首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lu H  Zhu X  Liu H  Skogerbø G  Zhang J  Zhang Y  Cai L  Zhao Y  Sun S  Xu J  Bu D  Chen R 《Nucleic acids research》2004,32(16):4804-4811
The refinement and high-throughput of protein interaction detection methods offer us a protein–protein interaction network in yeast. The challenge coming along with the network is to find better ways to make it accessible for biological investigation. Visualization would be helpful for extraction of meaningful biological information from the network. However, traditional ways of visualizing the network are unsuitable because of the large number of proteins. Here, we provide a simple but information-rich approach for visualization which integrates topological and biological information. In our method, the topological information such as quasi-cliques or spoke-like modules of the network is extracted into a clustering tree, where biological information spanning from protein functional annotation to expression profile correlations can be annotated onto the representation of it. We have developed a software named PINC based on our approach. Compared with previous clustering methods, our clustering method ADJW performs well both in retaining a meaningful image of the protein interaction network as well as in enriching the image with biological information, therefore is more suitable in visualization of the network.  相似文献   

2.
We present a method that compares the protein interaction networks of two species to detect functionally similar (conserved) protein modules between them. The method is based on an algorithm we developed to identify matching subgraphs between two graphs. Unlike previous network comparison methods, our algorithm has provable guarantees on correctness and efficiency. Our algorithm framework also admits quite general criteria that define when two subgraphs match and constitute a conserved module. We apply our method to pairwise comparisons of the yeast protein network with the human, fruit fly and nematode worm protein networks, using a lenient criterion based on connectedness and matching edges, coupled with a clustering heuristic. In evaluations of the detected conserved modules against reference yeast protein complexes, our method performs competitively with and sometimes better than two previous network comparison methods. Further, under some conditions (proper homolog and species selection), our method performs better than a popular single-species clustering method. Beyond these evaluations, we discuss the biology of a couple of conserved modules detected by our method. We demonstrate the utility of network comparison for transferring annotations from yeast proteins to human ones, and validate the predicted annotations. Supplemental text is available at www.cs.berkeley.edu/ approximately nmani/M-and-S/supplement.pdf.  相似文献   

3.
Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.  相似文献   

4.
It has been a challenging task to integrate high-throughput data into investigations of the systematic and dynamic organization of biological networks. Here, we presented a simple hierarchical clustering algorithm that goes a long way to achieve this aim. Our method effectively reveals the modular structure of the yeast protein-protein interaction network and distinguishes protein complexes from functional modules by integrating high-throughput protein-protein interaction data with the added subcellular localization and expression profile data. Furthermore, we take advantage of the detected modules to provide a reliably functional context for the uncharacterized components within modules. On the other hand, the integration of various protein-protein association information makes our method robust to false-positives, especially for derived protein complexes. More importantly, this simple method can be extended naturally to other types of data fusion and provides a framework for the study of more comprehensive properties of the biological network and other forms of complex networks.  相似文献   

5.
In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology) and the association of individual genes or proteins with these concepts (e.g., GO terms), our method will assign a Hierarchical Modularity Score (HMS) to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our method using Saccharomyces cerevisiae data from KEGG and MIPS databases and several other computationally derived and curated datasets. The code and additional supplemental files can be obtained from http://code.google.com/p/functional-annotation-of-hierarchical-modularity/ (Accessed 2012 March 13).  相似文献   

6.
MOTIVATION: The increasing availability of large-scale protein-protein interaction (PPI) data has fueled the efforts to elucidate the building blocks and organization of cellular machinery. Previous studies have shown cross-species comparison to be an effective approach in uncovering functional modules in protein networks. This has in turn driven the research for new network alignment methods with a more solid grounding in network evolution models and better scalability, to allow multiple network comparison. RESULTS: We develop a new framework for protein network alignment, based on reconstruction of an ancestral PPI network. The reconstruction algorithm is built upon a proposed model of protein network evolution, which takes into account phylogenetic history of the proteins and the evolution of their interactions. The application of our methodology to the PPI networks of yeast, worm and fly reveals that the most probable conserved ancestral interactions are often related to known protein complexes. By projecting the conserved ancestral interactions back onto the input networks we are able to identify the corresponding conserved protein modules in the considered species. In contrast to most of the previous methods, our algorithm is able to compare many networks simultaneously. The performed experiments demonstrate the ability of our method to uncover many functional modules with high specificity. AVAILABILITY: Information for obtaining software and supplementary results are available at http://bioputer.mimuw.edu.pl/papers/cappi.  相似文献   

7.
Recent advances in high throughput experiments and annotations via published literature have provided a wealth of interaction maps of several biomolecular networks, including metabolic, protein-protein, and protein-DNA interaction networks. The architecture of these molecular networks reveals important principles of cellular organization and molecular functions. Analyzing such networks, i.e., discovering dense regions in the network, is an important way to identify protein complexes and functional modules. This task has been formulated as the problem of finding heavy subgraphs, the heaviest k-subgraph problem (k-HSP), which itself is NP-hard. However, any method based on the k-HSP requires the parameter k and an exact solution of k-HSP may still end up as a "spurious" heavy subgraph, thus reducing its practicability in analyzing large scale biological networks. We proposed a new formulation, called the rank-HSP, and two dynamical systems to approximate its results. In addition, a novel metric, called the standard deviation and mean ratio (SMR), is proposed for use in "spurious" heavy subgraphs to automate the discovery by setting a fixed threshold. Empirical results on both the simulated graphs and biological networks have demonstrated the efficiency and effectiveness of our proposal  相似文献   

8.
Many biological processes are performed by a group of proteins rather than by individual proteins. Proteins involved in the same biological process often form a densely connected sub-graph in a protein–protein interaction network. Therefore, finding a dense sub-graph provides useful information to predict the function or protein complex of uncharacterised proteins in the sub-graph. We developed a heuristic algorithm that finds functional modules in a protein–protein interaction network and visualises the modules. The algorithm has been implemented in a platform-independent, standalone program called ModuleSearch. In an interaction network of yeast proteins, ModuleSearch found 366 overlapping modules. Of the modules, 71% have a function shared by more than half the proteins in the module and 58% have a function shared by all proteins in the module. Comparison of ModuleSearch with other programs shows that ModuleSearch finds more sub-graphs than most other programs, yet a higher proportion of the sub-graphs correspond to known functional modules. ModuleSearch and sample data are freely available to academics at http://bclab.inha.ac.kr/ModuleSearch.  相似文献   

9.
Many complex networks such as computer and social networks exhibit modular structures, where links between nodes are much denser within modules than between modules. It is widely believed that cellular networks are also modular, reflecting the relative independence and coherence of different functional units in a cell. While many authors have claimed that observations from the yeast protein–protein interaction (PPI) network support the above hypothesis, the observed structural modularity may be an artifact because the current PPI data include interactions inferred from protein complexes through approaches that create modules (e.g., assigning pairwise interactions among all proteins in a complex). Here we analyze the yeast PPI network including protein complexes (PIC network) and excluding complexes (PEC network). We find that both PIC and PEC networks show a significantly greater structural modularity than that of randomly rewired networks. Nonetheless, there is little evidence that the structural modules correspond to functional units, particularly in the PEC network. More disturbingly, there is no evolutionary conservation among yeast, fly, and nematode modules at either the whole-module or protein-pair level. Neither is there a correlation between the evolutionary or phylogenetic conservation of a protein and the extent of its participation in various modules. Using computer simulation, we demonstrate that a higher-than-expected modularity can arise during network growth through a simple model of gene duplication, without natural selection for modularity. Taken together, our results suggest the intriguing possibility that the structural modules in the PPI network originated as an evolutionary byproduct without biological significance.  相似文献   

10.
Protein interaction networks are known to exhibit remarkable structures: scale-free and small-world and modular structures. To explain the evolutionary processes of protein interaction networks possessing scale-free and small-world structures, preferential attachment and duplication-divergence models have been proposed as mathematical models. Protein interaction networks are also known to exhibit another remarkable structural characteristic, modular structure. How the protein interaction networks became to exhibit modularity in their evolution? Here, we propose a hypothesis of modularity in the evolution of yeast protein interaction network based on molecular evolutionary evidence. We assigned yeast proteins into six evolutionary ages by constructing a phylogenetic profile. We found that all the almost half of hub proteins are evolutionarily new. Examining the evolutionary processes of protein complexes, functional modules and topological modules, we also found that member proteins of these modules tend to appear in one or two evolutionary ages. Moreover, proteins in protein complexes and topological modules show significantly low evolutionary rates than those not in these modules. Our results suggest a hypothesis of modularity in the evolution of yeast protein interaction network as systems evolution.  相似文献   

11.
Xiao Y  Xu C  Xu L  Guan J  Ping Y  Fan H  Li Y  Zhao H  Li X 《Gene》2012,499(2):332-338
The development of heart failure (HF) is a complex process that can be initiated by multiple etiologies. Identifying common functional modules associated with HF is a challenging task. Here, we developed a systems method to identify these common functional modules by integrating multiple expression profiles, protein interactions from four species, gene function annotations, and text information. We identified 1439 consistently differentially expressed genes (CDEGs) across HF with different etiologies by applying three meta-analysis methods to multiple HF-related expression profiles. Using a weighted human interaction network constructed by combining interaction data from multiple species, we extracted 60 candidate CDEG modules. We further evaluated the functional relevance of each module by using expression, interaction network, functional annotations, and text information together. Finally, five functional modules with significant biological relevance were identified. We found that almost half of the genes in these modules are hubs in the weighted network, and that these modules can accurately classify HF patients from healthy subjects. We also identified many significantly enriched biological processes that contribute to the pathophysiology of HF, including two new ones, RNA splicing and vesicle-mediated protein transport. In summary, we proposed a novel framework to analyze common functional modules related to HF with different etiologies. Our findings provide important insights into the complex mechanism of HF. Further biological experimentations should be required to validate these novel biological processes.  相似文献   

12.
Bioregions are an important concept in biogeography, and are key to our understanding of biodiversity patterns across the world. The use of networks in biogeography to produce bioregions is a relatively novel approach that has been proposed to improve upon current methods. However, it remains unclear if they may be used in place of current methods and/or offer additional biogeographic insights. We compared two network methods to detect bioregions (modularity and map equation) with the conventional distance‐based clustering method. We also explored the relationship between network and biodiversity metrics. For the analysis we used two datasets of iconic Australian plant groups at a continental scale, Acacia and eucalypts, as example groups. The modularity method detected fewer large bioregions produced the most succinct bioregionalisation for both plant groups corresponding to Australian biomes, while map equation detected many small bioregions including interzones at a natural scale of one. The clustering method was less sensitive than network methods in detecting bioregions. The network metric called participation coefficient from both network partition methods identified interzones or transition zones between bioregions. Furthermore, another network metric (betweenness) was highly correlated to richness and endemism. We conclude that the application of networks to biogeography offers a number of advantages and provides novel insights. More specifically, our study showed that these network partition methods were more efficient than the clustering method for bioregionalisation of continental‐scale data in: 1) the identification of bioregions and 2) the quantification of biogeographic transition zones using the participation coefficient metric. The use of network methods and especially the participation coefficient metric adds to bioregionalisation by identifying transition zones which could be useful for conservation purposes and identifying biodiversity hotspots.  相似文献   

13.
The task of extracting the maximal amount of information from a biological network has drawn much attention from researchers, for example, predicting the function of a protein from a protein-protein interaction (PPI) network. It is well known that biological networks consist of modules/communities, a set of nodes that are more densely inter-connected among themselves than with the rest of the network. However, practical applications of utilizing the community information have been rather limited. For protein function prediction on a network, it has been shown that none of the existing community-based protein function prediction methods outperform a simple neighbor-based method. Recently, we have shown that proper utilization of a highly optimal modularity community structure for protein function prediction can outperform neighbor-assisted methods. In this study, we propose two function prediction approaches on bipartite networks that consider the community structure information as well as the neighbor information from the network: 1) a simple screening method and 2) a random forest based method. We demonstrate that our community-assisted methods outperform neighbor-assisted methods and the random forest method yields the best performance. In addition, we show that using the optimal community structure information is essential for more accurate function prediction for the protein-complex bipartite network of Saccharomyces cerevisiae. Community detection can be carried out either using a modified modularity for dealing with the original bipartite network or first projecting the network into a single-mode network (i.e., PPI network) and then applying community detection to the reduced network. We find that the projection leads to the loss of information in a significant way. Since our prediction methods rely only on the network topology, they can be applied to various fields where an efficient network-based analysis is required.  相似文献   

14.
ABSTRACT: BACKGROUND: The use of biological molecular network information for diagnostic and prognostic purposes and elucidation of molecular disease mechanism is a key objective in systems biomedicine. The network of regulatory miRNA-target and functional protein interactions is a rich source of information to elucidate the function and the prognostic value of miRNAs in cancer. The objective of this study is to identify miRNAs that have high influence on target protein complexes in prostate cancer as a case study. This could provide biomarkers or therapeutic targets relevant for prostate cancer treatment. RESULTS: Our findings demonstrate that a miRNA's functional role can be explained by its target protein connectivity within a physical and functional interaction network. To detect miRNAs with high influence on target protein modules, we integrated miRNA and mRNA expression profiles with a sequence based miRNA-target network and human functional and physical protein interactions (FPI). miRNAs with high influence on target protein complexes play a role in prostate cancer progression and are promising diagnostic or prognostic biomarkers. We uncovered several miRNA-regulated protein modules which were enriched in focal adhesion and prostate cancer genes. Several miRNAs such as miR-96, miR-182, and miR-143 demonstrated high influence on their target protein complexes and could explain most of the gene expression changes in our analyzed prostate cancer data set. CONCLUSIONS: We describe a novel method to identify active miRNA-target modules relevant to prostate cancer progression and outcome. miRNAs with high influence on protein networks are valuable biomarkers that can be used in clinical investigations for prostate cancer treatment.  相似文献   

15.
Many biological processes are performed by a group of proteins rather than by individual proteins. Proteins involved in the same biological process often form a densely connected sub-graph in a protein-protein interaction network. Therefore, finding a dense sub-graph provides useful information to predict the function or protein complex of uncharacterised proteins in the sub-graph. We developed a heuristic algorithm that finds functional modules in a protein-protein interaction network and visualises the modules. The algorithm has been implemented in a platform-independent, standalone program called ModuleSearch. In an interaction network of yeast proteins, ModuleSearch found 366 overlapping modules. Of the modules, 71% have a function shared by more than half the proteins in the module and 58% have a function shared by all proteins in the module. Comparison of ModuleSearch with other programs shows that ModuleSearch finds more sub-graphs than most other programs, yet a higher proportion of the sub-graphs correspond to known functional modules. ModuleSearch and sample data are freely available to academics at http://bclab.inha.ac.kr/ModuleSearch.  相似文献   

16.
We have developed an integrative analysis method combining genetic interactions, identified using type 1 diabetes genome scan data, and a high-confidence human protein interaction network. Resulting networks were ranked by the significance of the enrichment of proteins from interacting regions. We identified a number of new protein network modules and novel candidate genes/proteins for type 1 diabetes. We propose this type of integrative analysis as a general method for the elucidation of genes and networks involved in diabetes and other complex diseases.  相似文献   

17.
Nash PD 《FEBS letters》2012,586(17):2572-2574
The serendipitous discovery of the SH2 domain unleashed a sea-change in our conceptual molecular understanding of protein function. The reductionist approaches that followed from the recognition of modular protein interaction domains transformed our understanding of cellular signal transduction systems, how they evolve and how they may be manipulated. We now recognize thousands of conserved protein modules - many of which have been described in structure and function, implicated in disease, or underlie targeted therapeutics. The reductionist study of isolated protein modules has enabled the reconstruction of the protein interaction networks that underlie cellular signalling. Protein modules themselves are becoming tools to probe cellular activation states and identify key interactions hubs in both normal and diseased cells and the concept of protein modularity is central to the field of synthetic biology. This brief word of introduction serves to highlight the historical impact of the very powerful idea of protein modules and sets the stage for the exciting on-going discoveries discussed in this issue.  相似文献   

18.
The complex integrity of the cells and its sudden, but often predictable changes can be described and understood by the topology and dynamism of cellular networks. All these networks undergo both local and global rearrangements during stress and development of diseases. Here, we illustrate this by showing the stress-induced structural rearrangement of the yeast protein-protein interaction network (interactome). In an unstressed state, the yeast interactome is highly compact, and the centrally organized modules have a large overlap. During stress, several original modules became more separated, and a number of novel modules also appear. A few basic functions such as theproteasome preserve their central position; however, several functions with high energy demand, such the cell-cycle regulation loose their original centrality during stress. A number of key stress-dependent protein complexes, such as the disaggregation-specific chaperone, Hsp104 gain centrality in the stressed yeast interactome. Molecular chaperones, heat shock, or stress proteins became established as key elements in our molecular understanding of the cellular stress response. Chaperones form complex interaction networks (the chaperome) with each other and their partners. Here, we show that the human chaperome recovers the segregation of protein synthesis-coupled and stress-related chaperones observed in yeast recently. Examination of yeast and human interactomes shows that chaperones 1) are intermodular integrators of protein-protein interaction networks, which 2) often bridge hubs and 3) are favorite candidates for extensive phosphorylation. Moreover, chaperones 4) become more central in the organization of the isolated modules of the stressed yeast protein-protein interaction network, which highlights their importance in the decoupling and recoupling of network modules during and after stress. Chaperone-mediated evolvability of cellular networks may play a key role in cellular adaptation during stress and various polygenic and chronic diseases, such as cancer, diabetes or neurodegeneration.  相似文献   

19.
Wang B  Gao L 《Proteome science》2012,10(Z1):S16

Background

Network alignment is one of the most common biological network comparison methods. Aligning protein-protein interaction (PPI) networks of different species is of great important to detect evolutionary conserved pathways or protein complexes across species through the identification of conserved interactions, and to improve our insight into biological systems. Global network alignment (GNA) problem is NP-complete, for which only heuristic methods have been proposed so far. Generally, the current GNA methods fall into global heuristic seed-and-extend approaches. These methods can not get the best overall consistent alignment between networks for the opinionated local seed. Furthermore These methods are lost in maximizing the number of aligned edges between two networks without considering the original structures of functional modules.

Methods

We present a novel seed selection strategy for global network alignment by constructing the pairs of hub nodes of networks to be aligned into multiple seeds. Beginning from every hub seed and using the membership similarity of nodes to quantify to what extent the nodes can participate in functional modules associated with current seed topologically we align the networks by modules. By this way we can maintain the functional modules are not damaged during the heuristic alignment process. And our method is efficient in resolving the fatal problem of most conventional algorithms that the initialization selected seeds have a direct influence on the alignment result. The similarity measures between network nodes (e.g., proteins) include sequence similarity, centrality similarity, and dynamic membership similarity and our algorithm can be called Multiple Hubs-based Alignment (MHA).

Results

When applying our seed selection strategy to several pairs of real PPI networks, it is observed that our method is working to strike a balance, extending the conserved interactions while maintaining the functional modules unchanged. In the case study, we assess the effectiveness of MHA on the alignment of the yeast and fly PPI networks. Our method outperforms state-of-the-art algorithms at detecting conserved functional modules and retrieves in particular 86% more conserved interactions than IsoRank.

Conclusions

We believe that our seed selection strategy will lead us to obtain more topologically and biologically similar alignment result. And it can be used as the reference and complement of other heuristic methods to seek more meaningful alignment results.
  相似文献   

20.

Background  

If biology is modular then clusters, or communities, of proteins derived using only protein interaction network structure should define protein modules with similar biological roles. We investigate the link between biological modules and network communities in yeast and its relationship to the scale at which we probe the network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号