首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The MutS protein plays an important role in the DNA mismatch repair system. Mutations in the mutS gene can lead to genome instability and ultimately cell malfunction. Here we have established a method for identifying functional defective mutants of MutS by random mutation and rifampicin screening. Some novel functional sites in MutS were identified. The MutS mutant strains were analyzed using surface plasmon resonance, gel filtration and far-western methods to determine the molecular mechanisms behind the DNA mismatch repair function of MutS.  相似文献   

2.
Summary In Escherichia coli, induction of the SOS functions by UV irradiation or by mutation in the recA gene promotes an SOS mutator activity which generates mutations in undamaged DNA. Activation of RecA protein by the recA730 mutation increases the level of spontaneous mutation in the bacterial DNA. The number of recA730-induced mutations is greatly increased in mismatch repair deficient strains in which replication errors are not corrected. This suggests that the majority of recA730-induced mutations (90%) arise through correctable, i.e. non-targeted, replication errors. This recA730 mutator effect is suppressed by a mutation in the umuC gene. We also found that dam recA730 double mutants are unstable, segregating clones that have lost the dam or the recA mutations or that have acquired a new mutation, probably in one of the genes involved in mismatch repair. We suggest that the genetic instability of the dam recA730 mutants is provoked by the high level of replication errors induced by the recA730 mutation, generating killing by coincident mismatch repair on the two unmethylated DNA strands. The recA730 mutation increases spontaneous mutagenesis of phage poorly. UV irradiation of recA730 host bacteria increases phage untargeted mutagenesis to the level observed in UV-irradiated recA + strains. This UV-induced mutator effect in recA730 mutants is not suppressed by a umuC mutation. Therefore UV and the recA730 mutation seem to induce different SOS mutator activities, both generating untargeted mutations.  相似文献   

3.
Summary Previous studies have shown that the mutT, mutH and mutL mutators of Escherichia coli have a marked advantage in competition growth with otherwise coisogenic wild-type strains. As shown in this paper the same is true for the mutS mismatch mutator. In three experiments mutS could outgrow the wild-type and had higher fitness values.  相似文献   

4.
Twenty-one Mut mutants were obtained from Escherichia coli B (B/UV) and K-12 (JC355) after treatment with mutagens. These Mut strains are characterized by rates of mutation to streptomycin resistance and T-phase resistance which are significantly higher than the parental (Mut(+)) rates. Mutator genes in 12 strains have been mapped at three locations on the E. coli chromosome: one close to the leu locus; five close to the purA locus; and six close to cysC. In addition, eight mutator strains derived from E. coli B/UV are still unmapped. Some effort was made to deduce the mode of action of the mutator genes. These isolates have been examined for possible defects in deoxyribonucleic acid repair mechanisms (dark repair of ultraviolet damage, host-cell reactivation, recombination ability, repair of mitomycin C damage). By using transductional analysis, it was found that the ultraviolet sensitivity of NTG119 and its mutator property results from two separate but closely linked mutations. PurA(+) transductants that receive mut from NTG119 or NTG35 are all more sensitive to mitomycin C than is the PurA recipient. Unless transduction selects for sensitivity, a probable interpretation is that defective repair of mitomycin C-induced damage is related to the mode of action of mut in these transductants and the donor. Abnormal purine synthesis may be involved in the mutability of some strains with cotransduction of the mutator properly and purA (100% cotransduction for NTG119). Three mutators are recombination-deficient and may have a defective step in recombination repair. One maps near three rec genes close to cysC.  相似文献   

5.
Summary Weak to severe deficit of GATC sequences in the DNA of enterobacteriophages appears to be correlated with their undermethylation during growth indam + (GATC ade-methylase) bacteria. This observation is corroborated by the sequence analysis showing no evidence for site-specific mutagenicity of 6meAde. The MutH protein of the methyl-directed mismatch repair system recognizes and cleaves the undermethylated GATC sequences in the course of mismatch repair. To enquire whether the MutH function of the methyldirected mismatch repair system participates in counterselection of GATC sequences in enterobacteriophages, we have studied the yield of bacteriophage X174 containing either 0, 1, or 2 GATC sequences, in wild type,dam, andmut (H, L, S, U) Escherichia coli. Following transfection with unmethylated DNA containing two GATC sequences, a net decrease in the yield of infective particles was observed in all bacterialmutH + dam strains, whereas no detectable decrease was observed in bacteria infected by DNA without GATC sequence. This effect of the MutH function is maximum in wild type andmutL andmutS bacteria whereas the effect is not significant inmutU bacteria, suggesting an interaction of the, helicase II with the MutH protein.However, indam + bacteria, the presence of GATC sequences leads to an increased yield of infective particles. The effect of GATC sequence and its Dam methylation system on phage yield inmutH bacteria reveals that methylated GATC sequences are advantageous to the phage. These results suggest that the methyl-directed mismatch repair system, and in particular its MutH protein, may have participated in severe counterselection of GATC sequences from enterobacteriophages, presumably, by DNA cleavage or by interfering with DNA replication or packaging when GATC sequences are undermethylated. Coevolution of the Dam and MutH proteins could then account for the loss of GATC sequences from DNA of bacteriophages growing indam + hosts.  相似文献   

6.
7.
Summary Oenothera plants homozygous for a recessive allele at the plastome mutator (pm) locus show non-Mendelian mutation frequencies that are 1000-fold higher than spontaneous levels. Chloroplast DNA (cpDNA) was isolated from nine mutants and two green isolates of the plastome mutator line. cpDNA restriction patterns were compared to cpDNA from a representative of the progenitor Johansen strain, and cpDNAs from all eleven plastome mutator lines show changes of fragment mobility due to deletion events at five discrete regions of the plastome. Most of the mutants have cpDNA restriction patterns identical to that of one of the green isolates from the plastome mutator line, and therefore, most of the differences in fragment length are probably not responsible for the mutant phenotypes. In contrast to the plastome mutator line, cpDNA from several populations of a closely related wild-type Oenothera species have few restriction fragment length polymorphisms. This suggests that both mutation frequencies and site-specific cpDNA deletions are elevated in the plastome mutator line, and implicates a defect in the cpDNA repair or replication machinery.  相似文献   

8.
Summary Unmethylated DNA heteroduplexes with a large single stranded loop in one strand have been prepared from separated strands of DNA from two different strains of bacteriophage , one of which has a 800 base pair IS1 insertion in the cI gene. The results of transfections with these heteroduplexes into wild-type and mismatch repair deficient bacteria indicate that such large non-homologies are not repaired by the Escherichia coli mismatch repair system. However, the results do suggest that some process can act to repair such large non-homologies in heteroduplex DNA. Transfections of a series of recombination and excision repair deficient mutants suggest that known excision or recombination repair systems of E. coli are not responsible for the repair. Repair of large non-homologies may play a role in gene conversion involving large insertion or deletion mutations.  相似文献   

9.
Summary The UV-sensitivity of wild type Salmonella strains has been compared to that of wild type E. coli and its UV-sensitive mutants. Many wild type Salmonella strains are 4–5 times more sensitive than wild type E. coli and their inactivation curve is similar to that for E. coli with a mutation in the polA gene. Alkaline sucrose gradient centrifugation has shown a deficiency of these strains in normal excision repair of UV-damaged DNA. This deficiency is not a Salmonella genus feature because one strain as resistant as wild type E. coli was found. This resistant strain showed normal excision repair in alkaline sucrose gradient centrifugation experiments. The possible influence of plasmids and mutations in repair genes on the ability of Salmonella to repair UV-damaged DNA is discussed.  相似文献   

10.
We have identified a gene in Saccharomyces cerevisiae, MSH3, whose predicted protein product shares extensive sequence similarity with bacterial proteins involved in DNA mismatch repair as well as with the predicted protein product of the Rep-3 gene of mouse. MSH3 was obtained by performing a polymerase chain reaction on yeast genomic DNA using degenerate oligonucleotide primers designed to anneal with the most conserved regions of a gene that would be homologous to Rep-3 and Salmonella typhimurium mutS. MSH3 seems to play some role in DNA mismatch repair, inasmuch as its inactivation results in an increase in reversion rates of two different mutations and also causes an increase in postmeiotic segregation. However, the effect of MSH3 disruption on reversion rates and postmeiotic segregation appears to be much less than that of previously characterized yeast DNA mismatch repair genes. Alignment of the MSH3 sequence with all of the known MutS homologues suggests that its primary function may be different from the role of MutS in repair of replication errors. MSH3 appears to be more closely related to the mouse Rep-3 gene and other similar eukaryotic mutS homologues than to the yeast gene MSH2 and other mutS homologues that are involved in replication repair. We suggest that the primary function of MSH3 may be more closely related to one of the other known functions of mutS, such as its role in preventing recombination between non-identical sequences.  相似文献   

11.
Mutators (also called hypermutators) are mutants which show higher than normal spontaneous mutation frequencies, ranging from 10–20 fold to 100–1000 fold higher, or sometimes even more, than wild-type cells. Being a mutator is advantageous to the organism when adapting to environmental changes or stressful situations, such as moving from one habitat to another, one host to another, exposure to antibiotics etc. However, this advantage is only a short-term benefit. In the long run, hypermutability leads to a fitness disadvantage due to accumulation of deleterious mutations or antagonistic pleiotropy or both. Contrary to intuitive expectations, hypermutability is commonly encountered in natural bacterial populations, especially among clinical isolates. It is believed to be involved in the emergence of antibiotic resistance and a hindrance to the treatment of infectious diseases. Here, I review the state of knowledge on the common mechanisms of hypermutability such as errors/defects in DNA replication, proof reading, mismatch repair, oxidative DNA damage, mistranslation etc., as well as phenomena associated with these processes, using Escherichia coli as a paradigmatic organism.  相似文献   

12.
We have recently described the presence of a high proportion of Pseudomonas aeruginosa isolates (20%) with an increased mutation frequency (mutators) in the lungs of cystic fibrosis (CF) patients. In four out of 11 independent P. aeruginosa strains, the high mutation frequency was found to be complemented with the wild-type mutS gene from P. aeruginosa PAO1. Here, we report the cloning and sequencing of two additional P. aeruginosa mismatch repair genes and the characterization, by complementation of deficient strains, of these two putative P. aeruginosa mismatch repair genes (mutL and uvrD). We also describe the alterations in the mutS, mutL and uvrD genes responsible for the mutator phenotype of hypermutable P. aeruginosa strains isolated from CF patients. Seven out of the 11 mutator strains were found to be defective in the MMR system (four mutS, two mutL and one uvrD). In four cases (three mutS and one mutL), the genes contained frameshift mutations. The fourth mutS strain showed a 3.3 kb insertion after the 10th nucleotide of the mutS gene, and a 54 nucleotide deletion between two eight nucleotide direct repeats. This deletion, involving domain II of MutS, was found to be the main one responsible for mutS inactivation. The second mutL strain presented a K310M mutation, equivalent to K307 in Escherichia coli MutL, a residue known to be essential for its ATPase activity. Finally, the uvrD strain had three amino acid substitutions within the conserved ATP binding site of the deduced UvrD polypeptide, showing defective mismatch repair activity. Interestingly, cells carrying this mutant allele exhibited a fully active UvrABC-mediated excision repair. The results shown here indicate that the putative P. aeruginosa mutS, mutL and uvrD genes are mutator genes and that their alteration results in a mutator phenotype.  相似文献   

13.
Mismatches in DNA occur either due to replication error or during recombination between homologous but non-identical DNA sequences or due to chemical modification of bases. The mismatch in DNA, if not repaired, result in high spontaneous mutation frequency. The repair has to be in the newly synthesized strand of the DNA molecule, otherwise the error will be fixed permanently. Three distinct mechanisms have been proposed for the repair of mismatches in DNA in prokaryotic cells and gene functions involved in these repair processes have been identified. The methyl-directed DNA mismatch repair has been examined inVibrio cholerae, a highly pathogenic gram negative bacterium and the causative agent of the diarrhoeal disease cholera. The DNA adenine methyltransferase encoding gene (dam) of this organism which is involved in strand discrimination during the repair process has been cloned and the complete nucleotide sequence has been determined.Vibrio cholerae dam gene codes for a 21.5 kDa protein and can substitute for theEscherichia coli enzyme. Overproduction ofVibrio cholerae Dam protein is neither hypermutable nor lethal both in Escherichia coli andVibrio cholerae. WhileEscherichia coli dam mutants are sensitive to 2-aminopurine,Vibrio cholerae 2-aminopurine sensitive mutants have been isolated with intact GATC methylation activity. The mutator genesmutS andmutL involved in the recognition of mismatch have been cloned, nucleotide sequence determined and their products characterized. Mutants ofmutS andmutL ofVibrio cholerae have been isolated and show high rate of spontaneous mutation frequency. ThemutU gene ofVibrio cholerae, the product of which is a DNA helicase II, codes for a 70 kDa protein. The deduced amino acid sequence of themutU gene hs all the consensus helicase motifs. The DNA cytosine methyltransferase encoding gene (dam) ofVibrio cholerae has also been cloned. Thedcm gene codes for a 53 kDa protein. This gene product might be involved in very short patch (VSP) repair of DNA mismatches. The vsr gene which is directly involved in VSP repair process codes for a 23 kDa protein. Using these information, the status of DNA mismatch repair inVibrio cholerae will be discussed.  相似文献   

14.
Argueso JL  Smith D  Yi J  Waase M  Sarin S  Alani E 《Genetics》2002,160(3):909-921
In mismatch repair (MMR), members of the MLH gene family have been proposed to act as key molecular matchmakers to coordinate mismatch recognition with downstream repair functions that result in mispair excision. Two members of this gene family, MLH1 and MLH3, have also been implicated in meiotic crossing over. These diverse roles suggest that a mutational analysis of MLH genes could provide reagents required to identify interactions between gene products and to test whether the different roles ascribed to a subset of these genes can be separated. In this report we show that in Saccharomyces cerevisiae the mlh1Delta mutation confers inviability in pol3-01 strain backgrounds that are defective in the Poldelta proofreading exonuclease activity. This phenotype was exploited to identify four mlh1 alleles that each confer a temperature-sensitive phenotype for viability in pol3-01 strains. In three different mutator assays, strains bearing conditional mlh1 alleles displayed wild-type or nearly wild-type mutation rates at 26 degrees. At 35 degrees, these strains exhibited mutation rates that approached those observed in mlh1Delta mutants. The mutator phenotype exhibited in mlh1-I296S strains was partially suppressed at 35 degrees by EXO1 overexpression. The mlh1-F228S and -I296S mutations conferred a separation-of-function phenotype in meiosis; both mlh1-F228S and -I296S strains displayed strong defects in meiotic mismatch repair but showed nearly wild-type levels of crossing over, suggesting that the conditional mutations differentially affected MLH1 functions. These genetic studies suggest that the conditional mlh1 mutations can be used to separate the MMR and meiotic crossing-over functions of MLH1 and to identify interactions between MLH1 and downstream repair components.  相似文献   

15.
We have used bacteriophage lambda to characterize the mutator effect of the SOS response induced by u.v. irradiation of Escherichia coli. Mutagenesis of unirradiated phages grown in irradiated or unirradiated bacteria was detected by measuring forward mutagenesis in the immunity genes or reversion mutagenesis of an amber codon in the R gene. Relative to the wild-type, the SOS mutator effect was higher in E. coli mismatch correction-deficient mutants (mutH, mutL and mutS) and lower in an adenine methylation-deficient mutant ( dam3 ). We conclude that a large proportion of SOS-induced 'untargeted' mutations are removed by the methyl-directed mismatch correction system, which acts on newly synthesized DNA strands. The lower SOS mutator effect observed in E. coli dam mutants may be due to a selective killing of mismatch-bearing chromosomes resulting from undirected mismatch repair. The SOS mutator effect on undamaged lambda DNA, induced by u.v. irradiation of the host, appears to result from decreased fidelity of DNA synthesis.  相似文献   

16.
Since the discovery of the first E. coli mutator gene, mutT, most of the mutations inducing elevated spontaneous mutation rates could be clearly attributed to defects in DNA repair. MutT turned out to be a pyrophosphohydrolase hydrolyzing 8-oxodGTP, thus preventing its incorporation into DNA and suppresing the occurrence of spontaneous AT-->CG transversions. Most of the bacterial mutator genes appeared to be evolutionarily conserved, and scientists were continuously searching for contribution of DNA repair deficiency in human diseases, especially carcinogenesis. Yet a human MutT homologue--hMTH1 protein--was found to be overexpressed rather than inactivated in many human diseases, including cancer. The interest in DNA repair contribution to human diseases exploded with the observation that germline mutations in mismatch repair (MMR) genes predispose to hereditary non-polyposis colorectal cancer (HNPCC). Despite our continuously growing knowledge about DNA repair we still do not fully understand how the mutator phenotype contributes to specific forms of human diseases.  相似文献   

17.
18.
Defects in DNA mismatch repair (MMR) occur frequently in natural populations of pathogenic and commensal bacteria, resulting in a mutator phenotype. We identified a unique genetic element in Streptococcus pyogenes strain SF370 that controls MMR via a dynamic process of prophage excision and reintegration in response to growth. In S. pyogenes, mutS and mutL are organized on a polycistronic mRNA under control of a common promoter. Prophage SF370.4 is integrated between the two genes, blocking expression of the downstream gene (mutL) and resulting in a mutator phenotype. However, in rapidly growing cells the prophage excises and replicates as an episome, allowing mutL to be expressed. Excision of prophage SF370.4 and expression of MutL mRNA occur simultaneously during early logarithmic growth when cell densities are low; this brief window of MutL gene expression ends as the cell density increases. However, detectable amounts of MutL protein remain in the cell until the onset of stationary phase. Thus, MMR in S. pyogenes SF370 is functional in exponentially growing cells but defective when resources are limiting. The presence of a prophage integrated into the 5′ end of mutL correlates with a mutator phenotype (10−7 to 10−8 mutation/generation, an approximately a 100-fold increase in the rate of spontaneous mutation compared with prophage-free strains [10−9 to 10−10 mutation/generation]). Such genetic elements may be common in S. pyogenes since 6 of 13 completed genomes have related prophages, and a survey of 100 strains found that about 20% of them are positive for phages occupying the SF370.4 attP site. The dynamic control of a major DNA repair system by a bacteriophage is a novel method for achieving the mutator phenotype and may allow the organism to respond rapidly to a changing environment while minimizing the risks associated with long-term hypermutability.  相似文献   

19.
We have shown previously that dam mutants of Escherichia coli have a weak mutator phenotype which generates mostly transition mutations in the P22 mnt gene. In contrast, in mutD5 cells, which have a strong mutator phenotype, transversion mutations were the most prevalent. A dam-16 mutD5 strain, defective in both DNA polymerase III associated-proofreading and Dam-directed mismatch repair exhibits a strong mutator phenotype but, surprisingly, its mutation spectrum is similar to that of the dam rather than the mutD parent. The most likely explanation is that Dam-directed mismatch repair in the mutD5 strain corrects most of the potential transition mutations (therefore yielding transversions) in the newly synthesised strand. When the dam-16 allele is present together with mutD5 a reduced efficiency of repair as well as loss of strand discrimination and misdirected repair results in the appearance of transition mutations at high frequency.  相似文献   

20.
DNA mismatch repair is an important pathway of mutation avoidance. It also contributes to the cytotoxic effects of some kinds of DNA damage, and cells defective in mismatch repair are resistant, or tolerant, to the presence of some normally cytotoxic base analogues in their DNA. The absence of a particular mismatch binding function from some mammalian cells confers resistance to the base analogues O6-methylguanine and 6-thioguanine in DNA. Cells also acquire a spontaneous mutator phenotype as a consequence of this defect. Impaired mismatch binding can cause an instability in DNA microsatellite regions that comprise repeated dinucleotides. Microsatellite DNA instability is common in familial and sporadic colon carcinomas as well as in a number of other tumours. Several independent lines of investigation have identified defects in mismatch repair proteins that are causally related to these cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号