred downstream of PKC-mediated phosphorylation. G-protein activation inhibited GBa, with initial currents markedly reduced in the presence of GTPγs. These properties are consistent with GBa being a member of the ATP-sensitive K+ channel family.  相似文献   

16.
We used the patch-clamp technique to identify and characterize the electrophysiological, biophysical, and pharmacological properties of K+ channels in enzymatically dissociated ventricular cells of the land pulmonate snail Helix. The family of outward K+ currents started to activate at –30 mV and the activation was faster at more depolarized potentials (time constants: at 0 mV 17.4 ± 1.2 ms vs. 2.5 ± 0.1 ms at + 60 mV). The current waveforms were similar to those of the A-type family of voltage-dependent K+ currents encoded by Kv4.2 in mammals. Inactivation of the current was relatively fast, i.e., 50.2 ± 1.8% of current was inactivated within 250 ms at + 40 mV. The recovery of K+ channels from inactivation was relatively slow with a mean time constant of 1.7 ± 0.2 s. Closer examination of steady-state inactivation kinetics revealed that the voltage dependency of inactivation was U-shaped, exhibiting less inactivation at more depolarized membrane potentials. On the basis of this phenomenon, we suggest that a channel encoded by Kv2.1 similar to that in mammals does exist in land pulmonates of the Helix genus. Outward currents were sensitive to 4-aminopyridine and tetraethylammonium chloride. The last compound was most effective, with an IC50 of 336 ± 142 µmol l–1. Thus, using distinct pharmacological and biophysical tools we identified different types of voltage-gated K+ channels. Present address for S.A.K.: Brigham and Womens Hospital, Cardiovascular Division, Harvard Medical School, 75 Francis St., Thorn 1216, Boston, MA 02115.  相似文献   

17.
The naturally occurring toxin rottlerin has been used by other laboratories as a specific inhibitor of protein kinase C-delta (PKC-δ) to obtain evidence that the activity-dependent distribution of glutamate transporter GLAST is regulated by PKC-δ mediated phosphorylation. Using immunofluorescence labelling for GLAST and deconvolution microscopy we have observed that d-aspartate-induced redistribution of GLAST towards the plasma membranes of cultured astrocytes was abolished by rottlerin. In brain tissue in vitro, rottlerin reduced apparent activity of (Na+, K+)-dependent ATPase (Na+, K+-ATPase) and increased oxygen consumption in accordance with its known activity as an uncoupler of oxidative phosphorylation (“metabolic poison”). Rottlerin also inhibited Na+, K+-ATPase in cultured astrocytes. As the glutamate transport critically depends on energy metabolism and on the activity of Na+, K+-ATPase in particular, we suggest that the metabolic toxicity of rottlerin and/or the decreased activity of the Na+, K+-ATPase could explain both the glutamate transport inhibition and altered GLAST distribution caused by rottlerin even without any involvement of PKC-δ-catalysed phosphorylation in the process.  相似文献   

18.
The K+-agitated (Kag) mutant of Paramecium caudatum shows prolonged backward swimming in K+-rich solution. To understand the regulation mechanisms of the ciliary motility in P. caudatum, we examined the membrane electrical properties of the Kag mutant. The duration of the backward swimming of the Kag in K+-rich solution was about 10 times longer than that of the wild type. In response to an injection of the outward current, the wild type produced an initial action potential and a subsequent membrane depolarization due to I-R potential drop, while the Kag exhibited repetitive action potentials during the depolarization. Under voltage-clamp conditions, the depolarization-activated transient inward current exhibited by the Kag was slightly smaller than that exhibited by the wild type. In response to an application of K+-rich solution, both the wild type and the Kag exhibited a depolarizing afterpotential representing the activation of the K+-induced Ca2+ conductance. The inactivation time course of the K+-induced Ca2+ conductance of Kag was about 10 times longer than that of the wild type. This difference corresponds well with the difference in behavioral responses between Kag and wild type to K+-rich solution. We conclude that the overreaction of the Kag mutant to the K+-rich solution is caused by slowing down of the inactivation of the K+-induced Ca2+ conductance.  相似文献   

19.
The modulation of TREK-1 leak and Kv1.4 voltage-gated K+ channels by fatty acids and lysophospholipids was studied in bovine adrenal zona fasciculata (AZF) cells. In whole-cell patch-clamp recordings, arachidonic acid (AA) (1–20 µM) dramatically and reversibly increased the activity of bTREK-1, while inhibiting bKv1.4 current by mechanisms that occurred with distinctly different kinetics. bTREK-1 was also activated by the polyunsaturated cis fatty acid linoleic acid but not by the trans polyunsaturated fatty acid linolelaidic acid or saturated fatty acids. Eicosatetraynoic acid (ETYA), which blocks formation of active AA metabolites, failed to inhibit AA activation of bTREK-1, indicating that AA acts directly. Compared to activation of bTREK-1, inhibition of bKv1.4 by AA was rapid and accompanied by a pronounced acceleration of inactivation kinetics. Cis polyunsaturated fatty acids were much more effective than trans or saturated fatty acids at inhibiting bKv1.4. ETYA also effectively inhibited bKv1.4, but less potently than AA. bTREK-1 current was markedly increased by lysophospholipids including lysophosphatidyl choline (LPC) and lysophosphatidyl inositol (LPI). At concentrations from 1–5 µM, LPC produced a rapid, transient increase in bTREK-1 that peaked within one minute and then rapidly desensitized. The transient lysophospholipid-induced increases in bTREK-1 did not require the presence of ATP or GTP in the pipette solution. These results indicate that the activity of native leak and voltage-gated K+ channels are directly modulated in reciprocal fashion by AA and other cis unsaturated fatty acids. They also show that lysophospholipids enhance bTREK-1, but with a strikingly different temporal pattern. The modulation of native K+ channels by these agents differs from their effects on the same channels expressed in heterologous cells, highlighting the critical importance of auxiliary subunits and signaling. Finally, these results reveal that AZF cells express thousands of bTREK-1 K+ channels that lie dormant until activated by metabolites including phospholipase A2 (PLA2)-generated fatty acids and lysophospholipids. These metabolites may alter the electrical and secretory properties of AZF cells by modulating bTREK-1 and bKv1.4 K+ channels.  相似文献   

20.
1. Patients affected by isovaleric acidemia (IVAcidemia) suffer from acute episodes of encephalopathy. However, the mechanisms underlying the neuropathology of this disease are poorly known. The objective of the present study was to investigate the in vitro effects of the metabolites that predominantly accumulate in IVAcidemia, namely isovaleric acid (IVA), 3-hydroxyisovaleric acid (3-OHIVA) and isovalerylglycine (IVG), on important parameters of energy metabolism, such as 14CO2 production from acetate and the activities of the respiratory chain complexes I–IV, creatine kinase and Na+, K+-ATPase in synaptic plasma membranes from cerebral cortex homogenates of 30-day-old rats. 2. We observed that 3-OHIVA acid and IVG did not affect all the parameters analyzed. Similarly, 14CO2 production from acetate (Krebs cycle activity), the activities of creatine kinase, and of the respiratory chain complexes was not modified by IVA. In contrast, IVA exposition to cortical homogenates provoked a marked inhibition of Na+, K+-ATPase activity. However, this activity was not changed when IVA was directly exposed to purified synaptic plasma membranes, suggesting an indirect effect of this organic acid on the enzyme. Furthermore, pretreatment of cortical homogenates with α-tocopherol and creatine totally prevented IVA-induced inhibition on Na+, K+-ATPase activity from synaptic plasma membranes, whereas glutathione (GSH) and the NO synthase inhibitor Nω-nitro-l-arginine methyl ester (L-NAME) did not alter this inhibition. 3. These data indicate that peroxide radicals were probably involved in this inhibitory effect. Since Na+, K+-ATPase is a critical enzyme for normal brain development and functioning and necessary to maintain neuronal excitability, it is presumed that the inhibitory effect of IVA on this activity may be involved in the pathophysiology of the neurological dysfunction of isovaleric acidemic patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号