首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small or isolated populations are highly susceptible to stochastic events. They are prone and vulnerable to random demographic or environmental fluctuations that could lead to extinction due to the loss of alleles through genetic drift and increased inbreeding. We studied Ambystoma leorae an endemic and critically threatened species. We analyzed the genetic diversity and structure, effective population size, presence of bottlenecks and inbreeding coefficient of 96 individuals based on nine microsatellite loci. We found high levels of genetic diversity expressed as heterozygosity (Ho = 0.804, He = 0.613, He* = 0.626 and HNei = 0.622). The population presents few alleles (4–9 per locus) and genotypes (3–14 per locus) compared with other mole salamanders species. We identified three genetically differentiated subpopulations with a significant level of genetic structure (FST = 0.021, RST = 0.044 y Dest = 0.010, 95 % CI). We also detected a reduction signal in population size and evidence of a genetic bottleneck (M = 0.367). The effective population size is small (Ne = 45.2), but similar to another mole salamanders with restricted distributions or with recently fragmented habitat. The inbreeding coefficient levels detected are low (FIS = ?0.619–0.102) as is gene flow. Despite, high levels of genetic diversity A. leorae is critically endangered because it is a small isolated population.  相似文献   

2.
The distribution of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) has been markedly reduced due to loss and fragmentation of habitat. Portions of the historical range, however, have been recolonized and even expanded due to planting of conservation reserve program (CRP) fields that provide favorable vegetation structure for Lesser Prairie-Chickens. The source population(s) feeding the range expansion is unknown, yet has resulted in overlap between Lesser and Greater Prairie-Chickens (T. cupido) increasing the potential for hybridization. Our objectives were to characterize connectivity and genetic diversity among populations, identify source population(s) of recent range expansion, and examine hybridization with the Greater Prairie-Chicken. We analyzed 640 samples from across the range using 13 microsatellites. We identified three to four populations corresponding largely to ecoregions. The Shinnery Oak Prairie and Sand Sagebrush Prairie represented genetically distinct populations (F ST > 0.034 and F ST > 0.023 respectively). The Shortgrass/CRP Mosaic and Mixed Grass ecoregions appeared admixed (F ST = 0.009). Genetic diversity was similar among ecoregions and N e ranged from 142 (95 % CI 99–236) for the Shortgrass/CRP Mosaic to 296 (95 % CI 233–396) in the Mixed Grass Prairie. No recent migration was detected among ecoregions, except asymmetric dispersal from both the Mixed Grass Prairie and to a lesser extent the Sand Sagebrush Prairie north into adjacent Shortgrass/CRP Mosaic (m = 0.207, 95 % CI 0.116–0.298, m = 0.097, 95 % CI 0.010–0.183, respectively). Indices investigating potential hybridization in the Shortgrass/CRP Mosaic revealed that six of the 13 individuals with hybrid phenotypes were significantly admixed suggesting hybridization. Continued monitoring of diversity within and among ecoregions is warranted as are actions promoting genetic connectivity and range expansion.  相似文献   

3.
Understanding how populations are genetically and demographically connected is beneficial for species management, since gene flow and dispersal contribute to genetic diversity and population persistence. For hellbenders (Cryptobranchus alleganiensis), an aquatic salamander species experiencing dramatic declines in population size, fine-scale (i.e. within river) patterns of genetic diversity and gene flow are not well understood. Previous findings indicate that hellbenders are habitat specialists that exhibit extreme site fidelity and low vagility, suggesting that gene flow is restricted among the several, discrete habitat patches within a river. Using 15 polymorphic microsatellite loci and 497 hellbender samples from four Missouri rivers, we assessed fine-scale patterns of genetic diversity in order to infer population connectivity and aid in population management. Results indicate moderate levels of genetic variation (HO = 0.66–0.78) with little differentiation among habitat patches (avg. FST = 0.002) and no evidence of isolation by distance. Our data suggest that hellbender gene flow has been extensive even among habitat patches separated by distances greater than >100 km. These results are useful for hellbender management, especially in terms of making informed decisions regarding restorative releases of captively propagated individuals.  相似文献   

4.
The Mediterranean Basin is a biodiversity hotspot, housing >11.000 narrowly endemic plant species, many of which are declining due to mass tourism and agricultural intensification. To investigate the genetic resource impacts of ongoing habitat loss and degradation, we characterized the genetic variation in the last known populations of Leopoldia gussonei, a self-compatible endangered Sicilian Grape Hyacinth numbering less than 3,000 remaining individuals, using AFLP. Results demonstrated significant genome-wide genetic differentiation among all extant populations (ΦST = 0.05–0.56), and genetic clustering according to geographic location. Gene diversity was fairly constant across population (mean HE = 0.13) and was neither affected by current population size nor by spatial isolation. Vegetation analysis showed the presence of known invasive weeds in a quarter of the populations, but we found no relation between genetic diversity and plant community composition. The marked genetic differences among populations and the profusion of rare and private alleles indicate that any further population loss will lead to significant losses of genetic diversity. Conservation efforts should therefore focus on the preservation of all sites where L. gussonei still occurs, yet the deliberate introduction of diverse material into the smallest populations seems unneeded as clonality likely mitigated genetic drift effects thus far. More generally, our findings support the view that endemic plant species with a narrow ecological amplitude, as many specialists in Mediterranean coastal ecosystems, are highly genetically differentiated and that conservation of their genetic diversity requires preservation of most, if not all of their extant populations.  相似文献   

5.
While African leopard populations are considered to be continuous as demonstrated by their high genetic variation, the southernmost leopard population exists in the Eastern and Western Cape, South Africa, where anthropogenic activities may be affecting this population's structure. Little is known about the elusive, last free‐roaming top predator in the region and this study is the first to report on leopard population structuring using nuclear DNA. By analyzing 14 microsatellite markers from 40 leopard tissue samples, we aimed to understand the populations' structure, genetic distance, and gene flow (Nm). Our results, based on spatially explicit analysis with Bayesian methods, indicate that leopards in the region exist in a fragmented population structure with lower than expected genetic diversity. Three population groups were identified, between which low to moderate levels of gene flow were observed (Nm 0.5 to 3.6). One subpopulation exhibited low genetic differentiation, suggesting a continuous population structure, while the remaining two appear to be less connected, with low emigration and immigration between these populations. Therefore, genetic barriers are present between the subpopulations, and while leopards in the study region may function as a metapopulation, anthropogenic activities threaten to decrease habitat and movement further. Our results indicate that the leopard population may become isolated within a few generations and suggest that management actions should aim to increase habitat connectivity and reduce human–carnivore conflict. Understanding genetic diversity and connectivity of populations has important conservation implications that can highlight management of priority populations to reverse the effects of human‐caused extinctions.  相似文献   

6.
Levels of genetic diversity and population genetic structure of the rare, endangered terrestrial orchid Liparis japonica were examined for eight natural populations (n = 185) in Northeast China using six AFLP primer pairs, where this species has experienced severe habitat loss and fragmentation. Based on 406 DNA bands, a high level of genetic diversity was found at the species level with the PPB of 85.47 %, while the genetic diversity at the population level was low (PPB = 47.48 %). A significantly high degree of population differentiation was found with 42.69 % variation existed among populations as measured by AMOVA, indicating potential restricted gene flow. The genetic distances between populations were independent of the corresponding geographic distances, and the genetic relationship of individuals had no significant correlation with their spatial distribution. The restricted gene flow might be impacted by reduced population size, habitat destruction and fragmentation. The results in this study suggested that habitat protection and keeping a stable environment are critical for the conservation of L. japonica species.  相似文献   

7.
Parasite populations do not necessarily conform to expected patterns of genetic diversity and structure. Parasitic plants may be more vulnerable to the negative consequences of landscape fragmentation because of their specialized life history strategies and dependence on host plants, which are themselves susceptible to genetic erosion and reduced fitness following habitat change. We used AFLP genetic markers to investigate the effects of habitat fragmentation on genetic diversity and structure within and among populations of hemiparasitic Viscum album. Comparing populations from two landscapes differing in the amount of forest fragmentation allowed us to directly quantify habitat fragmentation effects. Populations from both landscapes exhibited significant isolation-by-distance and sex ratios biased towards females. The less severely fragmented landscape had larger and less isolated populations, resulting in lower levels of population genetic structure (F ST = 0.05 vs. 0.09) and inbreeding (F IS = 0.13 vs. 0.27). Genetic differentiation between host-tree subpopulations was also higher in the more fragmented landscape. We found no significant differences in within-population gene diversity, percentage of polymorphic loci, or molecular variance between the two regions, nor did we find relationships between genetic diversity measures and germination success. Our results indicate that increasing habitat fragmentation negatively affects population genetic structure and levels of inbreeding in V. album, with the degree of isolation among populations exerting a stronger influence than forest patch size.  相似文献   

8.
The Mexican howler monkey (Alouatta palliata mexicana) is a critically endangered primate, which is paleoendemic to Mexico. However, despite the potential significance of genetic data for its management and conservation, there have been no population genetic studies of this subspecies. To examine genetic diversity in the key remaining forest refuge for A. p. mexicana, the Selva Zoque, we amplified full-length mitochondrial control region sequences (1,100 bp) from 45 individuals and found 7 very similar haplotypes. Haplotype diversity (h = 0.486) and nucleotide diversity (π = 0.0007) were extremely low compared to other Neotropical primates. Neutrality tests, used to evaluate demographic effects (Tajima’s D = ?1.48, p = 0.05; Fu’s F s = ?3.33, p = 0.02), and mismatch distribution (sum of squares deviation = 0.006, p = 0.38; raggedness index = 0.12, p = 0.33) were consistent with a recent and mild population expansion and genetic diversity appears to be historically low in this taxon. Future studies should use a combination of mitochondrial and nuclear markers to fully evaluate genetic diversity and to better understand demographic history in A. p. mexicana. These studies should be undertaken throughout its geographic range in order to evaluate population structure and identify management units for conservation. Due to the limited distribution and population size of A. p. mexicana, future conservation strategies may need to consider genetic management. However, a more detailed knowledge of the population genetics of the subspecies is urgently recommended to maximise the conservation impact of these strategies.  相似文献   

9.
Bats are often considered highly mobile and hence less susceptible to habitat fragmentation than other animals. We tested this basic assumption by studying populations of Dermanura watsoni, a frugivorous phyllostomid bat, inhabiting forest fragments in an agriculturally dominated landscape in northeastern Costa Rica. We used the mitochondrial D-loop DNA-sequence data to examine genetic diversity and population structure. A significant population differentiation (F ST  = 0.05, p < 0.001) over a geographical scale of approximately 20 km was detected. Genetic diversity within fragments correlated with patch size and the amount of suitable habitat in the surrounding matrix. The composition of the matrix in close proximity to the fragments explained variation in genetic diversity best. However, only habitat parameters measured from 1986 land cover conditions can explain current genetic diversity, and not those from 2001. Our study demonstrates that bats, despite their high mobility, are not secure from genetic erosion in anthropogenically modified landscapes. Population differentiation can occur on a surprisingly small geographic scale and after short time periods. Our findings illustrate the importance of considering several points in time when testing for an influence of habitat parameters as it might be decades until they are reflected by genetic diversity.  相似文献   

10.
The Glenelg spiny crayfish, Euastacus bispinosus, is an iconic freshwater invertebrate of south eastern Australia and listed as ‘endangered’ under the Environment Protection and Biodiversity Conservation Act 1999, and ‘vulnerable’ under the International Union for Conservation of Nature’s Red List. The species has suffered major population declines as a result of over-fishing, low environmental flows, the introduction of invasive fish species and habitat degradation. In order to develop an effective conservation strategy, patterns of gene flow, genetic structure and genetic diversity across the species distribution need to be clearly understood. In this study we develop a suite of polymorphic microsatellite markers by next generation sequencing. A total of 15 polymorphic loci were identified and 10 characterized using 22 individuals from the lower Glenelg River. We observed low to moderate genetic variation across most loci (mean number of alleles per locus = 2.80; mean expected heterozygosity = 0.36) with no evidence of individual loci deviating significantly from Hardy–Weinberg equilibrium. Marker independence was confirmed with tests for linkage disequilibrium, and analyses indicated no evidence of null alleles across loci. Individuals from two additional sites (Crawford River, Victoria; Ewens Ponds Conservation Park, South Australia) were genotyped at all 10 loci and a preliminary investigation of genetic diversity and population structure was undertaken. Analyses indicate high levels of genetic differentiation among sample locations (F ST  = 0.49), while the Ewens Ponds population is genetically homogeneous, indicating a likely small founder group and ongoing inbreeding. Management actions will be needed to restore genetic diversity in this and possibly other at risk populations. These markers will provide a valuable resource for future population genetic assessments so that an effective framework can be developed for implementing conservation strategies for E. bispinosus.  相似文献   

11.
The barn owl (Tyto alba) is a non-migratory species widely distributed across much of North America in areas with extensive old-field and grassland habitat and without extensive winter snow cover. We investigated the genetic diversity and phylogeographic patterns of barn owl populations in western North America, ranging from British Columbia (BC) to southern California, and one eastern population from Pennsylvania. We also determined the genetic distinctiveness of a population off the coast of southern California, Santa Barbara Island, as management plans to control the local owl population are being considered to decrease predation rate on the now threatened Scripps’s Murrelet (Synthliboramphus scrippsi). Using 8 polymorphic microsatellite markers (N = 126) and ND2 mitochondrial sequences (N = 37), we found little to no genetic structure among all sampled regions, with the exception of Santa Barbara Island. The BC mainland population, despite its northwestern geographically peripheral location and ongoing habitat degradation, is not genetically depauperate. However, individuals from Vancouver Island, likewise a peripheral population in BC, exhibited the lowest genetic diversity of all sampled locations. The low global FST value (0.028) estimated from our study suggests that old-field agricultural habitats are well connected in North America. Since the BC population has declined by about 50 % within the last three decades, it is vital to focus on preserving the remaining barn owl habitats in BC to allow successful establishment from neighbouring populations. Additionally, our microsatellite data revealed that the population on Santa Barbara Island showed genetic divergence from its continental counterpart. Mitochondrial data, however, demonstrated that this island population is not a monophyletic lineage containing unique haplotypes, and hence cannot be designated as an Evolutionarily Significant Unit.  相似文献   

12.
The wild banana Musa ornata is an inhabitant of the tropical regions of Mexico characterized by patches of tropical rainforest. The overexploitation of its habitat has caused the extinction of several populations affecting diversity and population genetic structure of remaining ones. We used microsatellite markers to determine the genetic diversity and the population’s genetic structure of all extant populations. The thirty-two microsatellite loci previously characterized for M. acuminata and M. balbisiana were tested in M. ornata. Only twelve amplified. From these seven were polymorphic and were used for genetic analyses. The Nei’s diversity estimator shows low levels of genetic diversity (H e = 0.263) with a mean of 4.40 alleles per locus. Excess homozygosity was evident in all populations indicating high levels of inbreeding. F ST pairwise analyses and AMOVA indicated low genetic differentiation. However, 28 % of private alleles were registered, suggesting limited gene flow. Genetic distances, Jaccard’s coefficient and principal component analysis showed a good correspondence to geographical locations. The Mantel test performed was not significant. The results support the hypothesis of recent fragmentation events; therefore, not enough time has passed to detect differences between populations. However, it is also likely that results are caused by factors such as bottleneck, decline in pollinator populations, self-pollination and/or a tendency towards clonal reproduction. It is proposed that the preservation strategy focuses on maintaining all the remaining populations and ensuring their connectivity, so as to maintain gene flow and increase the genetic diversity of this species.  相似文献   

13.
The geography of the Black Hills region of South Dakota and Wyoming may limit connectivity for many species. For species with large energetic demands and large home ranges or species at low densities this can create viability concerns. Carnivores in this region, such as cougars (Puma concolor), have the additive effect of natural and human-induced mortality; this may act to decrease long-term viability. In this study we set out to explore genetic diversity among cougar populations in the Black Hills and surrounding areas. Specifically, our objectives were to first compare genetic variation and effective number of breeders of cougars in the Black Hills during three harvest regimes: pre (2003–2006), moderate (2007–2010), and heavy (2011–2013), to determine if harvest impacted genetic variation. Second, we compared genetic structure of the Black Hills cougar population with cougar populations in neighboring eastern Wyoming and North Dakota. Using 20 microsatellite loci, we conducted genetic analysis on DNA samples from cougars in the Black Hills (n = 675), North Dakota (n = 113), and eastern Wyoming (n = 62) collected from 2001–2013. Here we report that the Black Hills cougar population maintained genetic variation over the three time periods. Our substructure analysis suggests that the maintenance of genetic variation was due to immigration from eastern Wyoming and possibly North Dakota.  相似文献   

14.
Island populations are mostly characterized by low genetic diversity if compared with their mainland conspecifics. This is often explained as a consequence of founder effects in the wake of island colonization and concomitant bottlenecks. In a recent contribution, Stuessy et al. (Journal of Biogeography, 2012, 39, 1565–1566) point out that the genetic imprint of past founder effects is no longer visible today, as most island colonizations occurred millions of generations ago. The authors argue that low genetic diversity detectable today is mainly caused by recent environmental factors such as anthropogenic habitat destruction. This scenario should be complemented by the influence of long‐term isolation and small habitat size, which often lead to strong population fluctuations and repeated bottlenecks. In consequence, inbreeding and genetic drift, coupled with the potential effects of purging in small populations, may also result in genetic diversity remaining low for a long time after colonization.  相似文献   

15.
Genetic, demographic, and environmental processes affect natural populations synergistically, and understanding their interplay is crucial for the conservation of biodiversity. Stream fishes in metapopulations are particularly sensitive to habitat fragmentation because persistence depends on dispersal and colonization of new habitat but dispersal is constrained to stream networks. Great Plains streams are increasingly fragmented by water diversion and climate change, threatening connectivity of fish populations in this ecosystem. We used seven microsatellite loci to describe population and landscape genetic patterns across 614 individuals from 12 remaining populations of Arkansas darter (Etheostoma cragini) in Colorado, a candidate species for listing under the U.S. Endangered Species Act. We found small effective population sizes, low levels of genetic diversity within populations, and high levels of genetic structure, especially among basins. Both at- and between-site landscape features were associated with genetic diversity and connectivity, respectively. Available stream habitat and amount of continuous wetted area were positively associated with genetic diversity within a site, while stream distance and intermittency were the best predictors of genetic divergence among sites. We found little genetic contribution from historic supplementation efforts, and we provide a set of management recommendations for this species that incorporate a conservation genetics perspective.  相似文献   

16.
We assessed the genetic structure and diversity of Reithrodontomys spectabilis, a critically endangered, endemic rodent from Cozumel Island, México. A total of 90 individuals were trapped from September 2001 to January 2005. Microsatellite data analysis revealed high genetic diversity values: a total of 113 alleles (average 12.5 per locus), H o  = 0.78, H e  = 0.80. These high values can be related to Cozumel’s size (478 km2) and extensive native vegetation cover, factors that could be promoting a suitable population size, high heterozygosity and the persistence of rare alleles in the species, as well as some long-term movement of individuals between sampling localities. A strong genetic structure was also observed, with at least four genetic groups, associated with a pattern of isolation by distance. We found a strong allelic and genetic differentiation shown between localities, with negligible recent gene flow and low inbreeding coefficients. The species life history and ecological characteristics—being nocturnal, semi-terrestrial, a good tree climber, having lunar phobia and significant edge effect—are likely affecting its genetic structure and differentiation. The high genetic diversity and population structure award R. spectabilis a significant conservation value. Our results can serve as a basis for future research and conservation of the species, particularly considering the problems the island is facing from habitat perturbation, urbanization and introduction of exotic species. In view of the structure and genetic variability observed, it is essential to establish and reinforce protected areas and management programs for the conservation of the endemic and endangered Cozumel Harvest mice.  相似文献   

17.
Polymorphism A751C (A>C) in XPD gene has shown susceptibility to many cancers in Indian population; however the results of these studies are inconclusive. Thus, we performed this meta-analysis to estimate the association between XPD A751C polymorphism and overall cancer susceptibility. We quantitavely synthesized all published studies of the association between XPD A751C polymorphism and cancer risk. Pooled odds ratios (ORs) and 95 % CI were estimated for allele contrast, homozygous, heterozygous, dominant and recessive genetic model. A total of thirteen studies including 3,599 controls and 3,087 cancer cases were identified and analyzed. Overall significant results were observed for C allele carrier (C vs. A: p = 0.001; OR 1.372, 95 % CI 1.172–1.605) variant homozygous (CC vs. AA: p = 0.001; OR 1.691, 95 % CI 1.280–2.233) and heterozygous (AC vs. AA: p = 0.001; OR 1.453, 95 % CI 1.215–1.737) genotypes. Similarly dominant (CC+AC vs. AA: p = 0.001; OR 1.512, 95 % CI 1.244–1.839) and recessive (CC vs. AA+AC: p = 0.001; OR 1.429, 95 % CI 1.151–1.774) genetic models also demonstrated risk of developing cancer. This meta-analysis suggested that XPD A751C polymorphism likely contribute to cancer susceptibility in Indian population. Further studies about gene–gene and gene–environment interactions are required.  相似文献   

18.
A peripheral population of mountain sucker, Pantosteus jordani, located in the Black Hills of South Dakota, USA, represents the eastern-most range of the species and is completely isolated from other populations. Over the last 50 years, mountain sucker populations have declined in the Black Hills, and now only occur in 40 % of the historic local range, with densities decreasing by more than 84 %.We used microsatellite DNA markers to estimate genetic diversity and to assess population structure across five streams where mountain suckers persist. We evaluated results in the context of recent ecological surveys to inform decisions about mountain sucker conservation. Significant allele frequency differences existed among sample streams (Global FST = 0.041) but there was no evidence of isolation by distance. Regionally, genetic effective size, Ne, was estimated to be at least 338 breeding individuals, but Ne within streams was expected to be less. Despite almost complete demographic isolation and reduced population size, there appears to be little evidence of inbreeding, but genetic drift and local isolation due to fragmentation probably best explains genetic structure in this peripheral mountain sucker population. Recommended strategies for population enhancement include restoration of stream connectivity and habitat improvement. Moreover, repatriation and assisted movement (i.e., gene flow) of fishes should maximize genetic diversity in stream fragments in the Black Hills region.  相似文献   

19.
Understanding the genetic structure of a population is essential to its conservation and management. We report the level of genetic diversity and determine the population structure of a cryptic deep ocean cetacean, the Gray''s beaked whale (Mesoplodon grayi). We analysed 530 bp of mitochondrial control region and 12 microsatellite loci from 94 individuals stranded around New Zealand and Australia. The samples cover a large area of the species distribution (~6000 km) and were collected over a 22-year period. We show high genetic diversity (h=0.933–0.987, π=0.763–0.996% and Rs=4.22–4.37, He=0.624–0.675), and, in contrast to other cetaceans, we found a complete lack of genetic structure in both maternally and biparentally inherited markers. The oceanic habitats around New Zealand are diverse with extremely deep waters, seamounts and submarine canyons that are suitable for Gray''s beaked whales and their prey. We propose that the abundance of this rich habitat has promoted genetic homogeneity in this species. Furthermore, it has been suggested that the lack of beaked whale sightings is the result of their low abundance, but this is in contrast to our estimates of female effective population size based on mitochondrial data. In conclusion, the high diversity and lack of genetic structure can be explained by a historically large population size, in combination with no known exploitation, few apparent behavioural barriers and abundant habitat.  相似文献   

20.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号