首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Alzheimer’s disease (AD), the neuropathologic hallmarks of β-amyloid deposition and neurofibrillary degeneration are associated with early and progressive pathology of the endosomal–lysosomal system. Abnormalities of autophagy, a major pathway to lysosomes for protein and organelle turnover, include marked accumulations of autophagy-related vesicular compartments (autophagic vacuoles or AVs) in affected neurons. Here, we investigated the possibility that AVs contain the proteases and substrates necessary to cleave the amyloid precursor protein (APP) to Aβ peptide that forms β-amyloid, a key pathogenic factor in AD. AVs were highly purified using a well-established metrizamide gradient procedure from livers of transgenic YAC mice overexpressing wild-type human APP. By Western blot analysis, AVs contained APP, βCTF - the β-cleaved carboxyl-terminal domain of APP, and BACE, the protease-mediating β-cleavage of APP. β-Secretase activity measured against a fluorogenic peptide was significantly enriched in the AV fraction relative to whole-liver lysate. Compared to other recovered subcellular fractions, AVs exhibited the highest specific activity of γ-secretase based on a fluorogenic assay and inhibition by a specific inhibitor of γ-secretase, DAPT. AVs were also the most enriched subcellular fraction in levels of the γ-secretase components presenilin and nicastrin. Immunoelectron microscopy demonstrated selective immunogold labeling of AVs with antibodies specific for the carboxyl termini of human Aβ40 and Aβ42. These data indicate that AVs are a previously unrecognized and potentially highly active compartment for Aβ generation and suggest that the abnormal accumulation of AVs in affected neurons of the AD brain contributes to β-amyloid deposition.  相似文献   

2.
A series of N-terminus benzamides of glycine-based symmetric peptides, linked to m-xylylenediamine and 3,4′-oxydianiline spacers, were prepared and tested as inhibitors of β-amyloid peptide Aβ1–40 aggregation in vitro. Compounds with good anti-aggregating activity were detected. Polyphenolic amides showed the highest anti-aggregating activity, with IC50 values in the micromolar range. Structure–activity relationships suggested that π–π stacking and hydrogen-bonding interactions play a key role in the inhibition of Aβ1–40 self-assembly leading to amyloid fibrils.  相似文献   

3.
Ginkgo biloba extract (EGb 761) can improve cognitive function in patients with Alzheimer's disease, but the molecular mechanisms underlying this effect remain undefined. Because free cholesterol may be involved in the production of β-amyloid precursor protein and amyloid β-peptide, key events in the development of Alzheimer's disease, we examined EGb 761 in relation to cholesterol and amyloidogenesis. In aging rats, EGb 761 treatment lowered circulating free cholesterol and inhibited the production of brain β-amyloid precursor protein and amyloid β-peptide. Exposure of PC12 cells to EGb 761 decreased the processing of β-amyloid precursor protein and abolished cholesterol-induced overproduction of this protein. Exposure of human NT2 cells to EGb 761 decreased free cholesterol influx and increased free cholesterol efflux. Our findings indicate that free circulating and intracellular cholesterol levels affect the processing of β-amyloid precursor protein and amyloidogenesis. Our findings also provide the first demonstration that EGb 761 can influence these mechanisms.  相似文献   

4.

Background

β-amyloid is regarded as a significant factor in Alzheimer’s disease: but inefficient therapies based on this rationale suggests that additional signalling molecules or intermediary mechanisms must be involved in the actual initiation of the characteristic degeneration of neurons. One clue could be that acetylcholinesterase, also present in amyloid plaques, is aberrant in peripheral tissues such as blood and adrenal medulla that can be implicated in Alzheimer’s disease. The aim of this study was to assess the bioactivity of a fragment of acetylcholinesterase responsible for its non-enzymatic functions, a thirty amino acid peptide (“T30”) which has homologies with β-amyloid.

Methods

Cell viability was measured by sulforhodamine B assay and also lactate dehydrogenase assay: meanwhile, changes in the status of living cells was monitored by measuring release of acetylcholinesterase in cell perfusates using the Ellman reagent.

Findings

T30 peptide and β-amyloid each have toxic effects on PC12 cells, comparable to hydrogen peroxide. However only the two peptides selectively then evoke a subsequent, enhanced release in acetylcholinesterase that could only be derived from the extant cells. Moreover, unlike hydrogen peroxide, the T30 peptide selectively shifted a sub-threshold dose of β-amyloid to a toxic effect, which also resulted in a comparable enhanced release of acetylcholinesterase.

Interpretation

This is the first study comparing directly the bioactivity of β-amyloid with a peptide derived from acetylcholinesterase: the similarity in action suggests that the sequence homology between the two compounds might have a functional and/or pathological relevance. The subsequent enhanced release of acetylcholinesterase from the extant cells could reflect a primary ‘compensatory’ response of cells prone to degeneration, paradoxically providing further availability of the toxic C-terminal peptide to modulate the potency of β-amyloid. Such a cycle of events may provide new insights into the mechanism of continuing selective cell loss in Alzheimer’s disease and related degenerative disorders.  相似文献   

5.
β-Amyloid peptides are the main protein components of neuritic plaques and may be important in the pathogenesis of Alzheimer's Disease. The determination of the structure of β-amyloid fibrils poses a challenge because of the limited solubility of β-amyloid peptides and the noncrystalline nature of fibrils formed from these peptides. In this paper, we describe several physicochemical approaches which have been used to examine fibrils and the fibrillogenesis of peptide models of β-amyloid. Recent advances in solid state NMR, such as the DRAWS pulse sequence, have made this approach a particularly attractive one for peptides such as β-amyloid, which are not yet amenable to high-resolution solution phase NMR and crystallography. The application of solid state NMR techniques has yielded information on a model peptide comprising residues 10–35 of human β-amyloid and indicates that in fibrils, this peptide assumes a parallel β-strand conformation, with all residues in exact register. In addition, we discuss the use of block copolymers of Aβ peptides and polyethylene glycol as probes for the pathways of fibrillogenesis. These methods can be combined with other new methods, such as high-resolution synchrotron X-ray diffraction and small angle neutron and X-ray scattering, to yield structural data of relevance not only to disease, but to the broader question of protein folding and self-assembly.  相似文献   

6.
Seladin-1 is a neuroprotective protein selectively down-regulated in brain regions affected in Alzheimer disease (AD). Seladin-1 protects cells against β-amyloid (Aβ) peptide 42- and oxidative stress-induced apoptosis activated by caspase-3, a key mediator of apoptosis. Here, we have employed RNA interference to assess the molecular effects of seladin-1 down-regulation on the β-secretase (BACE1) function and β-amyloid precursor protein (APP) processing in SH-SY5Y human neuroblastoma cells in both normal and apoptotic conditions. Our results show that ∼60% reduction in seladin-1 protein levels, resembling the decrease observed in AD brain, did not significantly affect APP processing or Aβ secretion in normal growth conditions. However, under apoptosis, seladin-1 small interfering RNA (siRNA)-transfected cells showed increased caspase-3 activity on average by 2-fold when compared with control siRNA-transfected cells. Increased caspase-3 activity coincided with a significant depletion of the BACE1-sorting protein, GGA3 (Golgi-localized γ-ear-containing ADP-ribosylation factor-binding protein), and subsequently augmented BACE1 protein levels and activity. Augmented BACE1 activity in turn correlated with the enhanced β-amyloidogenic processing of APP and ultimately increased Aβ production. These adverse changes associated with decreased cell viability in seladin-1 siRNA-transfected cells under apoptosis. No changes in GGA3 or BACE1 levels were found after seladin-1 knockdown in normal growth conditions. Collectively, our results suggest that under stress conditions, reduced seladin-1 expression results in enhanced GGA3 depletion, which further leads to augmented post-translational stabilization of BACE1 and increased β-amyloidogenic processing of APP. These mechanistic findings related to seladin-1 down-regulation are important in the context of AD as the oxidative stress-induced apoptosis plays a key role in the disease pathogenesis.  相似文献   

7.
This paper describes the synthesis and biological evaluation of a new series of 2,5-diphenyl-1,3,4-oxadiazole (1,3,4-DPOD) derivatives for detecting β-amyloid plaques in Alzheimer’s brains. The affinity for β-amyloid plaques was assessed by an in vitro binding assay using pre-formed synthetic Aβ42 aggregates. The new series of 1,3,4-DPOD derivatives showed affinity for Aβ42 aggregates with Ki values ranging from 20 to 349 nM. The 1,3,4-DPOD derivatives clearly stained β-amyloid plaques in an animal model of Alzheimer’s disease, reflecting the affinity for Aβ42 aggregates in vitro. Compared to 3,5-diphenyl-1,2,4-oxadiazole (1,2,4-DPOD) derivatives, they displayed good penetration of and fast washout from the brain in biodistribution experiments using normal mice. The novel radioiodinated 1,3,4-DPOD derivatives may be useful probes for detecting β-amyloid plaques in the Alzheimer’s brain.  相似文献   

8.
The relative synthesis of α-, β-, Gγ- and Aγ-globin chains has been evaluated in single fetal liver bursts, which were grown in methylcellulose cultures, individually labelled with [3H]leucine and then analysed via iso-electric focusing. Well-hemoglobinized bursts demonstrate a homogeneous globin synthetic pattern, characterized by prevalent HbF (+some HbA) synthesis: thus, they apparently originate from a homogeneously programmed population of erythroid burst-forming unit (BFU-E). On day 8–9 of culture, the synthetic pattern in ‘mature’ (i.e., well-hemoglobinized) bursts has been compared with that in simultaneously-grown, ‘immature’ (i.e., poorly-hemoglobinized) colonies. These patterns have been further compared with that in ‘matured’ bursts (identified in situ as immature on day 8–9 and labelled 2–4 days later when matured). The ‘immature’ colonies showed very low levels of relative β-globin synthesis, while the ‘mature’ ones demonstrated a more elevated production of β-chain. Significantly, the ‘matured’ bursts showed a globin chain synthetic pattern similar to that of previously labelled ‘matured’ colonies. It is postulated therefore that in fetal liver (and also in adult marrow) the synthesis of γ-chain is linked to an early differentiation stage of erythroblasts, while β-globin synthesis is largely activated at a more advanced maturation stage.  相似文献   

9.
Beta-amyloid pathology, the main hallmark of Alzheimer's disease (AD), has been linked to its conformational status and aggregation. We recently showed that site-directed monoclonal antibodies (mAbs) towards the N-terminal region of the human β-amyloid peptide bind to preformed β-amyloid fibrils (Aβ), leading to disaggregation and inhibition of their neurotoxic effect. Here we report the development of a novel immunization procedure to raise effective anti-aggregating amyloid β-protein (AβP) antibodies, using as antigen filamentous phages displaying the only EFRH peptide found to be the epitope of these antibodies. Due to the high antigenicity of the phage no adjuvant is required to obtain high affinity anti-aggregating IgG antibodies in animals model, that exhibit identity to human AβP. Such antibodies are able to sequester peripheral AβP, thus avoiding passage through the blood brain barrier (BBB) and, as recently shown in a transgenic mouse model, to cross the BBB and dissolve already formed β-amyloid plaques. To our knowledge, this is the first attempt to use as a vaccine a self-anti-aggregating epitope displayed on a phage, and this may pave the way to treat abnormal accumulation-peptide diseases, such as Alzheimer's disease or other amyloidogenic diseases.  相似文献   

10.
γ-Secretase is an enzyme complex that mediates both Notch signaling and β-amyloid precursor protein (APP) processing, resulting in the generation of Notch intracellular domain, APP intracellular domain, and the amyloid β peptide (Aβ), the latter playing a central role in Alzheimer disease (AD). By a hitherto undefined mechanism, the activity of γ-secretase gives rise to Aβ peptides of different lengths, where Aβ42 is considered to play a particular role in AD. In this study we have examined the role of the large hydrophilic loop (amino acids 320–374, encoded by exon 10) of presenilin 1 (PS1), the catalytic subunit of γ-secretase, for γ-secretase complex formation and activity on Notch and APP processing. Deletion of exon 10 resulted in impaired PS1 endoproteolysis, γ-secretase complex formation, and had a differential effect on Aβ-peptide production. Although the production of Aβ38, Aβ39, and Aβ40 was severely impaired, the effect on Aβ42 was affected to a lesser extent, implying that the production of the AD-related Aβ42 peptide is separate from the production of the Aβ38, Aβ39, and Aβ40 peptides. Interestingly, formation of the intracellular domains of both APP and Notch was intact, implying a differential cleavage activity between the ϵ/S3 and γ sites. The most C-terminal amino acids of the hydrophilic loop were important for regulating APP processing. In summary, the large hydrophilic loop of PS1 appears to differentially regulate the relative production of different Aβ peptides without affecting Notch processing, two parameters of significance when considering γ-secretase as a target for pharmaceutical intervention in AD.  相似文献   

11.
Recently, it has been suggested that Alzheimer's disease is associated with a duplication of the amyloid precursor protein gene localized to chromosome 21q21. In this study, a cloned DNA probe (B2.3), complementary to the sequence coding the β-amyloid peptide, and DNA polymorphisms adjacent to this sequence were used to determine the number of copies of the β-amyloid gene in DNA isolated from human blood and brain. Individuals with trisomy 21 (Down syndrome) who were heterozygous for the polymorphisms showed a gene-dosage effect, with one allele exhibiting twice the autoradiographic intensity as the other. Heterozygous individuals with Alzheimer's disease and controls showed equal intensities of the two allelic bands, suggesting that there are only two copies of the β-amyloid gene in these individuals. In individuals with Alzheimer's disease and in controls who were homozygous for these polymorphisms, the number of copies of the β-amyloid gene was determined by comparing the autoradiographic intensity of β-amyloid alleles to that of DNA fragments detected by a reference probe. No difference was detected between these two groups.  相似文献   

12.
It is shown that under certain circumstances, on cooling mixed ι- and κ-carrageenan solutions, the two forms gel separately at different temperatures, with the ι form gelling first. This ‘two-step gelation’ was only observed when both sodium and potassium ions were present, with a sodium/potassium mole ratio of between 1 and 100. For such mixed gels, a κ fraction as low as 2·5% of the total carrageenan has significant effects on their rheology, both at low deformation and fracture. In these systems, the κ form, gelling in the presence of an existing ι gel, produces measurable rheological effects at much lower concentrations than if it were alone. This behaviour can be used as a sensitive test of the ‘rheological purity’ of samples of ι-carrageenan.  相似文献   

13.
The kallikrein-kinin system is involved in a variety of physiological and pathological processes. Components of this system, identified in rat and human brains, can be altered in neurodegenerative processes such as Alzheimer's disease. Here, we studied kinin release and its inactivation in rats submitted to chronic cerebroventricular infusion of β-amyloid (Aβ) peptide. Neurodegeneration was confirmed by histological analysis of brain samples. In cerebrospinal fluid of animals infused with Aβ, bradykinin concentration was increased, as determined by radioimmunoassay. However, in the brain of Aβ group, we only detected the tripeptide Arg-Pro-Pro, purified by reversed-phase chromatography and characterized by liquid chromatography-electrospray ionization mass spectrometry. This fragment of bradykinin indicated the possible participation of kinin-processing enzymes in the brain such as a prolyl oligopeptidase.  相似文献   

14.
Dactylysin (EC 3.5.24.60) is a metalloendopeptidase first isolated from the skin granular gland secretions of Xenopus laevis. This peptidase hydrolyzes bonds on the amino-terminus of singlets and between doublets of hydrophobic amino acids and was considered to play a role in the in vivo inactivation of biologically active regulatory peptides. Here, we show that dactylysin has also the ability to cleave human β[1-40]-amyloid peptide and related peptides. Cleavage of the wild type β[1-40]-amyloid peptide form, and to a lesser extent Flemish and Dutch mutants, occurred predominantly at the His14-Glu15 bond. We demonstrate that frog skin exudate contains a full-length amyloid protein precursor detected by immunochemical cross-reactivity with monoclonal antibody against C-terminal human amyloid protein precursor. The possibility that dactylysin, might be involved in normal catabolism of β amyloid peptide of Xenopus laevis is discussed.  相似文献   

15.
The altered expression of acetylcholinesterase (AChE) in the brains of patients with Alzheimer's disease (AD) has raised much interest of late. Despite an overall decrease in the AD brain, the activity of AChE increases around β-amyloid plaques and indeed, the β-amyloid peptide (Aβ) can influence AChE levels. Such evidence stimulated our interest in the possibility that the levels of AChE and amyloid might vary together in AD. We previously found that the different AChE forms present in both the brain and in the cerebrospinal fluid (CSF) of AD patients varied in conjunction with abnormal glycosylation. Thus, the alterations in glycosylation are correlated with the accumulation of a minor subspecies of AChE monomers. We also recently analysed whether long-term exposure to the cholinesterase inhibitor (ChE-I) donepezil influences the AChE species found in AD CSF. The marked increase in CSF-AChE activity in AD patients following long-term treatment with donepezil was not paralleled by a rise in this subset of light variants. Hence, the correlation with the levels of CSF-Aβ is unique to these AChE species in patients receiving such treatment. The aim of this report is to review the links between AChE and β-amyloid, and to discuss the significance of the responses of the distinct AChE species to ChE-I during the treatment of AD.  相似文献   

16.
Mammalian brain has a β-carboline 2N-methyltransferase activity that converts β-carbolines, such as norharman and harman, into 2N-methylated β-carbolinium cations, which are structural and functional analogs of the Parkinsonian-inducing toxin 1-methyl-4-phenylpyridinium cation (MPP+). The identity and physiological function of this β-carboline 2N-methylation activity was previously unknown. We report pharmacological and biochemical evidence that phenylethanolamine N-methyltransferase (EC 2.1.1.28) has β-carboline 2N-methyltransferase activity. Specifically, purified phenylethanolamine N-methyltransferase (PNMT) catalyzes the 2N-methylation (21.1 pmol/h per unit PNMT) of 9-methylnorharman, but not the 9N-methylation of 2-methylnorharmanium cation. LY134046, a selective inhibitor of phenylethanolamine N-methyltransferase, inhibits (IC50 1.9 μM) the 2N-methylation of 9-methylnorharman, a substrate for β-carboline 2N-methyltransferase. Substrates of phenylethanolamine N-methyltransferase also inhibit β-carboline 2N-methyltransferase activity in a concentration-dependent manner. β-Carboline 2N-methyltransferase activity (43.7 pmol/h/mg protein) is present in human adrenal medulla, a tissue with high phenylethanolamine N-methyltransferase activity.

We are investigating the potential role of N-methylated β-carbolinium cations in the pathogenesis of idiopathic Parkinson’s disease. Presuming that phenylethanolamine N-methyltransferase activity forms toxic 2N-methylated β-carbolinium cations, we propose a novel hypothesis regarding Parkinson’s disease—a hypothesis that includes a role for phenylethanolamine N-methyltransferase-catalyzed formation of MPP+-like 2N-methylated β-carbolinium cations.  相似文献   


17.
An improved methenamine-silver impregnation method is presented which exhibits sensitivity for amyloid substances comparable to that of anti-β protein immunostaining. In optimally treated sections, this technique stained both β-amyloid deposits and neurofibrillary tangles, which are known to have a β-pleated structure. This simple procedure allows a large number of sections to be stained for routine examination.  相似文献   

18.
Reflectance Fourier transform infrared (FT-IR) microspectroscopy was applied to study the prevention of β-sheet formation of amyloid β (Aβ)(1–40) peptide by co-incubation with a hexapeptide containing a KLVFF sequence (Aβ(15–20) fragment). Second-derivative spectral analysis was used to locate the position of the overlapping components of the amide I band of Aβ peptide and assigned them to different secondary components. The result indicates that each intact sample of Aβ(15–20) fragment or Aβ(1–40) peptide previously incubated in distilled water at 37 °C transformed their secondary structure from 1649 (1651) or 1653 cm−1 to 1624 cm−1, suggesting the transformation from -helix and/or random coil structures to β-sheet structure. By co-incubating both samples with different molar ratio in distilled water at 37 °C, the structural transformation was not found for Aβ(1–40) peptide after 24 h-incubation. But the β-sheet formation of Aβ(1–40) peptide after 48 h-incubation was evidenced from the appearance of the IR peak at 1626 cm−1 by adding a little amount of Aβ(15–20) fragment. There was no β-sheet formation of Aβ(1–40) peptide after addition with much amount of Aβ(15–20) fragment, however, suggesting the higher amount of Aβ(15–20) fragment used might inhibit the β-sheet formation of Aβ(1–40) peptide. The more Aβ(15–20) fragment used made the more stable structure of Aβ(1–40) peptide and the less β-sheet formation of Aβ(1–40) peptide. The study indicates that the reflectance FT-IR microspectroscopy can easily evidence the prevention of β-sheet formation of Aβ(1–40) peptide by a short amyloid fragment.  相似文献   

19.
Although oligomeric β-amyloid (Aβ) has been suggested to have an important role in Alzheimer disease (AD), the mechanism(s) of how Aβ induces neuronal cell death has not been fully identified. The balance of pro- and anti-apoptotic Bcl-2 family proteins (e.g., Bcl-2 and Bcl-w versus Bad, Bim and Bax) has been known to have a role in neuronal cell death and, importantly, expression levels of these proteins are reportedly altered in the vulnerable neurons in AD. However, the roles of apoptotic proteins in oligomeric Aβ-induced cell death remain unclear in vivo or in more physiologically relevant models. In addition, no study to date has examined whether Bax is required for the toxicity of oligomeric Aβ. Here, we found that treatment with oligomeric Aβ increased Bim levels but decreased Bcl-2 levels, leading to the activation of Bax and neuronal cell death in hippocampal slice culture and in vivo. Furthermore, the inhibition of Bax activity either by Bax-inhibiting peptide or bax gene knockout significantly prevented oligomeric Aβ-induced neuronal cell death. These findings are first to demonstrate that Bax has an essential role in oligomeric Aβ-induced neuronal cell death, and that the targeting of Bax may be a therapeutic approach for AD.  相似文献   

20.
The relative synthesis of globin chains (α,β,Gγ,Aγ) has been comparatively evaluated in erythroid colonies from 26 fetal livers (7–15 gestational week) and 13 ‘normal’ adult marrows. Clusters deriving from erythroid colony-forming units (CFU-E) were analysed either individually or in pools of –20 colonies. Bursts deriving from earlier erythroid progenitors (erythroid burst-forming unit, ‘primitive’ or ‘mature’, P-BFU-E or M-BFU-E, respectively) were always analysed individually. Since γ-globin synthesis peaks earlier than β-chain production in both the fetal and the adult erythroblastic pathway, the globin synthetic pattern has been comparatively evaluated, in so far as possible, in colonies at an homogenous, advanced stage of hemoglobinization.In fetal liver cultures, the relative β-synthesis in CFU-E clusters, M- and P-BFU-E bursts constantly shows low, fairly uniform values. In adult marrow cultures, the relative γ-production in the corresponding three classes of colonies is characterized by low, rather homogeneous levels (except for more elevated γ-synthetic values occasionally observed in pooled CFU-E clusters comprising a majority of poorly-hemoglobinized colonies). A gradual decrease of relative γ-production has never been observed in colonies deriving from progressively more differentiated erythroid progenitors of both fetal and adult origin.These results suggest that fetal and adult BFU-E are endowed respectively with a program for prevailing HbF or HbA synthesis, which is not substantially modulated at the level of erythroid progenitors under standard culture conditions. By implication, it is postulated that, in fetal and more particularly adult age, modulation of globin synthesis is mediated via mechanism(s) acting at the level of erythroblasts, i.e. at the level of the early γ- and the late β-synthesis in their maturation pathway. The Hb switch (i.e. the switch from prevailingly HbF to HbA synthesis program) is possibly dependent on the ontogenic ‘maturation’ of BFU-E (and/or stem cells), which peaks in the perinatal period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号