首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of nitrate uptake, or its absence, on the utilization of nitrate previously accumulated by dark-grown, decpitated maize (Zea mays L., cv. DeKalb XL-45) seedlings was examined. Five-d-old plants that had been pretreated with 50 mM 14NO 3 ? for 20 h were exposed for 8 h to nutrient solutions containing either no nitrate or 50 mM 15NO 3 ? , 98.7 atom % 15N. The ambient solution, xylem exudate, and plant tissue were analyzed to determine the quantities of previously-accumulated (endogenous) 14NO 3 ? that were translocated to the xylem, lost to the solution, or reduced within the tissue during the 8-h period. Energy was continuously available to the roots from the attached endosperm. In the absence of incoming nitrate, appreciable reduction and translocation of the endogenous 14NO 3 ? occurred, but efflux of 14NO 3 ? to the external solution was minimal. In contrast, during 15NO 3 ? uptake, there was considerable efflux of 14NO 3 ? as well as translocation of 14NO 3 ? to the xylem, but little 14NO 3 ? was reduced. Thus there appeared to be an inverse relationship between 14NO 3 ? efflux and reduction. The data are tentatively interpreted on the basis of a model which envisages (a) two storage locations within roots, one of which primarily supplies nitrate for translocation and the other of which primarily supplies nitrate for outward passage through plasmalemma, and (b) the majority of nitrate reduction as occurring during or immediately following influx across the plasmalemma, with endogenous 14NO 3 ? initially moving outward being recycled inward and thereby being reduced.  相似文献   

2.
The fate of nitrate and nitrogen-15 was followed during the apparent induction phase (6h) for nitrate uptake by N-depleted dwarf bean (Phaseolus vulgaris L. ev. Witte Krombek). Experiments were done with intact plants and with detached root systems. Qualitatively and quantitatively, xylem exudation from detached roots was a bad estimate of the export of NO?3 or NO?3-15N from roots of intact plants. In vivo nitrate reductase activity (NRA) agreed well with in situ reduction, calculated as the difference between uptake and accumulation in whole plants, provided NRA was assayed with merely endogenous nitrate as substrate (‘actual’ NRA). The majority (75%) of the entering nitrate remained unmetabolized. Both nitrate reduction and nitrate accumulation occurred predominantly in the root system. Some (< 25%) of the root-reduced nitrate-N was translocated to the shoot. Nitrate uptake occurred against the concentration gradient between medium and root cells, and probably against the gradient of the electro-chemical potential of nitrate. Part of the energy expended for NO?3 absorption came from the tops, since decapitation and ringing at the stem base restricted nitrate uptake.  相似文献   

3.
The effect of some ammonium salts on nitrate reductase (NR) level, onin vivo nitrate reduction and on nitrate content was followed in the presence of nitrate in the medium, under changing experimental conditions, in excisedPisum sativum roots, and their effect was compared with that of KNO3, Ca(NO3)2 and NaNO3 at 15 mM NO3 - concentration, i.e. at a concentration which considerably exceeded the level of saturation with nitrate with respect to nitrate reductase. The effect of ammonium salts on NR level is indirect and changes from a positive one to a strongly negative one which is dependent on the time of action of the salt, on the presence of other cations, on pH of the solution of the ammonium salt and on the nature of the anion of the ammonium salt. A positive effect on the enzyme level can be observed in the presence of other cations than NH4 + at suitable concentrations of those ammonium salts, the solutions of which have their pH values in the acid region (i.e. NH4H2PO4, (NH4)2SO4 and NH4NO3). However their positive effect is independent of the presence of NH4 + ions, and it is obviously the result of an increased concentration of H+ ions. A clear-cut negative effect on NR level can be observed after 24 h in one-salt NH4NO3 solution where NH4 + is not balanced with other cations and thus certainly can adversely influence many metabolic processes, and in the solutions containing neutral (pH 6.2) and dibasic ammonium phosphates in which dissolved undissociated ammonia [(NH3). (H2O) which can also affect many metabolic processes incl. proteosynthesis] probably has a toxic influence. Thein vivo nitrate reduction is always depressed in excised pea roots in the presence of ammonium salts in the medium, regardless of the level of nitrate reductase. Under the described conditions, no relationship could be established between the enzyme level and the so-called metabolic NO3 - pool (i.e. NO2 - production under anaerobic conditions), nor between NR level and the total nitrate content in the roots. One-salt solutions of NaNO3, Ca(NO3)2 and KNO3 exert different effects on the level of nitrate reductase and on the content of NO3 - in the roots, but the in vivo NO3 - reduction shows the same trend as NR level in the roots influenced by these salts. Cl- ions, supplied in NH4C1, depress both NR level and NO3 - content in the roots at higher concentrations, but they do not significantly affect the in vivo nitrate reduction in comparison with other ammonium salts. These results indicate that NR level,in vivo nitrate reduction, and nitrate uptake can be regulated in pea roots independently of each other.  相似文献   

4.
Net nitrate uptake, 36ClO?3/NO?3 influx and 36Cl? influx into Pisum sativum L. cv. Feltham First seedlings have been examined following growth in culture medium containing different combinations of chloride and nitrate. When young (6 days old) seedlings, that had been grown in the absence of N were used, nitrate accumulation stimulated net nitrate uptake and 36ClO?3/NO?3 influx (r2= 0.99) while chloride accumulation inhibited nitrate uptake and 36ClO?3/NO?3 influx (r2= 0.65). When nitrate was provided during growth there was no effect of chloride pretreatment on net nitrate uptake and there was little effect of total [NO?3+ Cl?]i on 36ClO?3/NO?3 influx (r2= 0.26). A direct effect of Cl? on 36ClO?3/NO?3 influx was only found when seedlings had been starved of N for more prolonged periods (14 days). When moderate chloride was supplied during growth, 36Cl? influx was insensitive to nitrate or chloride accumulated, but significantly correlated with loge [NO?3+ Cl?]i (r2= 0.75). When trace amounts of Cl? were supplied during growth 36Cl? influx was inhibited by (a) NO?3 in the external medium and (b) Cl? pretreatment, but was insensitive to NO?3 pretreatment. The sensitivity of 36Cl? influx to external nitrate was not found following Cl? pretreatment in the absence of nitrate. The possibility that there are two populations of chloride carriers which differ in their sensitivity to external nitrate is discussed. Tentative schematic models to account for the regulation of nitrate and chloride uptake are proposed in the context of current hypotheses for regulation of ion transport and control systems theory.  相似文献   

5.
In the presence of purified nitrate reductase (NR) and 1 mM NADH, illuminated pea chloroplasts catalysed reduction of NO3? to NH3 with the concomitant evolution of O2. The rates were slightly less than those for reduction of NO2? to NH3 and O2, evolution by chloroplasts in the absence of NR and NADH (ca 6 μg atoms N/mg Chl/hr). Illuminated chloroplasts quantitatively reduced 0.2 mM oxaloacetate (OAA) to malate. In the presence of an extrachloroplast malate-oxidizing system comprised of NAD-specific malate dehydrogenase (NAD-MDH), NAD, NR and NO3?, illuminated chloroplasts supported OAA-dependent reduction of NO3? to NH3 with the evolution of O2. The reaction did not proceed in the absence of any of these supplements or in the dark but malate could replace OAA. The results are consistent with the reduction of NO3?by reducing equivalents from H2O involving a malate/OAA shuttle. The ratios for O2, evolved: C4-acid supplied and N reduced: C4-acid supplied in certain experiments imply recycling of the C4-acids.  相似文献   

6.
Intensive agriculture leads to increased nitrogen fluxes (mostly as nitrate, NO3 ?) to aquatic ecosystems, which in turn creates ecological problems, including eutrophication and associated harmful algal blooms. These problems have focused scientific attention on understanding the controls on nitrate reduction processes such as denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Our objective was to determine the effects of nutrient-tolerant bioturbating invertebrates (tubificid oligochaetes) on nitrogen cycling processes, specifically coupled nitrification–denitrification, net denitrification, DNRA, and biogeochemical fluxes (O2, NO3 ?, NH4 +, CO2, N2O, and CH4) in freshwater sediments. A mesocosm experiment determined how tubificid density and increasing NO3 ? concentrations (using N15 isotope tracing) interact to affect N cycling processes. At the lowest NO3 ? concentration and in the absence of bioturbation, the relative importance of denitrification to DNRA was similar (i.e., 49.6 and 50.4 ± 8.1 %, respectively). Increasing NO3 ? concentrations in the control cores (without fauna) stimulated denitrification, but did not enhance DNRA, which significantly altered the relative importance of denitrification compared to DNRA (94.6 vs. 5.4 ± 0.9 %, respectively). The presence of tubificid oligochaetes enhanced O2, NO3 ?, NH4 + fluxes, greenhouse gas production, and N cycling processes. The relative importance of denitrification to DNRA shifted towards favoring denitrification with both the increase in NO3 ? concentrations and the increase of bioturbation activity. Our study highlights that understanding the interactions between nutrient-tolerant bioturbating species and nitrate contamination is important for determining the nitrogen removal capacity of eutrophic freshwater ecosystems.  相似文献   

7.
Intact sediment cores from rivers of the Bothnian Bay (Baltic Sea) were studied for denitrification based on benthic fluxes of molecular nitrogen (N2) and nitrous oxide (N2O) in a temperature controlled continuous water flow laboratory microcosm under 10, 30, 100, and 300 μM of 15N enriched nitrate (NO3 ?, ~98 at. %). Effluxes of both N2 and N2O from sediment to the overlying water increased with increasing NO3 ? load. Although the ratio of N2O to N2 increased with increasing NO3 ? load, it remained below 0.04, N2 always being the main product. At the NO3 ? concentrations most frequently found in the studied river water (10–100 μM), up to 8% of the NO3 ? was removed in denitrification, whereas with the highest concentration (300 μM), the removal by denitrification was less than 2%. However, overall up to 42% of the NO3 ? was removed by mechanisms other than denitrification. As the microbial activity was simultaneously enhanced by the NO3 ? load, shown as increased oxygen consumption and dissolved inorganic carbom efflux, it is likely that a majority of the NO3 ? was assimilated by microbes during their growth. The 15N content in ammonium (NH4 +) in the efflux was low, suggesting that reduction of NO3 ? to NH4 + was not the reason for the NO3 ? removal. This study provides the first published information on denitrification and N2O fluxes and their regulation by NO3 ? load in eutrophic high latitude rivers.  相似文献   

8.
We present 42 dual-isotope nitrate analyses of fresh water samples collected in the St. Lawrence River between June 2006 and July 2008. Measured δ15N–NO3 ? and δ18O–NO3 ? values correlate negatively, while δ18O–NO3 ? displays no negative correlation with nitrate concentration. This suggests that nitrate uptake and/or elimination by denitrification is not the main driver of observed variations in nitrate concentration and isotopic signature in the St. Lawrence River. In addition, δ18O–NO3 ? is negatively correlated with the seasonally variable δ18O of ambient water, indicating that the variation in the isotopic signature of nitrate is barely modulated by in-stream nitrate regeneration (nitrification). It rather is constrained by along-river changes in the external sources of nitrate. Given the distinct nitrogen (N) and oxygen (O) isotopic signature of atmospheric nitrate, we argue that observed seasonal variations of δ15N–NO3 ? and δ18O–NO3 ? in the St. Lawrence River are due to variable contributions of snowmelt-derived water. Based on a N and O isotope mass balance, we show that total nitrate loading in the St. Lawrence River is dominated by a N input from the Great Lakes (47 ± 28 %) and from nitrate regeneration of both internal and external N (48 ± 22 %). While temporal nitrate N and O isotope dynamics in the St. Lawrence River are mainly influenced by the atmospheric N input fluctuations, with an increase in atmospheric loading during spring, atmospheric N plays overall a rather insignificant role with regards to the N budget (5 ± 4 %).  相似文献   

9.
The Wei River is the largest tributary of the Yellow River in China. To understand the sources and cycling of nitrate in the Wei River, we determined the concentrations and nitrogen and oxygen isotopic values of nitrate from water samples. Our results revealed that NO3?-N dominated the inorganic N and ranged from 0.1 to 8.8 mg/L (averaging 3.3 mg/L). Although this NO3?-N concentration does not exceed the World Health Organization's drinking water standard of 10 mg/L, the NO3?-N content of most water samples exceeded 3 mg/L, indicating poor water quality. The NO3?-N concentrations and δ15N-NO3? values demonstrate that there are significant differences in the spatial distribution of nitrogen between the tributaries and the main stream of the Wei River. In addition, a negative linear relationship (r2 = 0.63) between NO3?-N concentrations and δ18O-NO3? values suggests mixing between two distinct sources (fertilizer and manure or sewage). Furthermore, we infer that the main source of nitrate is not manure or sewage itself, but rather the nitrification of NH4+ in manure and sewage. Finally, no obvious denitrification processes were observed. These results expand our understanding of sewage as a major source of nitrate to the Wei River, emphasizing the role of nitrification.  相似文献   

10.
Nitrate influx, efflux and net nitrate uptake were measured for the slow-growing Quercus suber L. (cork-oak) to estimate the N-uptake efficiency of its seedlings when grown with free access to nitrate. We hypothesise that nitrate influx, an energetically costly process, is not very efficiently controlled so as to avoid losses through efflux, because Q. suber has relatively high respiratory costs for ion uptake. Q. suber seedlings were grown in a growth room in hydroponics with 1 mM NO3 -. Seedlings were labelled with 15NO3 - in nutrient solution for 5 min to measure influx and for 2 h for net uptake. Efflux was calculated as the difference between influx and net uptake. Measurements were made in the morning, afternoon and night. The site of nitrate reduction was estimated from the ratio of NO3 - to amino acids in the xylem sap; the observed ratio indicated that nitrate reduction occurred predominantly in the roots. Nitrate influx was always much higher than net acquisition and both tended to be lower at night. High efflux occurred both during the day and at night, although the proportion of 15NO3 - taken up that was loss through efflux was proportionally higher during the night. Efflux was a significant fraction of influx. We concluded that the acquisition system is energetically inefficient under the conditions tested. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Abstract Growth-chamber cultivated Raphanus plants accumulate nitrate during their vegetative growth. After 25 days of growth at a constant supply to the roots of 1 mol m?3 (NO?3) in a balanced nutrient solution, the oldest leaves (eight-leaf stage) accumulated 2.5% NO?3-nitrogen (NO3-N) in their lamina, and almost 5% NO3-N in their petioles on a dry weight basis. This is equivalent to approximately 190 and 400 mol?3 m?3 concentration of NO?3 in the lamina and the petiole, respectively, as calculated on a total tissue water content basis. Measurements were made of root NO?3 uptake, NO?3 fluxes in the xylem, nitrate uptake by the mesophyll cells, and nitrate reduction as measured by an in vivo test. NO?3 uptake by roots and mesophyll cells was greater in the light than in the dark. The NO?3 concentration in the xylem fluid was constant with leaf age, but showed a distinct daily variation as a result of the independent fluxes of root uptake, transpiration and mesophyll uptake. NO?3 was reduced in the leaf at a higher rate in the light than in the dark. The reduction was inhibited at the high concentrations calculated to exist in the mesophyll vacuoles, but reduction continued at a low rate, even when there was no supply from the incubation medium. Sixty-four per cent of the NO?3 influx was turned into organic nitrogen, with the remaining NO?3 accumulating in both the light and the dark.  相似文献   

12.
Nitrogen retention in soil organic matter (SOM) is a key process influencing the accumulation and loss of N in forest ecosystems, but the rates and mechanisms of inorganic N retention in soils are not well understood. The primary objectives of this study were to compare ammonium (NH4+), nitrite (NO2?), and nitrate (NO3?) immobilization among soils developed under different tree species in the Catskill Mountains of New York State, and to determine the relative roles of biotic or abiotic processes in soil N retention. A laboratory experiment was performed, where 15N was added as NH4+, NO2?, or NO3? to live and mercury‐treated O horizon soils from three tree species (American beech, northern red oak, sugar maple), and 15N recoveries were determined in the SOM pool. Mercuric chloride was used to treat soils as this chemical inhibits microbial metabolism without significantly altering the chemistry of SOM. The recovery of 15N in SOM was almost always greater for NH4+ (mean 20%) and NO2? (47%) than for NO3? (10%). Ammonium immobilization occurred primarily by biotic processes, with mean recoveries in live soils increasing from 9% at 15 min to 53% after 28 days of incubation. The incorporation of NO2? into SOM occurred rapidly (<15 min) via abiotic processes. Abiotic immobilization of NO2? (mean recovery 58%) was significantly greater than abiotic immobilization of NH4+ (7%) or NO3? (7%). The incorporation of NO2? into SOM did not vary significantly among tree species, so this mechanism likely does not contribute to differences in soil NO3? dynamics among species. As over 30% of the 15NO2? label was recovered in SOM within 15 min in live soils, and the products of NO2? incorporation into SOM remained relatively stable throughout the 28‐day incubation, our results suggest that NO2? incorporation into SOM may be an important mechanism of N retention in forest soils. The importance of NO2? immobilization for N retention in field soils, however, will depend on the competition between incorporation into SOM and nitrification for transiently available NO2?. Further research is required to determine the importance of this process in field environments.  相似文献   

13.
The effect of ambient ammonium (0.5 millimolar [14NH4]2SO4) added to a nutrient solution containing 1.0 millimolar K15NO3, 99 atom per cent 15N, upon [15N]nitrate assimilation and utilization of previously accumulated [14N]nitrate was investigated. Corn seedlings, 5-day-old dark-grown decapitated (experiment I) and 10-day-old light-grown intact (experiment II), which had previously been grown on K14NO3 nutrient solution, were used. In both experiments, the presence of ambient ammonium decreased [15N]nitrate influx (20% after 6 hours) without significantly affecting the efflux of previously accumulated [14N]nitrate. In experiment I, relative reduction of [15N]nitrate (reduction as a percentage of influx) was inhibited more than was [15N]nitrate influx. Nevertheless, in experiment I, where all reduction could be assigned to the root system, the absolute inhibition of reduction during the 12 hours (13 micromoles/root) was less than the absolute inhibition in influx (24 micromoles/root). The data suggest that the influence of ammonium on [15N]nitrate influx could not be totally accounted for by the decrease in the potential driving force which resulted from restricted reduction; an additional impact on the influx process is indicated. Reduction of [15N]nitrate in experiment II after 6 hours accounted for 30 and 18% of the tissue excess 15N in the control and ammonium treatments, respectively. Relative distribution of 15N between roots and exudate (experiment I), or between roots and shoots (experiment II) was not affected by ammonium. On the other hand, the accumulation of [15N]nitrate in roots, shoots, and xylem exudate was enhanced by ammonium treatment compared to the control, whereas the accumulation of reduced 15N was inhibited.  相似文献   

14.
The objective of this study was to assess the impacts of land use changes and irrigation water resource on the nitrate contamination in shallow groundwater. 394 water samples were sampled from the same irrigation wells during a period of five years (from 2002 to 2007) in Huantai County in the North China Plain. NO3-N concentration in irrigation wells was measured. Geostatistical method combined with GIS technique was used to analyze the spatio-temporal distribution of groundwater NO3-N concentrations in Huantai County. Land use type and irrigation water resource were combined with the variation of NO3-N concentrations by statistical approach to investigate the relationship between them. The distribution map showed that the percentages of area increased by 13.06%, 14.37%, 12.23% and 3.85% for that had nitrate concentrations of 10–15, 15–20, 20–30 mg L?1 and greater than 30 mg L?1 for shallow groundwater, respectively, while decreased by 28.87% and 14.63% for 0–5 and 5–10 mg L?1. In the well-irrigated field, the NO3-N concentrations in shallow groundwater had increased for vegetables, wheat–vegetables and wheat–maize rotations. In contrast, fast-growing tree system could act as a buffer to retain shallow groundwater nitrate content which resulted in reduced NO3-N concentrations. Under the same land use condition, irrigation with sewage, or well and sewage by turns would both enormously add nitrate to groundwater.  相似文献   

15.
The absorption of nitrate and the activity of nitrate reductase were much lower in Ca-deficient plants ofCururbita pepo L., cv. ‘Kveta’ than in normal plants grown in complete nutrient solution for a period of 8 days. After the addition of nitrate to the nutrient medium, nitrate reductase activity in the roots of NO3-deficient plants sharply rose during the first 6 h and then remained constant during the following 6 h; the content of endogenous NO3 ? rose slowly and continuously. These processes were depressed in (Ca, NO3)-deficient plants independently of the addition of Ca2+ to the medium in the variant with NO3 ?. Thus it seems that the whole nitrogen metabolism,i.e. both NO3 ? absorption and the synthesis of nitrate reductase, is impaired in Ca-deficient plants.  相似文献   

16.
The extent to which in-stream processes alter or remove nutrient loads in agriculturally impacted streams is critically important to watershed function and the delivery of those loads to coastal waters. In this study, patch-scale rates of in-stream benthic processes were determined using large volume, open-bottom benthic incubation chambers in a nitrate-rich, first to third order stream draining an area dominated by tile-drained row-crop fields. The chambers were fitted with sampling/mixing ports, a volume compensation bladder, and porewater samplers. Incubations were conducted with added tracers (NaBr and either 15N[NO3 ?], 15N[NO2 ?], or 15N[NH4 +]) for 24–44 h intervals and reaction rates were determined from changes in concentrations and isotopic compositions of nitrate, nitrite, ammonium and nitrogen gas. Overall, nitrate loss rates (220–3,560 μmol N m?2 h?1) greatly exceeded corresponding denitrification rates (34–212 μmol N m?2 h?1) and both of these rates were correlated with nitrate concentrations (90–1,330 μM), which could be readily manipulated with addition experiments. Chamber estimates closely matched whole-stream rates of denitrification and nitrate loss using 15N. Chamber incubations with acetylene indicated that coupled nitrification/denitrification was not a major source of N2 production at ambient nitrate concentrations (175 μM), but acetylene was not effective for assessing denitrification at higher nitrate concentrations (1,330 μM). Ammonium uptake rates greatly exceeded nitrification rates, which were relatively low even with added ammonium (3.5 μmol N m?2 h?1), though incubations with nitrite demonstrated that oxidation to nitrate exceeded reduction to nitrogen gas in the surface sediments by fivefold to tenfold. The chamber results confirmed earlier studies that denitrification was a substantial nitrate sink in this stream, but they also indicated that dissolved inorganic nitrogen (DIN) turnover rates greatly exceeded the rates of permanent nitrogen removal via denitrification.  相似文献   

17.
It has been pointed out that tea (Camellia sinensis (L.) O. Kuntze) prefers ammonium (NH 4 + ) over nitrate (NO 3 ? ) as an inorganic nitrogen (N) source. 15N studies were conducted using hydroponically grown tea plants to clarify the characteristics of uptake and assimilation of NH 4 + and NO 3 ? by tea roots. The total 15N was detected, and kinetic parameters were calculated after feeding 15NH 4 + or 15NO 3 ? to tea plants. The process of N assimilation was studied by monitoring the dynamic 15N abundance in the free amino acids of tea plant roots by GC-MS. Tea plants supplied with 15NH 4 + absorbed significantly more 15N than those supplied with 15NO 3 ? . The kinetics of 15NH 4 + and 15NO 3 ? influx into tea plants followed a classic biphasic pattern, demonstrating the action of a high affinity transport system (HATS) and a low affinity transport system (LATS). The V max value for NH 4 + uptake was 54.5 nmol/(g dry wt min), which was higher than that observed for NO 3 ? (39.3 nmol/(g dry wt min)). KM estimates were approximately 0.06 mM for NH 4 + and 0.16 mM for NO 3 ? , indicating a higher rate of NH 4 + absorption by tea plant roots. Tea plants fed with 15NH 4 + accumulated larger amounts of assimilated N, especially glutamine (Gln), compared with those fed with 15NO 3 ? . Gln, Glu, theanine (Thea), Ser, and Asp were the main free amino acids that were labeled with 15N under both conditions. The rate of N assimilation into Thea in the roots of NO 3 ? -supplied tea plants was quicker than in NH 4 + -supplied tea plants. NO 3 ? uptake by roots, rather than reduction or transport within the plant, seems to be the main factor limiting the growth of tea plants supplied with NO 3 ? as the sole N source. The NH 4 + absorbed by tea plants directly, as well as that produced by NO 3 ? reduction, was assimilated through the glutamine synthetase-glutamine oxoglutarate aminotransferase pathway in tea plant roots. The 15N labeling experiments showed that there was no direct relationship between the Thea synthesis and the preference of tea plants for NH 4 + .  相似文献   

18.
Role of sugars in nitrate utilization by roots of dwarf bean   总被引:4,自引:0,他引:4  
Nitrate uptake and in vivo, nitrate reductase activity (NRA) in roots of Phaseolus vulgaris, L. cv. Witte Krombek were measured in nitrogen-depleted plants of varying sugar status, Variation in sugar status was achieved at the start of nitrate nutrition by excision, ringing, darkness or administration of sugars to the root medium. The shape of the apparent induction pattern of nitrate uptake was not influenced by the sugar status of the absorbing tissue. When measured after 6 h of nitrate nutrition (0.1 mol m?3), steady state nitrate uptake and root NRA were in the order intact>dark>ringed>excised. Exogenous sucrose restored NRA in excised roots to the level of intact plants. The nitrate uptake rate of excised roots, however, was not fully restored by sucrose (0.03–300 mol m?3). When plants were decapitated after an 18 h NO3? pretreatment, the net uptake rate declined gradually to become negative after three hours. This decline was slowed down by exogenous fructose, whilst glucose rapidly (sometimes within 5 min) stimulated NG?3 uptake. Presumably due to a difference in NO3? due to a difference in NO3? uptake, the NRA of excised roots was also higher in the presence of glucose than in the presence of fructose after 6 h of nitrate nutrition. The sugar-stimulation of, oxygen consumption as well as the release of 14CO2 from freshly absorbed (U-14C) sugar was the same for glucose and fructose. Therefore, we propose a glucose-specific effect on NO3? uptake that is due to the presence of glucose rather than to its utilization in root respiration. A differential glucose-fructose effect on nitrate reductase activity independent of the effect on NO3? uptake was not indicated. A constant level of NRA occurred in roots of NO3? induced plants. Removal of nutrient nitrate from these plants caused an exponential NRA decay with an approximate half-life of 12 h in intact plants and 5.5 h in excised roots. The latter value was also found in roots that were excised in the presence of nitrate, indicating that the sugar status primarily determines the apparent rate of nitrate reductase decay in excised roots.  相似文献   

19.
Human alteration of the nitrogen cycle has stimulated research on nitrogen cycling in many aquatic and terrestrial ecosystems, where analyses of nitrate (NO3 ) by standard laboratory methods are common. A recent study by Colman et al. (Biogeochemistry 84:161–169, 2007) identified a potential analytical interference of soluble iron (Fe) with NO3 quantification by standard flow-injection analysis of soil extracts, and suggested that this interference may have led Dail et al. (Biogeochemistry 54:131–146, 2001) to make an erroneous assessment of abiotic nitrate immobilization in prior 15N pool dilution studies of Harvard Forest soils. In this paper, we reproduce the Fe interference problem systematically and show that it is likely related to dissolved, complexed-Fe interfering with the colorimetric analysis of NO2 . We also show how standard additions of NO3 and NO2 to soil extracts at native dissolved Fe concentrations reveal when the Fe interference problem occurs, and permit the assessment of its significance for past, present, and future analyses. We demonstrate low soluble Fe concentrations and good recovery of standard additions of NO3 and NO2 in extracts of sterilized Harvard Forest soils. Hence, we maintain that rapid NO3 immobilization occurred in sterilized samples of the Harvard Forest O horizon in the study by Dail et al. (2001). Furthermore, additional evidence is accumulating in the literature for rapid disappearance of NO3 added to soils, suggesting that our observations were not the result of an isolated analytical artifact. The conditions for NO3 reduction are likely to be highly dependent on microsite properties, both in situ and in the laboratory. The so-called “ferrous wheel hypothesis” (Davidson et al., Glob Chang Biol 9:228–236, 2003) remains an unproven, viable explanation for published observations.  相似文献   

20.
In forests of the humid subtropics of China, chronically elevated nitrogen (N) deposition, predominantly as ammonium (NH4+), causes significant nitrate (NO3?) leaching from well‐drained acid forest soils on hill slopes (HS), whereas significant retention of NO3? occurs in near‐stream environments (groundwater discharge zones, GDZ). To aid our understanding of N transformations on the catchment level, we studied spatial and temporal variabilities of concentration and natural abundance (δ15N and δ18O) of nitrate (NO3?) in soil pore water along a hydrological continuum in the N‐saturated Tieshanping (TSP) catchment, southwest China. Our data show that effective removal of atmogenic NH4+ and production of NO3? in soils on HS were associated with a significant decrease in δ15N‐NO3?, suggesting efficient nitrification despite low soil pH. The concentration of NO3? declined sharply along the hydrological flow path in the GDZ. This decline was associated with a significant increase in both δ15N and δ18O of residual NO3?, providing evidence that the GDZ acts as an N sink due to denitrification. The observed apparent 15N enrichment factor (ε) of NO3? of about ?5‰ in the GDZ is similar to values previously reported for efficient denitrification in riparian and groundwater systems. Episode studies in the summers of 2009, 2010 and 2013 revealed that the spatial pattern of δ15N and δ18O‐NO3? in soil water was remarkably similar from year to year. The importance of denitrification as a major N sink was also seen at the catchment scale, as largest δ15N‐NO3? values in stream water were observed at lowest discharge, confirming the importance of the relatively small GDZ for N removal under base flow conditions. This study, explicitly recognizing hydrologically connected landscape elements, reveals an overlooked but robust N sink in N‐saturated, subtropical forests with important implications for regional N budgets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号