首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type II restriction endonuclease designated PfoI has been partially purified from Pseudomonas fluorescens biovar 126. PfoI recognises the interrupted hexanucleotide palindromic sequence 5'-T downward arrow CCNGGA-3' and cleaves DNA to produce protruding pentanucleotide 5'-ends.  相似文献   

2.
A new type II restriction endonuclease designated PfoI has been partially purified from Pseudomonas fluorescens biovar 126. PfoI recognises the interrupted hexanucleotide palindromic sequence 5′-T↓CCNGGA-3′ and cleaves DNA to produce protruding pentanucleotide 5′-ends.  相似文献   

3.
A type II restriction endonuclease, named CviJI, was isolated from a eukaryotic Chlorella-like green alga infected with the dsDNA containing virus IL-3A. CviJI is the first restriction endonuclease to recognize the sequence PuGCPy; CviJI cleaves DNA between the G and C. Methylation of the cytosine in PuGCPy sequences prevents cleavage by CviJI. CviJI cleaved DNA into smaller but defined fragments in the presence of ATP. This "star" activity was stimulated by dithiothreitol and/or S-adenosylmethionine but did not occur under conditions which favor "star" activity of other restriction endonucleases.  相似文献   

4.
SruI restriction endonuclease from Selenomonas ruminantium   总被引:1,自引:0,他引:1  
Abstract Sru I, specific restriction endonuclease, has been characterized from Selenomonas ruminantium isolated from the rumen of fallow deer. Results from the study demonstrate that S. ruminantium 18D possesses a type II restriction endonuclease, which recognizes the sequence 5'-TTT↓AAA-3'. The recognition sequence of Sru I was identified using digestions on pBR322, pBR328, pUC18, M13mp18RF, pACYC184 and λDNA. The cleavage patterns obtained were compared with computer-derived data. Sru I recognises the palindromic hexanucleotide sequence and cleaves DNA after the third T in the sequence, producing blunt ends. The purification and characterization of restriction endonuclease Sru I presented here is the first described for Selenomonas ruminantium spp. and demonstrates that this microorganism pocesses a DNA-cleaving enzyme with the same specificity as Dra I or Aha III.  相似文献   

5.
The Escherichia coli vsr endonuclease recognises T:G base-pair mismatches in double-stranded DNA and initiates a repair pathway by hydrolysing the phosphate group 5' to the incorrectly paired T. The gene encoding the vsr endonuclease is next to the gene specifying the E. coli dcm DNA-methyltransferase; an enzyme that adds CH3 groups to the first dC within its target sequence CC[A/T]GG, giving C5MeC[A/T]GG. Deamination of the d5MeC results in CT[A/T]GG in which the first T is mis-paired with dG and it is believed that the endonuclease preferentially recognises T:G mismatches within the dcm recognition site. Here, the preference of the vsr endonuclease for bases surrounding the T:G mismatch has been evaluated. Determination of specificity constant (kst/KD; kst = rate constant for single turnover, KD = equilibrium dissociation constant) confirms vsr's preference for a T:G mismatch within a dcm sequence i.e. CT[A/T]GG (the underlined T being mis-paired with dG) is the best substrate. However, the enzyme is capable of binding and hydrolysing sequences that differ from the dcm target site by a single base-pair (dcm star sites). Individual alteration of any of the four bases surrounding the mismatched T gives a substrate, albeit with reduced binding affinity and slowed turnover rates. The vsr endonuclease has a much lower selectivity for the dcm sequence than type II restriction endonucleases have for their target sites. The results are discussed in the light of the known crystal structure of the vsr protein and its possible physiological role.  相似文献   

6.
Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6nt from the target site to generate homogeneous, 5′, four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases.  相似文献   

7.
A type II restriction endonuclease, CviBI, was isolated from a eukaryotic, Chlorella-like green alga infected with the dsDNA containing virus NC-1A. The enzyme recognizes the sequence GANTC and cleaves DNA between the G and A. Methylation of deoxyadenosine in the GANTC sequence probably inhibits enzyme activity. In vitro CviBI cleaves host nuclear DNA but not viral DNA. A survey of 18 other viruses which infect the same Chlorella sp. revealed that infection with 5 of these viruses also induced a restriction endonuclease which cleaves DNA into the same size fragments as CviBI.  相似文献   

8.
The efficiency of bacteriophages CP-54 and CP-55 plating on Bacillus thuringiensis var. kumantoensis H18 (Kum) is decreased about 10-fold as compared with the efficiency of plating on Bacillus thuringiensis var. galleriae H5 (Gal). Bacteriophages having propagated for one cycle in Kum cells might be further grown in this strain without growth restriction. Two site-specific restriction enzymes isolated from Bacillus thuringiensis var. kumantoensis were designated BtkI and BtkII. The endonuclease BtkI recognises the same nucleotide sequence CGCG in DNA as recognised by the restriction endonuclease FnuDII; BtkII recognises the same nucleotide sequence GATC as the endonuclease Sau3A.  相似文献   

9.
The genes encoding restriction-modification system of unknown specificity Hin4II from Haemophilus influenzae RFL4 were cloned in Escherichia coli and sequenced. The Hin4II system comprises three tandemly arranged genes coding for m6A DNA methyltransferase, m5C DNA methyltransferase and restriction endonuclease, respectively. Restriction endonuclease was expressed in E. coli and purified to apparent homogeneity. The DNA recognition sequence and cleavage positions were determined. R.Hin4II recognizes the novel non-palindromic sequence 5'-CCTTC-3' and cleaves the DNA 6 and 5 nt downstream in the top and bottom strand, respectively. The new prototype restriction endonuclease Hin4II was classified as a potential candidate of HNH nuclease family after comparison against SMART database. An amino acid sequence motif 297H-X14-N-X8-H of Hin4II was proposed as forming a putative catalytic center.  相似文献   

10.
A type II restriction endonuclease designated Sse8387I was partially purified from Streptomyces sp. 8387. This enzyme cleaved adenovirus 2 DNA at three sites, lambda phage DNA at five sites, and pUC18 and M13mp18 RF DNA at one site each, but did not cleave the DNAs from pBR322, SV40, or phi X174. Sse8387I recognized the octanucleotide sequence 5'-CCTGCA decreases GG-3', cleaving where shown by the arrow. Sse8387I is the first restriction endonuclease to be reported that recognizes an octanucleotide sequence consisting of all four nucleotides, G, A, T, and C. The frequency of occurrence of Sse8387I sites within sequenced regions of primate genomes was 2.4 times that of NotI sites.  相似文献   

11.
Efficiency of bacteriophage Tp4 plating on Bacillus thuringiensis var. canadensis H5 (Can) is decreased 10(7)-fold as compared with the efficiency of plating on Bacillus thuringiensis var. galleriae H5 (Gal). Bacteriophage Tp4 having propagated for one cycle in Can cells might be further grown in this strain without restriction. The sitespecific restriction endonuclease BtcI isolated from Bacillus thuringiensis var. canadensis recognises the same nucleotide sequence GATC in DNA as recognised by restriction endonuclease Sau3A.  相似文献   

12.
A new restriction endonuclease Sst12I belonging to type II and recognizing the sequence 5"-CTGCAG-3" was isolated from the bacterial strain Streptomycessp. St-12. The enzyme hydrolyzes DNA between adenine and guanine residues; thus, it is a true isoschizomer of restrictase PstI. In contrast to PstI, the restriction endonuclease Sst12I hydrolyses DNA both at 37 and 55°C and remains active after long-term storage.  相似文献   

13.
We report here the structure of BstYI, an "intermediate" type II restriction endonuclease with overlapping sequence specificities to BamHI and BglII. BstYI, a thermophilic endonuclease, recognizes and cleaves the degenerate hexanucleotide sequence 5'-RGATCY-3' (where R=A or G and Y=C or T), cleaving DNA after the 5'-R on each strand to produce four-base (5') staggered ends. The crystal structure of free BstYI was solved at 1.85A resolution by multi-wavelength anomalous dispersion (MAD) phasing. Comparison with BamHI and BglII reveals a strong structural consensus between all three enzymes mapping to the alpha/beta core domain and residues involved in catalysis. Unexpectedly, BstYI also contains an additional "arm" substructure outside of the core protein, which enables the enzyme to adopt a more compact, intertwined dimer structure compared with BamHI and BglII. This arm substructure may underlie the thermostability of BstYI. We identify putative DNA recognition residues and speculate as to how this enzyme achieves a "relaxed" DNA specificity.  相似文献   

14.
Cleavage positions of Bst API, a new restriction endonuclease (ENase) that recognizes palindromic interrupted DNA sequence, have been determined. Recognition sequences and cleavage sites comparison shows that Bst API shares similarity with a number of type II restriction enzymes.  相似文献   

15.
We report the use of MonoQ FPLC (Fast Protein Liquid Chromatography) for the rapid purification of a novel Type II restriction endonuclease PmaCI, from Pseudomonas maltophila, which recognises the sequence 5'-CAC decreases GTG-3'. The resulting enzyme is free of other nucleases to a level suitable for its characterisation by multiple-substrate digestion and DNA sequencing techniques. This method appears to be widely applicable and we have used it for the isolation of restriction endonucleases of comparable purity from a range of other organisms. Also described is a rapid method for screening a library of small inserted regions in recombinant M13 molecules for the presence and subsequent screening of restriction sites of interest.  相似文献   

16.
A sequence-specific endonuclease present in extracts of Rhodopseudomonas sphaeroides 630 has been purified and characterized. The enzyme, Rsr II, recognises and cleaves the palindromic heptanucleotide sequence: (sequence; see test) By virtue of its unusual specificity, RsrII cuts most DNA molecules very infrequently which should facilitate the physical mapping of large genomes.  相似文献   

17.
The type II restriction endonuclease SsoII shows sequence similarity with 10 other restriction endonucleases, among them the type IIE restriction endonuclease EcoRII, which requires binding to an effector site for efficient DNA cleavage, and the type IIF restriction endonuclease NgoMIV, which is active as a homotetramer and cleaves DNA with two recognition sites in a concerted reaction. We show here that SsoII is an orthodox type II enzyme, which is active as a homodimer and does not require activation by binding to an effector site. Nevertheless, it shares with EcoRII and NgoMIV a very similar DNA-binding site and catalytic center as shown here by a mutational analysis, indicative of an evolutionary relationship between these three enzymes. We suggest that a similar relationship exists between other orthodox type II, type IIE, and type IIF restriction endonucleases. This may explain why similarities may be more pronounced between members of different subtypes of restriction enzymes than among the members of a given subtype.  相似文献   

18.
A new restriction endonuclease Sst12I belonging to the II type and recognizing the sequence 5'-CTGCAG-3' was isolated from the bacterial strain Streptomyces sp. St-12. The enzyme hydrolyzes DNA between adenine and guanine residues; thus, it is a true isoschizomer of restrictase PstI. In contrast to PstI, the restriction endonuclease Sst12I hydrolyses DNA both at 37 degrees and 55 degrees C and remains active after long-term storage.  相似文献   

19.
The simultaneous analysis of DNAase I "footprinting" data and restriction endonucleases inhibition data was performed on the same DNA end-labelled fragment. The inhibition induced by netropsin, a number of bis-netropsins and distamycin A was investigated. These experiments led us to the following conclusions. The restriction endonucleases inhibition by the ligands is caused by the ligand molecules binding in the close vicinity to the restriction endonuclease recognition sequence. The zone of +/- 4 bp from the center of the restriction endonuclease recognition sequence can be defined as the zone of the influence of the bounded ligand on the restriction endonuclease. But in this case the intersection of recognition sequence and the binding site occupied by a single ligand molecule is not sufficient for the inhibition to occur. Restriction endonuclease cutting sites protected by netropsin can be predicted basing upon known nucleotide sequence specificity of netropsin. Netropsin and bis-netropsins show different nucleotide sequence specificity. This fact can be used for selective inhibition of restriction endonucleases.  相似文献   

20.
In the process of developing a gene transfer system for the marine, unicellular, nitrogen-fixing cyanobacterium Cyanothece sp. strain BH68K, two major restriction barriers have been identified. A cell wall-associated nuclease exhibited non-site-specific degradation of covalently closed circular and linear double-stranded DNA molecules, including Cyanothece sp. strain BH68K chromosomal DNA. The nuclease is easily released from intact cells by using water or buffer containing Triton X-100. Nuclease activity was undetectable in cell extracts prepared from water-washed cells. Comparison of the restriction endonuclease susceptibility of Cyanothece sp. strain BH68K DNA to that of Anabaena sp. strain PCC 7120 revealed that these organisms have a nearly identical pattern of restriction and therefore may contain similar systems for DNA methylation. Restriction by DpnI, MboI, and Sau3AI indicated the presence of adenine methylation. Cyanothece sp. strain BH68K cell extracts contain a type II restriction endonuclease, Csp68KI. The activity of Csp68KI was easily detected in cell extracts without extensive purification. Csp68KI is an isoschizomer of AvaII and recognizes the nucleotide sequence 5'-GG(A/T)CC-3'. Cleavage occurs between the guanosine nucleotides producing 3-bp 5' overhang ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号