首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim To describe broad‐scale geographical patterns of body size for European and North American amphibian faunas and to explore possible processes underlying these patterns. Specifically, we propose a heat balance hypothesis, as both heat conservation and heat gain determine the heat balance of ectotherms, and test it along with five other hypotheses that have a possible influence on body size gradients: size dependence, migration ability, primary productivity, seasonality and water availability. Location Western Europe and North America north of Mexico. Methods We processed distribution maps for native amphibian species to estimate the mean body size in 110 × 110 km cells and calculated eight environmental predictors to explore the relationship between environmental gradients and the observed patterns. We used least squares regression modelling and model selection approaches based on information theory to evaluate the relative support for each hypothesis. Results We found consistent body size gradients and similar relationships to environmental variables within each amphibian group in Europe and North America. Annual potential evapotranspiration, a measure of environmental energy, was the strongest predictor of mean body size in both regions. However, the contrasting responses to ambient energy in each group resulted in opposite geographical patterns, i.e. anurans increased in size from high‐ to low‐energy areas in both continents and urodeles showed the opposite pattern. Main conclusions Our results support the heat balance hypothesis, suggesting that the thermoregulatory abilities of anurans would allow them to reach larger sizes in colder climates by optimizing the trade‐off between heating and cooling rates, whereas a lack of such strategies among urodele faunas would explain why these organisms tend to be smaller in cooler areas. These findings may also have implications for the role of climate warming on the global decline of amphibians.  相似文献   

2.
Species specific colonization abilities and biotic and abiotic filters influence the local and regional faunal composition along colonization trajectories. Using a recent compilation of the occurrences of 1373 darkling beetle (Tenebrionidae) species and subspecies in 49 European countries and major islands, we reconstructed the tenebrionid postglacial colonization of middle and northern Europe from southern European glacial refuges and linked species composition to latitudinal and longitudinal gradients in phylogenetic relatedness across Europe. The majority of European islands and mainland countries appeared to be phylogenetically clustered. We did not find significant latitudinal trends in average phylogenetic relatedness of regional faunas along the supposed postglacial colonization routes but detected a strong positive correlation between mean relatedness and longitude of mainland faunas and an opposite negative correlation for island faunas. The strength of phylogenetic relatedness in the regional tenebrionid faunas decreased significantly with latitude and to a lesser degree with longitude. These findings are in accordance with two trajectories of postglacial colonization from centres in Spain and middle Asia that caused a strong longitudinal trend in the phylogenetic relatedness. Subsequent pair‐wise analyses of species co‐occurrences showed that species of similar distributional ranges tend to be phylogenetically clustered and species of different spatial distribution to be phylogenetically segregated. Both findings are in accordance with the concept of ‘range size heritability’. Our study demonstrates that taxonomic data are sufficiently powerful to infer continental wide patterns in phylogenetic relatedness that can be linked to colonization history and geographic information.  相似文献   

3.
Aim To examine butterfly species richness gradients in seven regions/countries and to quantify geographic mean root distance (MRD) patterns. My primary goal is to determine the extent to which an explanation for butterfly richness patterns based on tropical niche conservatism and the evolution of cold tolerance, proposed for the fauna of Canada and the USA, applies to other parts of the world. Location USA/Canada, Mexico, Europe/NW Africa, Transbaikal Siberia, Chile, South Africa and Australia. Methods Digitized range maps for butterfly species in each region were used to map richness patterns in summer (for all areas) and winter (for USA/Canada, Europe/NW Africa and Australia). A phylogeny resolved to subfamily was used to map the geographic MRD patterns. Regression trees and general linear models examined climatic and vegetation correlates of species richness and MRD within and among regions. Results Various combinations of climate and vegetation were strong predictors of species richness gradients within regions, but unresolved ‘regional’ factors contributed to the multiregional pattern. Regionally based differences in phylogenetic structure also exist, but MRD is negatively correlated with temperature both within and across areas. MRD patterns consistent with tropical niche conservatism occur in most areas. With a possible partial exception of Mexico, faunas in cold climates and in mountains are more derived than faunas in lowlands and tropical/subtropical climates. In USA/Canada, Europe and Australia, winter faunas are more derived than summer faunas. Main conclusions The phylogenetic pattern previously found in the USA and Canada is widespread in both the Northern and Southern Hemispheres, and niche conservatism and the evolution of cold tolerance is the likely explanation for the development of the global butterfly species richness gradient over evolutionary time. Contemporary climate also influences species richness patterns but is unlikely to be a complete explanation globally. The importance of climate is also manifested in the seasonal loss of more basal butterfly elements outside the tropics in winter.  相似文献   

4.
Climatic niches have increasingly become a nexus in our understanding of a variety of ecological and evolutionary phenomena, from species distributions to latitudinal diversity gradients. Despite the increasing availability of comprehensive datasets on species ranges, phylogenetic histories, and georeferenced environmental conditions, studies on the evolution of climate niches have only begun to understand how niches evolve over evolutionary timescales. Here, using primates as a model system, we integrate recently developed phylogenetic comparative methods, species distribution patterns, and climatic data to explore primate climatic niche evolution, both among clades and over time. In general, we found that simple, constant‐rate models provide a poor representation of how climatic niches evolve. For instance, there have been shifts in the rate of climatic niche evolution in several independent clades, particularly in response to the increasingly cooler climates of the past 10 My. Interestingly, rate accelerations greatly outnumbered rate decelerations. These results highlight the importance of considering more realistic evolutionary models that allow for the detection of heterogeneity in the tempo and mode of climatic niche evolution, as well as to infer possible constraining factors for species distributions in geographical space.  相似文献   

5.
Bergmann's rule originally described a positive relationship between body size and latitude in warm‐blooded animals. Larger animals, with a smaller surface/volume ratio, are better enabled to conserve heat in cooler climates (thermoregulatory hypothesis). Studies on endothermic vertebrates have provided support for Bergmann's rule, whereas studies on ectotherms have yielded conflicting results. If the thermoregulatory hypothesis is correct, negative relationships between body size and temperature should occur in temporal in addition to geographical gradients. To explore this possibility, we analysed seasonal activity patterns in a bee fauna comprising 245 species. In agreement with our hypothesis of a different relationship for large (endothermic) and small (ectothermic) species, we found that species larger than 27.81 mg (dry weight) followed Bergmann's rule, whereas species below this threshold did not. Our results represent a temporal extension of Bergmann's rule and indicate that body size and thermal physiology play an important role in structuring community phenology.  相似文献   

6.
1. Species lists for regions of Europe defined by Illies (1978, Limnofauna Europaea, 2nd edn. Gustav Fischer Verlag, Stuttgart), and augmented by information from Maitland (2000, Guide to Freshwater Fish of Britain and Europe. Hamlyn, London), are used to describe patterns in freshwater fish species richness and to examine the contribution of habitat preference, migration, body size and glacial history to these patterns. 2. The number of non-endemic species declines to the north and west, with increasing distance from the Ponto-Caspian region, the main source area, whereas endemic species richness declines only with latitude. 3. Habitat generalists tend to be migratory while riverine specialists are usually resident. Similar numbers of riverine species and generalists occur in Europe as a whole but generalists dominate in regional faunas and, to an increasing extent, in more isolated, formerly glaciated areas. Very few lacustrine specialists were found, reflecting the geologically ephemeral nature of lakes. Only 8% of riverine species have colonized glaciated areas, compared with more than half the generalist species, and the number declines rapidly with increasing distance from the source area. 4. Diadromous species show no geographical variation in species richness but potamodromous and resident species are affected by glaciation and by mountain and marine barriers. 5. The mean body size of regional faunas increases with latitude because there are relatively fewer small species in more distant, glaciated areas. 6. About half the species occurring in Europe are restricted to one region and the majority of these endemics occur in barrier regions with Mediterranean climates. Species in glaciated regions have much larger range sizes. Habitat preference and migration type, not body size, are the main determinants of range size. 7. Freshwater habitat availability varies across Europe with glaciated areas having more lakes of a given size than unglaciated areas. Catchment size is greatest at mid-latitudes. For a given catchment size rivers in glaciated areas are shorter. 8. The results support the notion that habitat variability, on both short and long time scales, favours colonization ability, which requires large body size. 9. As a result of their limited vagility northern fish faunas are depauperate, show high levels of plasticity and polymorphism and may show elevated speciation rates. The isolated southern faunas of the Iberian and Italian peninsulas and the Balkans are rich in endemic species but may be subject to extinctions because of the spread of the highly seasonal Mediterranean climate.  相似文献   

7.
Many studies have found that species richness in the Western Palaearctic follows a latitudinal trend, yet the importance of geographical and ecological factors in shaping species ranges remains obscure. In this article, we present geographical patterns of darkling beetles (Tenebrionidae), a species‐rich group of arthropods. We relate the spatial distributions of species, instead of simply species richness, to spatial and climatic gradients, and test the effects of area (by species–area relationships), latitude (by various climatic gradients) and environmental diversity (by elevation) using simultaneous autoregressive models to identify major correlates of species richness. We then use nestedness and co‐occurrence analyses to identify glacial refugial centres and postglacial dispersal trajectories responsible for current species ranges. Our results indicate the presence of two refugial centres (in the Iberian and Balkan peninsulas) that appear to have been particularly important in shaping extant tenebrionid ranges. Northern countries were selectively colonized by more tolerant and, possibly, more mobile species, which survived in southern refugia during the Pleistocene glacial maxima, whereas the low dispersal capabilities of many species that evolved in these southern isolated areas prevented their spread northwards. High levels of endemism recorded in Spain and Sardinia suggest that the faunas of these regions originated during the Tertiary period and have remained substantially isolated. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 318–329.  相似文献   

8.
Although climatic niche conservatism has been assumed by a large number of studies focused on climatic niche evolution, there are examples of climatic niche diversification and adaptation to changing climates. In this article, we reconstruct a climatic niche of scaly tree ferns (Cyatheaceae) using a rigorous analytical procedure which combines climatic niche modelling with reconstruction of continuous characters given a phylogenetic hypothesis. To estimate the limits to climatic niches of species, we used climate envelope modelling and ordination. Ancestral climatic niches of species were reconstructed by maximum likelihood and least‐squares analyses. We observed a trend towards niche conservatism with occasional events of niche transformations in scaly tree ferns. We discuss the implications of our study with respect to the potential and limitations for applications of niche modelling to evolutionary studies. We suggest that future studies of evolution of climatic niches could be considerably improved by employing approaches enabling reconstruction of continuous response to climatic gradients. Further progress may also be achieved by exploring models of character evolution other than the Brownian motion model. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 165 , 1–19.  相似文献   

9.
A major goal of evolutionary biology and ecology is to understand why species richness varies among clades. Previous studies have suggested that variation in richness among clades might be related to variation in rates of morphological evolution among clades (e.g., body size and shape). Other studies have suggested that richness patterns might be related to variation in rates of climatic‐niche evolution. However, few studies, if any, have tested the relative importance of these variables in explaining patterns of richness among clades. Here, we test their relative importance among major clades of Plethodontidae, the most species‐rich family of salamanders. Earlier studies have suggested that climatic‐niche evolution explains patterns of diversification among plethodontid clades, whereas rates of morphological evolution do not. A subsequent study stated that rates of morphological evolution instead explained patterns of species richness among plethodontid clades (along with “ecological limits” on richness of clades, leading to saturation of clades with species, given limited resources). However, they did not consider climatic‐niche evolution. Using phylogenetic multiple regression, we show that rates of climatic‐niche evolution explain most variation in richness among plethodontid clades, whereas rates of morphological evolution do not. We find little evidence that ecological limits explain patterns of richness among plethodontid clades. We also test whether rates of morphological and climatic‐niche evolution are correlated, and find that they are not. Overall, our results help explain richness patterns in a major amphibian group and provide possibly the first test of the relative importance of climatic niches and morphological evolution in explaining diversity patterns.  相似文献   

10.
The small size and apparent external morphological similarity of the minute salamanders of the genus Thorius have long hindered evolutionary studies of the group. We estimate gene and species trees within the genus using mitochondrial and nuclear DNA from nearly all named and many candidate species and find three main clades. We use this phylogenetic hypothesis to examine patterns of morphological evolution and species coexistence across central and southern Mexico and to test alternative hypotheses of lineage divergence with and without ecomorphological divergence. Sympatric species differ in body size more than expected after accounting for phylogenetic relationship, and morphological traits show no significant phylogenetic signal. Sympatric species tend to differ in a combination of body size, presence or absence of maxillary teeth, and relative limb or tail length, even when they are close relatives. Sister species of Thorius tend to occupy climatically similar environments, which suggests that divergence across climatic gradients does not drive species formation in the genus. Rather than being an example of cryptic species formation, Thorius more closely resembles an adaptive radiation, with ecomorphological divergence that is bounded by organism‐level constraints. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 622–643.  相似文献   

11.
Aim The global species richness patterns of birds and mammals are strongly congruent. This could reflect similar evolutionary responses to the Earth’s history, shared responses to current climatic conditions, or both. We compare the geographical and phylogenetic structures of both richness gradients to evaluate these possibilities. Location Global. Methods Gridded bird and mammal distribution databases were used to compare their species richness gradients with the current environment. Phylogenetic trees (resolved to family for birds and to species for mammals) were used to examine underlying phylogenetic structures. Our first prediction is that both groups have responded to the same climatic gradients. Our phylogenetic predictions include: (1) that both groups have similar geographical patterns of mean root distance, a measure of the level of the evolutionary development of faunas, and, more directly, (2) that richness patterns of basal and derived clades will differ, with richness peaking in the tropics for basal clades and in the extra‐tropics for derived clades, and that this difference will hold for both birds and mammals. We also explore whether alternative taxonomic treatments for mammals can generate patterns matching those of birds. Results Both richness gradients are associated with the same current environmental gradients. In contrast, neither of our evolutionary predictions is met: the gradients have different phylogenetic structures, and the richness of birds in the lowland tropics is dominated by many basal species from many basal groups, whereas mammal richness is attributable to many species from both few basal groups and many derived groups. Phylogenetic incongruence is robust to taxonomic delineations for mammals. Main conclusions Contemporary climate can force multiple groups into similar diversity patterns even when evolutionary trajectories differ. Thus, as widely appreciated, our understanding of biodiversity must consider responses to both past and present climates, and our results are consistent with predictions that future climate change will cause major, correlated changes in patterns of diversity across multiple groups irrespective of their evolutionary histories.  相似文献   

12.
By employing a recently inferred phylogeny and museum occurrence records, we examine the relationship of ecological niche evolution to diversification in the largest family of songbirds, the tanagers (Thraupidae). We test whether differences in species numbers in the major clades of tanagers can be explained by differences in rate of climatic niche evolution. We develop a methodological pipeline to process and filter occurrence records. We find that, of the ecological variables examined, clade richness is higher in clades with higher climatic niche rate, and that this rate is also greater for clades that occupy a greater extent of climatic space. Additionally, we find that more speciose clades contain species with narrower niche breadths, suggesting that clades in which species are more successful at diversifying across climatic gradients have greater potential for speciation or are more buffered from the risk of extinction.  相似文献   

13.
A comparative phylogenetic approach was used to test the following adaptive hypotheses pertaining to the physiological abilities of the Namib desert tenebrionid beetle genus Onymacris to withstand the hot, dry desert environment: (1) Desert-interior species evolved longer legs (relative to body size) than beetles in the cooler coastal region to facilitate stilting, i.e., elevating their bodies out of the hot boundary layer of air close to the substrate. (2) Wax blooms on the exoskeleton, which reduce evaporative water loss, are more likely to evolve in desert-interior species than in coastal species. (3) The high costs of activity in the extreme climates select for perfect coadaptation of preferred body temperatures (i.e., optimal temperatures for activity) and those they achieve in the field. All three of these adaptive hypotheses were supported by the results of squared-change parsimony and independent-contrasts analyses. Additionally, a parsimony approach suggested that a novel means of obtaining water from periodic fogs, known as fog basking, has evolved independently on two occasions.  相似文献   

14.
A topic of great current interest is the capacity of populations to adapt genetically to rapidly changing climates, for example by evolving the timing of life-history events, but this is challenging to address experimentally. I use a plant invasion as a model system to tackle this question by combining molecular markers, a common garden experiment and climatic niche modelling. This approach reveals that non-native Lactuca serriola originates primarily from Europe, a climatic subset of its native range, with low rates of admixture from Asia. It has rapidly refilled its climatic niche in the new range, associated with the evolution of flowering phenology to produce clines along climate gradients that mirror those across the native range. Consequently, some non-native plants have evolved development times and grow under climates more extreme than those found in Europe, but not among populations from the native range as a whole. This suggests that many plant populations can adapt rapidly to changed climatic conditions that are already within the climatic niche space occupied by the species elsewhere in its range, but that evolution to conditions outside of this range is more difficult. These findings can also help to explain the prevalence of niche conservatism among non-native species.  相似文献   

15.
BackgroundFor almost two centuries, ecologists have examined geographical patterns in the evolution of body size and the associated determinants. During that time, one of the most common patterns to have emerged is the increase in body size with increasing latitude (referred to as Bergmann''s rule). Typically, this pattern is explained in terms of an evolutionary response that serves to minimize heat loss in colder climates, mostly in endotherms. In contrast, however, this rule rarely explains geographical patterns in the evolution of body size among ectotherms (e.g., reptiles).LocationChina.AimIn this study, we assembled a dataset comprising the maximum sizes of 211 lizard species in China and examined the geographical patterns in body size evolution and its determinants. Specifically, we assessed the relationship between body size and climate among all lizard species and within four major groups at both assemblage and interspecific levels.ResultsAlthough we found that the body size of Chinese lizards was larger in warmer regions, we established that at the assemblage level, size was correlated with multiple climatic factors, and that body size–climate correlations differed within the four major groups. Phylogenetic analysis at the species level revealed that no single climatic factor was associated with body size, with the exception of agamids, for which size was found to be positively correlated with temperature.Main conclusionsGeographical patterns in Chinese lizard body size are driven by multiple factors, and overall patterns are probably influenced by those of the major groups. We suggest that our analyses at two different levels may have contributed to the inconsistent results obtained in this study. Further studies investigating the effects of altitude and ecological factors are needed to gain a more comprehensive understanding of the evolution of ectotherm body size.  相似文献   

16.
Aim The bioclimatic model is a new method for palaeoclimatic reconstruction built on the assumption of a significant correlation between climate and mammal community composition. The goal of this approach is to infer past climatic conditions using mammal fossil associations as source data. Location The study used mammal faunas from all over the world to develop the bioclimatic model. As an example of the potential of the model, we have applied it to Quaternary faunas from Eurasia. Methods The proposed model was constructed by applying multivariate discriminant analysis to modern mammal faunas and climates from throughout the world. The model was validated with a different set of modern faunas than those used in the discriminant analysis, including some from transitional zones between different climates (ecotones). To test the reliability of the method in the Pleistocene, the results have been compared to those obtained with data from other disciplines, such as palaeobotany. Results The results obtained in the validation of the model show that more than 90% of the localities have been classified correctly. Comparisons of results in the late Pleistocene‐Holocene of Barová between a palaeobotanical study and the bioclimatic analysis show the latter to be highly accurate. The results for early Pleistocene faunas show somewhat drier and more open climatic conditions for Europe than the present day, with larger areas of steppe environments. Main Conclusions The bioclimatic model could be used to infer climatic conditions from mammal faunas. The results presented in this work provide a preliminary example of the potential that bioclimatic analysis has as a tool for palaeoclimatic inference. Finally, this method offers the opportunity to standardize data coming from vertebrate palaeontology for use in the construction and evaluation of climatic models.  相似文献   

17.
Body size and invasion success in marine bivalves   总被引:1,自引:0,他引:1  
The role of body size in marine bivalve invasions has been the subject of debate. Roy et al . found that large-bodied species of marine bivalves were more likely to be successful invaders, consistent with patterns seen during Pleistocene climatic change, but Miller et al . argued that such selectivity was largely driven by the inclusion of mariculture species in the analysis and that size-selectivity was absent outside of mariculture introductions. Here we use data on non-mariculture species from the north-eastern Pacific coast and from a global species pool to test the original hypothesis of Roy et al . that range limits of larger bivalves are more fluid than those of smaller species. First, we test the hypothesis that larger bivalve species are more successful than small species in expanding their geographical ranges following introduction into new regions. Second, we compare body sizes of indigenous and non-indigenous species for 299 of the 303 known intertidal and shelf species within the marine bivalve clade that contains the greater number of non-mariculture invaders, the Mytilidae. The results from both tests provide additional support for the view that body size plays an important role in mediating invasion success in marine bivalves, in contrast to Miller et al . Thus range expansions in Recent bivalves are consistent with patterns seen in Pleistocene faunas despite the many differences in the mechanisms.  相似文献   

18.
Ecogeographical rules attempt to explain large‐scale spatial patterns in biological traits. One of the most enduring examples is Bergmann''s rule, which states that species should be larger in colder climates due to the thermoregulatory advantages of larger body size. Support for Bergmann''s rule, however, is not consistent across taxonomic groups, raising questions about what factors may moderate its effect. Behavior may play a crucial, yet so far underexplored, role in mediating the extent to which species are subject to environmental selection pressures in colder climates. Here, we tested the hypothesis that nest design and migration influence conformity to Bergmann''s rule in a phylogenetic comparative analysis of the birds of the Western Palearctic, a group encompassing dramatic variation in both climate and body mass. We predicted that migratory species and those with more protected nest designs would conform less to the rule than sedentary species and those with more exposed nests. We find that sedentary, but not short‐ or long‐distance migrating, species are larger in colder climates. Among sedentary species, conformity to Bergmann''s rule depends, further, on nest design: Species with open nests, in which parents and offspring are most exposed to adverse climatic conditions during breeding, conform most strongly to the rule. Our findings suggest that enclosed nests and migration enable small birds to breed in colder environments than their body size would otherwise allow. Therefore, we conclude that behavior can substantially modify species’ responses to environmental selection pressures.  相似文献   

19.
The high rates of future climatic changes, compared with the rates reported for past changes, may hamper species adaptation to new climates or the tracking of suitable conditions, resulting in significant loss of genetic diversity. Trees are dominant species in many biomes and because they are long‐lived, they may not be able to cope with ongoing climatic changes. Here, we coupled ecological niche modelling (ENM) and genetic simulations to forecast the effects of climatic changes on the genetic diversity and the structure of genetic clusters. Genetic simulations were conditioned to climatic variables and restricted to plant dispersal and establishment. We used a Neotropical savanna tree as species model that shows a preference for hot and drier climates, but with low temperature seasonality. The ENM predicts a decreasing range size along the more severe future climatic scenario. Additionally, genetic diversity and allelic richness also decrease with range retraction and climatic genetic clusters are lost for both future scenarios, which will lead genetic variability to homogenize throughout the landscape. Besides, climatic genetic clusters will spatially reconfigure on the landscape following displacements of climatic conditions. Our findings indicate that climate change effects will challenge population adaptation to new environmental conditions because of the displacement of genetic ancestry clusters from their optimal conditions.  相似文献   

20.
Most large‐scale multispecies studies of tree growth have been conducted in tropical and cool temperate forests, whereas Mediterranean water‐limited ecosystems have received much less attention. This limits our understanding of how growth of coexisting tree species varies along environmental gradients in these forests, and the implications for species interactions and community assembly under current and future climatic conditions. Here, we quantify the absolute effect and relative importance of climate, tree size and competition as determinants of tree growth patterns in Iberian forests, and explore interspecific differences in the two components of competitive ability (competitive response and effect) along climatic and size gradients. Spatially explicit neighborhood models were developed to predict tree growth for the 15 most abundant Iberian tree species using permanent‐plot data from the Spanish Second and Third National Forest Inventory (IFN). Our neighborhood analyses showed a climatic and size effect on tree growth, but also revealed that competition from neighbors has a comparatively much larger impact on growth in Iberian forests. Moreover, the sensitivity to competition (i.e. competitive response) of target trees varied markedly along climatic gradients causing significant rank reversals in species performance, particularly under xeric conditions. We also found compelling evidence for strong species‐specific competitive effects in these forests. Altogether, these results constitute critical new information which not only furthers our understanding of important theoretical questions about the assembly of Mediterranean forests, but will also be of help in developing new guidelines for adapting forests in this climatic boundary to global change. If we consider the climatic gradients of this study as a surrogate for future climatic conditions, then we should expect absolute growth rates to decrease and sensitivity to competition to increase in most forests of the Iberian Peninsula (in all but the northern Atlantic forests), making these management considerations even more important in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号