首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
J Guo  Y Liu  Y Wang  J Chen  Y Li  H Huang  L Qiu  Y Wang 《Annals of botany》2012,110(4):777-785
Background and Aims Wild soybean (Glycine soja), a native species of East Asia, is the closest wild relative of the cultivated soybean (G. max) and supplies valuable genetic resources for cultivar breeding. Analyses of the genetic variation and population structure of wild soybean are fundamental for effective conservation studies and utilization of this valuable genetic resource. Methods In this study, 40 wild soybean populations from China were genotyped with 20 microsatellites to investigate the natural population structure and genetic diversity. These results were integrated with previous microsatellite analyses for 231 representative individuals from East Asia to investigate the genetic relationships of wild soybeans from China. Key Results Analysis of molecular variance (AMOVA) revealed that 43·92 % of the molecular variance occurred within populations, although relatively low genetic diversity was detected for natural wild soybean populations. Most of the populations exhibited significant effects of a genetic bottleneck. Principal co-ordinate analysis, construction of a Neighbor-Joining tree and Bayesian clustering indicated two main genotypic clusters of wild soybean from China. The wild soybean populations, which are distributed in north-east and south China, separated by the Huang-Huai Valley, displayed similar genotypes, whereas those populations from the Huang-Huai Valley were different. Conclusions The previously unknown population structure of the natural populations of wild soybean distributed throughout China was determined. Two evolutionarily significant units were defined and further analysed by combining genetic diversity and structure analyses from Chinese populations with representative samples from Eastern Asia. The study suggests that during the glacial period there may have been an expansion route between south-east and north-east China, via the temperate forests in the East China Sea Land Bridge, which resulted in similar genotypes of wild soybean populations from these regions. Genetic diversity and bottleneck analysis supports that both extensive collection of germplasm resources and habitat management strategies should be undertaken for effective conservation studies of these important wild soybean resources.  相似文献   

2.
濒危植物鹅掌楸(Liriodendron chinense)目前仅零散分布于我国亚热带及越南北部地区, 残存居群生境片断化较为严重。研究濒危植物片断化居群的遗传多样性及小尺度空间遗传结构(spatial genetic structure)有助于了解物种的生态进化过程以及制定相关的保育策略。本研究采用13对微卫星引物, 对鹅掌楸的1个片断化居群进行了遗传多样性及空间遗传结构的研究, 旨在揭示生境片断化条件下鹅掌楸的遗传多样性及基因流状况。研究结果表明: 鹅掌楸烂木山居群内不同生境斑块及不同年龄阶段植株的遗传多样性水平差异不显著(P>0.05), 居群内存在寨内和山林2个遗传分化明显的亚居群。烂木山居群个体在200 m以内呈现显著的空间遗传结构, 而2个亚居群内的个体仅在20 m的距离范围内存在微弱或不显著的空间遗传结构。鹅掌楸的空间遗传结构强度较低(Sp = 0.0090), 且寨内亚居群的空间遗传结构强度(Sp = 0.0067)要高于山林亚居群(Sp = 0.0053)。鹅掌楸以异交为主, 种子较轻且具翅, 借助风力传播, 在一定程度上降低了空间遗传结构的强度。此外, 居群内个体密度及生境特征也对鹅掌楸的空间遗传结构产生了一定影响。该居群出现显著的杂合子缺失, 近交系数(FIS)为0.099 (P < 0.01), 表明生境片断化的遗传效应正逐渐显现。因此, 对鹅掌楸的就地保护应注意维护与强化生境的连续性, 促进基因交流。迁地保护时, 取样距离应不小于20 m, 以涵盖足够多的遗传变异。  相似文献   

3.
Pyrus betulaefolia Bunge, considered as an intermediate between oriental and occidental pear groups, is one of the most important wild pear species. The number of its populations is decreasing because of habitat destruction, fragmentation, and continuous exploitation, so protection and conservation measures are urgently needed. Assessment of its genetic diversity and phylogeography are imperative for its efficient conservation. Two chloroplast DNA intergenic fragments were used to detect genetic diversity and phylogeography of 320 individuals from 18 wild P. betulaefolia populations. Haplotype variation, genetic differentiation, and historical events of the populations were estimated. The results showed that P. betulaefolia populations sampled in northern China contained a high level of genetic diversity (H T?=?0.826). A significant isolation-by-distance value (r?=?0.587, P?<?0.001, 1,000 permutations) among all 18 populations indicated a correlation between genetic divergence and geographic distance. Four population groups were identified in a neighbor-joining tree based on the genetic distance. Analyses of molecular variation showed that the genetic variation mainly existed among population groups, representing 64.61 % of the total variation. Phylogeographic analyses indicated that the populations of P. betulaefolia experienced a scenario of rapid range expansion, which probably occurred between 608,000 and 204,580 years ago. Meanwhile, both the restricted gene flow with isolation by distance and allopatric fragmentation were crucial processes responsible for shaping the genetic patterns of P. betulaefolia. The occurrence of specific haplotypes might be ascribed to an ancestral introgression or joint retention of an ancestral polymorphism with other Pyrus species at the northern edge of the distribution of P. betulaefolia. Three populations displaying a high level of haplotype diversity and unique haplotypes were assumed to be relict populations of Quaternary glaciation and should have conservation priority. Three additional large populations should also be preferentially protected by building natural preservation zones.  相似文献   

4.
Guidelines designed to aid in the restoration of rare species have been previously proposed using two primary strategies to select individuals for augmentation and reintroduction: mixing progeny from different populations or separating individuals from different populations. Understanding the genetic structure and diversity of an endangered species can offer insights into conservation management strategies. We used random amplified polymorphic DNA markers to assess the genetic structure and diversity of Jacquemontia reclinata , a federally endangered species endemic to Southeastern Florida. We sampled 20 percent of total number of individuals from eight of the ten known wild populations. Across individuals high levels of polymorphic loci (94.7%) were found and larger populations had greater genetic diversity. Cluster and ordination analyses found that one population was genetically differentiated from all the others; this population grows in a unique habitat. Most genetic variation (77.5%) was found within populations, and genetic distances between populations were not explained by their geographic distances. We recommend the use of two management units in restoration programs for J. reclinata , one consisting of the genetically differentiated population and the second consisting of the other seven populations sampled.  相似文献   

5.
Litsea szemaois (Lauraceae) is an endemic and endangered species from the tropical rain forests of Xishuangbanna, southern Yunnan, SW China, but habitat fragmentation, especially exacerbated by rubber planting, has caused a decline in population size of the species. AFLP and ISSR were used to investigate the genetic diversity and population structure of eight populations from across its known distribution. Three AFLP and ten ISSR primer combinations produced a total of 203 and 77 unambiguous and repeatable bands respectively, of which 164 (80.8%) and 67 (87.0%) were polymorphic for the two markers. These two markers showed that Litsea szemaois exhibits comparatively high genetic diversity at species level (heterozygosity (hs) = 0.2109) relative to some other Lauraceae. Most of the genetic variation was partitioned within populations, but genetic differentiation between populations was significant and relatively high (Φ st = 0.2420, θ= 0.1986) compared with other tropical plants. The genetic characteristics of L. szemaois may be related to its outbreeding system, insect pollination and fragmented distribution. Because L. szemaois is dioecious and slow to mature, ex situ conservation across its genetic diversity is unlikely to succeed, although seedlings grow well under cultivation. Thus, in situ conservation is very important for this endangered species, especially as only 133 adult individuals are known in the wild. In particular, the Nabanhe and Mandian populations should be given a high conservation priority due to their higher genetic diversity, larger population size and better field condition, but wider sampling is required across all populations to determine additional areas with significant genetic conservation value.  相似文献   

6.
Amitostigma hemipilioides is an endangered terrestrial orchid endemic to China. In the Southwestern China, the species is found restricted growing in the karst limestone or rock in the edge of farmland, moist hillsides or river. In the present study, the genetic diversity and differentiation was estimated within and among habitats, populations and groups of this species by ISSR markers. Using 13 polymorphic primers, an intermediate level of genetic diversity was found at the species level and population level with the percentage of polymorphic bands (P) of 64.7 and 50.9 %, Shannon index of diversity (I) of 0.3873 and 0.2949, respectively. The analysis of molecular variance (AMOVA) showed that the high level of population differentiation was presented with 45.63 % relative to the total genetic variation residing among eight populations. It was noteworthy that as much as 69.17 % of the total diversity was most likely attributed to the difference among the populations in fragmentation habitat conditions, while 16.32 % of the total diversity could be attributed to the difference among the populations in stable and favorable habitat conditions. The in situ conservation is a top strategy, thus the mycorrhizal fungi and pollinators are protected by protecting habitat and avoiding fragmentation which is helpful to the cycle of this endangered orchid species and recovery of its wild populations. In addition, to maintaining the germplasm bank of this species, the ex situ conservation by habitat simulation and reintroduction has been considered in the living collection at Kaili University ecological garden and Yuntai Mountain scenic spot using the plants collected in this study.  相似文献   

7.
Levels of genetic diversity and population genetic structure of the rare, endangered terrestrial orchid Liparis japonica were examined for eight natural populations (n = 185) in Northeast China using six AFLP primer pairs, where this species has experienced severe habitat loss and fragmentation. Based on 406 DNA bands, a high level of genetic diversity was found at the species level with the PPB of 85.47 %, while the genetic diversity at the population level was low (PPB = 47.48 %). A significantly high degree of population differentiation was found with 42.69 % variation existed among populations as measured by AMOVA, indicating potential restricted gene flow. The genetic distances between populations were independent of the corresponding geographic distances, and the genetic relationship of individuals had no significant correlation with their spatial distribution. The restricted gene flow might be impacted by reduced population size, habitat destruction and fragmentation. The results in this study suggested that habitat protection and keeping a stable environment are critical for the conservation of L. japonica species.  相似文献   

8.
Seed weight is one of the most important botanical and phylogenetic characteristics. The study objective was to understand whether there is genetic difference in different seed weights of wild soybean (Glycine soja Sieb. & Zucc.). A total of 563 wild soybean samples, which belonged separately to genebank germplasm accessions (220 samples), one regional population samples (293 plants) and one natural population (150 plants), were analyzed using microsatellite markers. Of four size classes, the smallest seed size type had the highest coefficient of variation in seed weight; small and large seed types had relatively great genetic differences. In the national genebank germplasm accessions, genetic diversity gradually decreased from quantitatively dominant small and middling seed types to less frequent large seed types. In the regional and natural populations, generally, small to middling seed sizes had higher genetic diversity than the smallest and larger seed sizes. Cluster analysis revealed genetic differences in seed size traits. The semi-wild type (Glycine gracilis Skvortzow) was the most genetically differentiated from other seed sizes. However, it was also clearly shown that the phylogenic genetic differentiation among seed sizes was less than the genetic differentiation among geographical habitat populations in the wild soybean species.  相似文献   

9.
For species that are habitat specialists or sedentary, population fragmentation may lead to genetic divergence between populations and reduced genetic diversity within populations, with frequent inbreeding. Hundreds of kilometres separate three geographical regions in which small populations of the endangered Eastern Bristlebird, Dasyornis brachypterus, a small, ground-dwelling passerine that occurs in fire-prone bushland in eastern Australia, are currently found. Here, we use mitochondrial and microsatellite DNA markers to: (i) assess the sub-specific taxonomy designated to northern range-edge, and central and southern range-edge D. brachypterus, respectively, and (ii) assess levels of standing genetic variation and the degree of genetic subdivision of remnant populations. The phylogenetic relationship among mtDNA haplotypes and their spatial distribution did not support the recognised subspecies boundaries. Populations in different regions were highly genetically differentiated, but in addition, the two largest, neighboring populations (located within the central region and separated by ~50 km) were moderately differentiated, and thus are likely closed to migration (microsatellites, F ST = 0.06; mtDNA, F ST = 0.12, ?? ST = 0.08). Birds within these two populations were genotypically diverse and apparently randomly mating. A long-term plan for the conservation of D. brachypterus??s genetic diversity should consider individual populations as separate management units. Moreover, managers should avoid actively mixing birds from different populations or regions, to conserve the genetic integrity of local populations and avoid outbreeding depression, should further translocations be used as a recovery tool for this species.  相似文献   

10.
Carpinus oblongifolia is an endemic species and the extant wild populations show a fragmentation distribution in the Baohua Mountain of Jiangsu Province in eastern China. Understanding of genetic diversity plays an important role in C. oblongifolia survival and sustainable development. The wild C. oblongifolia population was artificially divided into four subpopulations according to the microhabitats, and another two subpopulations were constructed by progeny seedlings cultivated with the mature seeds. Then, the leaf buds of 80 individuals from six subpopulations were sampled to develop single nucleotide polymorphisms (SNPs) using specific-locus amplified fragment sequencing (SLAF-seq). Based on these SNPs, we aimed to characterize the genetic diversity and population structure of C. oblongifolia and provide an illumination and reference for effective management of such a small endemic population. The level of genetic diversity was low at the species level, and the progeny subpopulations had a relatively higher genetic diversity than the wild subpopulations. This may be attributed to a high gene flow and an excess heterozygosity to reduce the threat of genetic drift-based hazards. Moreover, the progeny subpopulations had the ability to form new clusters and a great contribution to the genetic structure variation of C. oblongifolia. These results will assist with the development of conservation and management strategies, such as properly evacuating competitive trees to provide more chance for pollen and seed flow in situ conservation, and establishing sufficient seedling plantlets under laboratory conditions for reintroduction to enlarge the effective population size.  相似文献   

11.
Annual wild soybean (Glycine soja Sieb. et Zucc.) is believed to be a potential gene source for future soybean improvement in coping with the world climate change for food security. To evaluate the wild soybean genetic diversity and differentiation, we analyzed allelic profiles at 60 simple-sequence repeat (SSR) loci and variation of eight morph-biological traits of a representative sample with 196 accessions from the natural growing area in China. For comparison, a representative sample with 200 landraces of Chinese cultivated soybean was included in this study. The SSR loci produced 1,067 alleles (17.8 per locus) with a mean gene diversity of 0.857 in the wild sample, which indicated the genetic diversity of G. soja was much higher than that of its cultivated counterpart (total 826 alleles, 13.7 per locus, mean gene diversity 0.727). After domestication, the genetic diversity of the cultigens decreased, with its 65.5% alleles inherited from the wild soybean, while 34.5% alleles newly emerged. AMOVA analysis showed that significant variance did exist among Northeast China, Huang-Huai-Hai Valleys and Southern China subpopulations. UPGMA cluster analysis indicated very significant association between the geographic grouping and genetic clustering, which demonstrated the geographic differentiation of the wild population had its relevant genetic bases. In comparison with the other two subpopulations, the Southern China subpopulation showed the highest allelic richness, diversity index and largest number of specific-present alleles, which suggests Southern China should be the major center of diversity for annual wild soybean. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Californian vernal pools, a patchy, island-like habitat, are endangered as a result of habitat destruction. Conservation of the remaining vernal pool habitat is essential for the persistence of several endangered species. We present the first study examining DNA-level genetic diversity within and among populations of a vernal pool plant species. We investigated genetic variation across eight populations of the US federally endangered vernal pool endemic Lasthenia conjugens (Asteraceae) using intersimple sequence repeat (ISSR) markers. Genetic diversity within the species was high (Nei's gene diversity estimate was 0.37), with moderate differentiation among populations (Bayesian F ST analog of 0.124). Using an amova analysis, we found that the majority of the genetic variation (84%) was distributed within populations. There is a significant relationship between geographical distance and pairwise genetic differentiation as measured by the Bayesian estimate θB. The alternative hypotheses of historic geological processes within the Central Valley and contemporary gene flow are discussed as explanations of the data. Because of the vulnerability of the populations, we calculated a probability of loss for rare alleles (fragments) in the populations. Calculations show that sampling only one of the eight populations for ex-situ conservation or restoration will capture approximately 54% of the sampled rare fragments. We believe that one of the sampled populations has become extinct since it was sampled. When removing this population from the above-mentioned calculations, sampling one population will capture only 41.3% of the sampled rare fragments. We recommend sampling strategies for future conservation and restoration efforts of L. conjugens.  相似文献   

13.
北京地区野生大豆种群SSR标记的遗传多样性评价   总被引:7,自引:0,他引:7       下载免费PDF全文
 使用40对SSR引物分析了北京地区野生大豆(Glycine soja)天然种群的遗传结构与遗传多样性。10个种群共检测到526个等位变异, 平均每对引物等位基因数为13.15个, 种群平均Shannon指数(I)为0.658, 群体平均位点预期杂合度(He)为0.369, 群体平均位点杂合度(Ho)为1.29 %。平均种群内遗传多样度(Hs)为0.362, 平均种群间遗传多样度(DST)为0.446, 基因分化程度(GST)为0.544。该研究显示, 中-西部生态区种群比北部和东部山区种群有较高的遗传多样性。在地理上, 环绕北京地区的太行山和燕山两大余脉区域野生大豆种群遗传分化表现出地理差异。可能是经过干旱选择而形成的有抗旱潜力的种群在遗传上表现单一化。期待该种群提供耐旱基因。  相似文献   

14.
The aim of this study was to estimate the degree and distribution of genetic diversity within Central-European populations of Thesium ebracteatum—one of the most endangered plant species in Europe. By analyzing allozymes from 17 populations, we estimated the distribution of genetic diversity and suggest the most valuable populations for conservation. Analysis of molecular variance results showed the highest variance existed between populations (54 %), whereas the mean variance within populations was 46 %. A surprisingly low degree of variance (less than 1 %) was found between the six studied regions. We also observed no correlation between geographical and genetic distance, which supports the idea that individual populations are strongly isolated. T. ebracteatum undergoes extensive clonal growth and may survive for very long periods of time without generative reproduction. Consistent with this, we found a strong and significant relationship between genetic diversity and population size. All populations occupying an area greater than 300 m2 showed high genetic diversity, whereas small populations contained less genetic diversity. Therefore, conservation priorities could generally be decided based on population size. Because this species is a weak competitor, existing localities should also be managed to prevent species loss from habitat degradation, by mowing or from time to time otherwise disturbing population areas to create open areas for growth.  相似文献   

15.
Gossypium mustelinum is a wild cotton relative found only in the semiarid region of Bahia state in Brazil, and changes caused by humans in the natural habitat of this species have endangered the existence of several natural populations. Information about the occurrence and genetic composition of these populations is necessary to design effective conservation measures. The aim of this study was to characterize the in situ maintenance mode and assess the genetic diversity of G. mustelinum populations in the basin of the De Contas River. A sample of 205 G. mustelinum specimens was collected from the margins of the Jacaré, Riacho Quixaba, Riacho Serra Azul, and Riacho Riachão rivers and genotyped using 13 SSR primer pairs. In general, all G. mustelinum populations exhibit inadequate in situ maintenance, predominantly due to the deforestation of riparian vegetation and herbivory. The observed total genetic diversity of G. mustelinum was significant (H E = 0.489), highly structured (F ST = 0.534), and organized in homozygous genotypes (F IS = 0.873). The high observed inbreeding level is consistent with the predominance of self-fertilization and geitonogamy (t m = 0.234). In addition, the pattern of genetic structure tended to form groups that coincided with the collection sites, i.e., first clustering within subpopulations, then within populations, and finally within the closest populations. Thus, the observed genetic diversity is likely to be rapidly lost, and conservation measures should therefore be undertaken.  相似文献   

16.
Habitat loss, fragmentation of meadow patches, and global climate change (GCC) threaten plant communities of montane grasslands. We analyzed the genetic structure of the montane herb Geranium sylvaticum L. on a local scale in order to understand the effects of habitat fragmentation and potential GCC impacts on genetic diversity and differentiation. Amplified fragment length polymorphism (AFLP) fingerprinting and cpDNA sequencing was performed for 295 individuals of 15 G. sylvaticum populations spanning the entire distribution range of the species in the Taunus mountain range in Germany. We found patterns of substantial genetic differentiation among populations using 150 polymorphic AFLP markers (mean F ST = 0.105), but no variation in 896 bp of plastid DNA sequences. While populations in the center of their local distribution range were genetically diverse and less differentiated, higher F ST values and reduced genetic variability was revealed for the populations at the low-altitudinal distribution margins. Projections of GCC effects on the distribution of G. sylvaticum in 2050 showed that GCC will likely lead to the extinction of most edge populations. To maintain regional genetic diversity, conservation efforts should focus on the diverse high-altitude populations, although a potential loss of unique variations in genetically differentiated peripheral populations could lower the overall genetic diversity and potentially the long-term viability in the study region. This study documents the usefulness of fine-scale assessments of genetic population structure in combination with niche modeling to reveal priority regions for the effective long-term conservation of populations and their genetic variation under climate change.  相似文献   

17.
Glycine soja, also called wild soybean, is the wild ancestor of domesticated soybean (Glycine max), and one of the world's major cultivated crops. Wild soybean is a valuable resource for the breeding of cultivated soybean and harbors useful genes or agronomic traits. To use and conserve this valuable resource, we conducted a study to evaluate the genetic diversity and population structure of wild soybean using the sequencing data of two nuclear loci (AF105221 and PhyB) and one chloroplast locus (trnQ-rps16) of more than 600 individuals representing 53 populations throughout the natural distribution range. The results showed that most of the variation was found within the populations and groups, but significant genetic differentiation was also detected among different eco-geographical groups. Correlations between genetic and geographical distance at all the loci were consistent with the isolation by distance gene flow model. G. soja exhibited the highest genetic diversity in middle and downstream of Yangzi River (MDYR) region, followed by North East China (NEC), and was the lowest in North West China (NWC). We concluded that both in situ and ex situ conservation strategies required for wild soybean populations, especially which are native to MDYR and NEC regions.  相似文献   

18.
The spotted sea bass, Lateolabrax maculatus, is popular in recreational fishing and aquaculture in Korea. Its natural population has declined during the past two decades; thus, beginning in the early 2000s stock-enhancement programs were introduced throughout western and southern coastal areas. In this study, genetic similarities and differences between wild and hatchery populations were assessed using multiplex assays with 12 highly polymorphic microsatellite loci; 96 alleles were identified. Although many unique alleles were lost in the hatchery samples, no significant reductions were found in heterozygosity or allelic diversity in the hatchery compared to the wild population. High genetic diversity (He = 0.724–0.761 and Ho = 0.723–0.743), low inbreeding coefficient (F IS = 0.003–0.024) and Hardy–Weinberg equilibrium were observed in both wild and hatchery populations. However, the genetic heterogeneity between the populations was significant. Therefore, genetic drift likely promoted inter-population differentiation, and rapid loss of genetic diversity remains possible. Regarding conservation, genetic variation should be monitored and inbreeding controlled in a commercial breeding program.  相似文献   

19.
中国野生大豆遗传资源搜集基本策略与方法   总被引:2,自引:0,他引:2  
遗传资源搜集原则是通过种子采集追求样本具有最高程度的遗传多样性。为了合理而有效地搜集野生大豆资源,近年来通过野生大豆居群考察和遗传多样性分析,初步明确了野生大豆资源居群的遗传多样性分布动态:遗传多样性地理的和生态的区域性、生态系统内居群的遗传相关性及各种生境下居群遗传多样性差异,从理论上奠定了野生大豆资源合理有效搜集的依据。根据居群遗传多样性的分布规律,初步建立了居群野生大豆资源的搜集策略和方法。  相似文献   

20.
The giant spiny frog(Quasipaa spinosa) is an endangered species with a relatively small distribution limited to southern China and Northern Vietnam. This species is becoming increasingly threatened because of over-exploitation and habitat degradation. This study provides data on the genetic diversity and population genetic structure of the giant spiny frog to facilitate the further development of effective conservation recommendations for this economically important but threatened species. We examined 10 species-specific microsatellite loci and Cyt b genes(562 bp) collected from 13 wild populations across the entire range of this species. Results of 10 microsatellite loci analysis showed a generally high level of genetic diversity. Moreover, the genetic differentiation among all 12 populations was moderate to large(overall F_(ST) = 0.1057). A total of 51 haplotypes were identified for Cyt b, which suggests high haplotype nucleotide diversities. Phylogeographic and population structure analyses using both DNA markers suggested that the wild giant spiny frog can be divided into four distinct major clades, i.e., Northern Vietnam, Western China, Central China, and Eastern China. The clades with significant genetic divergence are reproductively isolated, as evidenced by a high number of private alleles and strong incidence of failed amplification in microsatellite loci. Our research, coupled with other studies, suggests that Q. spinosa might be a species complex within which no detectable morphological variation has been revealed. The four phylogenetic clades and some subclades with distinct geographical distribution should be regarded as independent management units for conservation purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号