共查询到20条相似文献,搜索用时 0 毫秒
1.
Alpha-1-protease inhibitor, (alpha-1-PI), the major inhibitor of serine proteases in human plasma, has three asparagine-linked carbohydrate chains located at positions 46, 83 and 247. The protein has a microheterogeneity which is seen on isoelectric focusing and which is a result of whether the various carbohydrate chains are in bi- or tri-antennary forms. Tri-antennary enriched forms of alpha-1-PI are associated with inflammation. By using a combination of three methods, reductive salting out, Sepharose-bound Concanavalin A affinity chromatography, and Sepharose-bound anhydrochymotrypsin, biologically active alpha-1-PI was obtained in tri-antennary enriched and tri-antennary depleted forms. These preparations should be useful for studies on the physiological role of the carbohydrate moiety in alpha-1-PI. 相似文献
2.
We purified the R1 alpha-1-protease inhibitor from rat serum and developed a convenient assay for its detection during purification procedures. Purification was accomplished by desalting, DEAE-Sephacel, zinc chelate, and reactive green-agarose columns. The resultant antiprotease had a molecular weight of 54,000 and inhibited elastase, chymotrypsin, and trypsin. By isoelectric focusing, five bands were produced with pI values from 4.3 to 4.7. Functional assays utilizing protease substrates imbedded in agarose plates were evaluated for the ability to distinguish the R1 alpha-1-protease inhibitor from the other serum antiproteases eluted in column chromatography fractions. This technique of screening for anti-protease activity was compared to conventional spectrophotometric methods and was found to correlate well when quantifying inhibition of elastase and chymotrypsin, but not trypsin. The presence of alpha-1-protease inhibitor was most reliably detected by testing for anti-elastase activity. Technician time and expense were saved by employing protease substrate plates to test chromatogrpahy fractions. This technique may facilitate purification of other protease inhibitors. 相似文献
3.
Affinity chromatography of alpha-1-protease inhibitor using Sepharose-4B-bound anhydrochymotrypsin 总被引:1,自引:0,他引:1
Sepharose 4B-bound bovine anhydrochymotrypsin (AnhCT), a catalytically inactive form of chymotrypsin, was shown to be effective for retaining active alpha-1-protease inhibitor (alpha-1-PI, also alpha-1-antitrypsin) from human plasma, while showing no measurable affinity for oxidized or protease complexed alpha-1-PI, or for most other plasma proteins. alpha-1-PI eluted from this resin with 0.1 M chymostatin retained full activity against trypsin, chymotrypsin, and elastase. In addition to alpha-1-PI, AnhCT-Sepharose binds a limited number of other plasma proteins. Using monospecific antisera to plasma protease inhibitors, one of these proteins was identified as inter-alpha-trypsin inhibitor, and it was recoverable in active form. Therefore, an AnhCT-Sepharose 4B resin has been demonstrated to be of value for isolating active forms of alpha-1-PI from solutions, and may also be useful for the isolation of inter-alpha-trypsin inhibitor. 相似文献
4.
Myeloperoxidase-catalyzed inactivation of alpha 1-protease inhibitor by human neutrophils 总被引:18,自引:0,他引:18
R A Clark P J Stone A El Hag J D Calore C Franzblau 《The Journal of biological chemistry》1981,256(7):3348-3353
We have examined the effect of the myeloperoxidase-hydrogen peroxide-halide system and of activated human neutrophils on the ability of serum alpha 1-protease inhibitor (alpha 1-PI) to bind and inhibit porcine pancreatic elastase. Exposure to the isolated myeloperoxidase system resulted in nearly complete inactivation of alpha 1-PI. Inactivation was rapid (10 to 20 s); required active myeloperoxidase, micromolar concentrations of H2O2 (or glucose oxidase as a peroxide generator), and a halide cofactor (Cl- or I-); and was blocked by azide, cyanide, and catalase. Intact neutrophils similarly inactivated alpha 1-PI over the course of 5 to 10 min. Inactivation required the neutrophils, a halide (Cl-), and a phorbol ester to activate secretory and metabolic activity. It was inhibited by azide, cyanide, and catalase, but not by superoxide dismutase. Neutrophils with absent myeloperoxidase or impaired oxidative metabolism (chronic granulomatous disease) failed to inactivate alpha 1-PI, and these defects were specifically corrected by the addition of myeloperoxidase or H2O2, respectively. Thus, stimulated neutrophils secrete myeloperoxidase and H2O2 which combine with a halide to inactivate alpha 1-PI. We suggest that leukocyte-derived oxidants, especially the myeloperoxidase system, may contribute to proteolytic tissue injury, for example in elastase-induced pulmonary emphysema, by oxidative inactivation of protective antiproteases. 相似文献
5.
J W Brodrick C B Glaser C Largman M C Geokas M Graceffo M Fassett H Maeda 《Biochemistry》1980,19(21):4865-4870
In a previous report [Largman, C., Brodrick, J.W., Geokas, M.C., Sischo, W.M., & Johnson, J.H. (1979) J. Biol. Chem. 254, 8516-8523] it was demonstrated that human proelastase 2 and alpha 1-protease inhibitor react slowly to form a complex that is stable to denaturation with sodium dodecyl sulfate and beta-mercaptoethanol and that the zymogen can be recovered from the isolated complex following dissociation by hydroxylamine. The present report demonstrates that bovine chymotrypsinogen A reacts with human alpha 1-protease inhibitor in a very similar manner. The rate of complex formation was measured by two methods. In the first, the reaction was followed by determining the loss of the inhibitory activity of alpha 1-protease inhibitor as a function of time. A second-order rate constant for complex formation formation (pH 7.6, 36 degrees C) of 12.9 +/- 2.4 M-1s-1 was obtained. In the second procedure, the reaction of fluorescein isothiocyanate labeled chymotrypsinogen A with alpha 1-protease inhibitor was measured by fluorescence polarization. A second-order rate constant (pH 7.6, 37 degrees C) of 13.9 +/- 2.1 M-1s-1 was obtained. The rate of complex formation is approximately 10(-5) of that measured for the reaction of bovine chymotrypsin with alpha 1-protease inhibitor. Dissociation of the complex was not observed after dilution or the addition of excess bovine alpha-chymotrypsin. As judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis experiments, human chymotrypsinogens I and II react with alpha 1-protease inhibitor at rates that are approximatley equivalent to that determined for bovine chymotrypsinogen A. In contrast, bovine trypsinogen reacts very slowly with alpha 1-protease inhibitor, at a rate that is at most 10(-2) of that of bovine chymotrypsinogen A. These results suggest that zymogens react with alpha 1-protease inhibitor by virtue of partially formed active sites and that the potential active-site specificity of the zymogen in part determines the rate of complex formation. 相似文献
6.
The major endogenous inhibitor of neutrophil elastase in the plasma, alpha 1-protease inhibitor (alpha 1-PI), has a single cysteine residue which has been shown to form mixed disulfides with a number of thiols in vitro. Under normal physiological conditions, the plasma concentrations of reduced and oxidized thiols are such that a major fraction of alpha 1-PI in the circulation in vivo is in the form of mixed disulfides [Laurell, C.-B. (1979) in The Chemistry and Physiology of Human Plasma Proteins (Bing, D. H., Ed.) pp 329-341, Pergamon, New York]. We show here that the mixed disulfide between glutathione or cysteine and alpha 1-PI (alpha 1-PI-SSG or alpha 1-PI-SScys) has an intrinsic fluorescence which distinguishes it from the reduced form of alpha 1-PI. By employing the fluorescence difference, we have measured the ratio of alpha 1-PI-SH to mixed disulfide alpha 1-PI in redox buffers of different ratios of reduced to oxidized glutathione (GSH to GSSG) or reduced to oxidized cysteine (cys to cysSScys) and have calculated an equilibrium constant and redox potential of 0.74 +/- 0.08 and 8 +/- 2 mV, respectively, for the alpha 1-PI-SH/alpha 1-PI-SSG couple and of 0.32 +/- 0.02 and 29 +/- 2 mV, respectively, for the alpha 1-PI-SH/alpha 1-PI-SScys couple. We are unable to detect any change in Trp fluorescence in the complex of alpha 1-PI and elastase when the preformed complex is added to the same GSH/GSSG or cys/cysSScys redox buffers.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
8.
The molecular stoichiometry of trypsin inhibition by human alpha-1-proteinase inhibitor 总被引:4,自引:0,他引:4
D A Johnson R N Pannell J Travis 《Biochemical and biophysical research communications》1974,57(3):584-589
The stoichiometry of interaction of human alpha-1-proteinase inhibitor with porcine trypsin has been determined using a highly purified preparation of inhibitor. In contrast to the reports of others, one mole of alpha-1-proteinase inhibitor was found to inhibit two moles of trypsin. Disc gel electrophoresis indicates that the 2:1 complex is preferentially formed even when free alpha-1-proteinase inhibitor is still present. 相似文献
9.
Up until now it has been assumed that the protease-binding property of alpha1-protease inhibitor (alpha1PI) was destroyed by acid starch gel electrophoresis (pH 4.9). Analyses on acid starch gel blocks for pH and conductivity changes during and following a typical electrophoretic run showed that it was unlikely that the separating alpha1PI would be exposed to pH values lower than 6.2, and that the allele products, following the passage of the buffer front, were in an environment of constant pH(6.3), extremely low conductivity and high field strength. These results strongly suggested the likelihood that alpha1-PI would be chemically and physically unchanged as a result of exposure to acid starch gel electrophoresis. In order to test this likelihood, human serum was electrophoretically separated in acid starch gel and following electrophoresis, was immersed in 0.1 M diethylbarbiturate buffer, pH 8.6, containing 20 mug/ml of pancreatic elastase. The pH-adjusted (8.15) and elastase-impregnated starch gel layer was superimposed on hemoglobin-agar for 2.5 h at 37 degrees C followed by immersion of the hemoglobin-agar layer in 1% NaCl overnight, distilled water for 2 h, drying under filter paper and staining. The results showed zones of undigested hemoglobin indicating, unequivocally, that the separated alpha1PI allele products are capable of forming complexes with proteases and that alpha1PI is not inactivated following exposure to acid starch gel electrophoresis. Densitometric analysis of the transparent stained zones on a clear agar gel background offers an alternative to analysis of the acid starch gel-separated zones by antigen-antibody crossed electrophoresis and as such is suitable for identification of alpha1-protease inhibitor phenotypes. Further, the method is specific for alpha1PI and a densitometric scan provides direct information relative to the protease-binding capacity of the sample as well as the contribution of each alpha1PI allele product to that capacity. 相似文献
10.
Two glycopeptides were obtained from alpha 1-protease inhibitor after extensive pronase digestion and chromatography on Bio-Gel P-10 and concanavalin A-Sepharose. these glycopeptides were characterized by compositional analysis and sequential exoglycosidase digestion followed at each step by methylation analysis. The partially methylated alditol acetates obtained were resolved by gas chromatography and identified by mass spectrometry. The proposes structures of the oligosaccharide moieties of the glycopeptides are given below. (formula: see text) The relative amounts of the two glycopeptides isolated from concanavalin A-Sepharose suggest that each protein molecule contains four carbohydrate chains; one large chain (A) and three small chains (B). 相似文献
11.
Korkmaz B Attucci S Jourdan ML Juliano L Gauthier F 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(5):3329-3338
The uncontrolled proteolytic activity in lung secretions during lung inflammatory diseases might be due to the resistance of membrane-bound proteases to inhibition. We have used a new fluorogenic neutrophil elastase substrate to measure the activity of free and membrane-bound human neutrophil elastase (HNE) in the presence of alpha1-protease inhibitor (alpha1-Pi), the main physiological inhibitor of neutrophil serine proteases in lung secretions. Fixed and unfixed neutrophils bore the same amounts of active HNE at their surface. However, the HNE bound to the surface of unfixed neutrophils was fully inhibited by stoichiometric amounts of alpha1-Pi, unlike that of fixed neutrophils. The rate of inhibition of HNE bound to the surface of unfixed neutrophils was the same as that of free HNE. In the presence of alpha1-Pi, membrane-bound elastase is almost entirely removed from the unfixed neutrophil membrane to form soluble irreversible complexes. This was confirmed by flow cytometry using an anti-HNE mAb. HNE activity rapidly reappeared at the surface of HNE-depleted cells when they were triggered with the calcium ionophore A23187, and this activity was fully inhibited by stoichiometric amounts of alpha1-Pi. HNE was not released from the cell surface by oxidized, inactive alpha1-Pi, showing that active inhibitor is required to interact with active protease from the cell surface. We conclude that HNE activity at the surface of human neutrophils is fully controlled by alpha1-Pi when the cells are in suspension. Pericellular proteolysis could be limited to zones of contact between neutrophils and subjacent protease substrates where natural inhibitors cannot penetrate. 相似文献
12.
S C Tyagi 《The Journal of biological chemistry》1991,266(8):5279-5285
We have modified the single cysteine residue of alpha 1-protease inhibitor (alpha 1-PI) with HgCl2, methylmethane thiosulfonate, oxidized glutathione (GSSG), and N-(1-anilinonaphthyl-4)maleimide (ANM). Whereas native alpha 1-PI combines rapidly and quasi-irreversibly with neutrophil elastase, the thiol-modified alpha 1-PI derivatives are dissociable reversible competitive inhibitors of the enzyme, with values of Ki in the range of 6-7 nM. Removal of the thiol modifications restores the rapid irreversible mode of inhibition. Once native alpha 1-PI has combined with neutrophil elastase, the enzyme-inhibitor complex retains a reactive thiol group, but the two proteins can no longer be dissociated by subsequent reaction with ANM, even after exposure to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. From kinetic measurements of fluorescence, ANM-modified alpha 1-PI combines with neutrophil elastase via an apparent biomolecular process with a second order rate constant on the order of 10(5) M-1 S-1. We estimate a dissociation rate constant on the order of 10(-3) S-1. The emission of ANM-modified alpha 1-PI is increased in intensity and blue shifted from the maximum in ANM-modified cysteine, consistent with a predominantly nonpolar environment. Association with neutrophil elastase results in an additional blue shift with further increase in intensity, consistent with a further decrease in polarity of the environment of the cysteine. Modification with methylmethane thiosulfonate or GSSG results in a small decrease in quantum yield and a red shift in the tryptophan emission spectrum of the modified inhibitor, suggestive of increased polarity of the environment of at least 1 of the 2 tryptophan residues in alpha 1-PI. These changes are reversed by dithiothreitol and are consistent with a conformational change which transforms the inhibitory activity from a rapid, irreversible mode in native alpha 1-PI to a dissociable competitive mode in the mixed disulfide derivatives. 相似文献
13.
14.
The carboxy terminal residue of human α-1-proteinase inhibitor (α-1-PI) was found to be lysine by three independent techniques. These included digestion with carboxypeptidases B and A, hydrazinolysis, and sequence determination of the carboxy terminal peptide obtained from cyanogen bromide fragmentation. This structure was found to be GLY-LYS-VAL-VAL-ASN-PRO-THR-GLN-LYS. Carboxypeptidase C digestion indicated substantial degradation of α-1-PI by endopeptidases in the enzyme preparation. These results do not support the proposal of Cohen et al (Biochemistry (1978) 392) that H2O18 incorporation into lysine in dissociating α-1-PI:proteinase complexes is indicative of a critical role of this residue in the reactive site of the inhibitor. We suggest that free trypsin, released from complexes, could readily activate the carboxy terminal lysine of α-1-PI, resulting in oxygen exchange with H2O18 in the medium. 相似文献
15.
The alpha1-protease inhibitor proteins of laboratory mice are homologous in sequence and function to human alpha1-antitrypsin and are encoded by a highly conserved multigene family comprised of five members. In humans, the inhibitor is expressed in liver and in macrophages and decreased expression or inhibitory activity is associated with a deficiency syndrome which can result in emphysema and liver disease in affected individuals. It has been proposed that macrophage expression may be an important component of the function of human alpha1-antitrypsin. Clearly, it is desirable to develop a mouse model of this deficiency syndrome, however, efforts to do this have been largely unsuccessful. In this paper, we report that aside from the issues of potentially redundant gene function, the mouse may not be a suitable animal for such studies, because there is no significant expression of murine alpha1-protease inhibitor in the macrophages of mice. This difference between the species appears to result from an absence of a functional macrophage-specific promoter in mice. 相似文献
16.
E G Del Mar J W Brodrick M C Geokas C Largman 《Biochemical and biophysical research communications》1979,88(2):346-350
Human α1-protease inhibitor which is an important plasma protein, contains a methionine residue at its reactive site. A model synthetic peptide substrate, succinyl-L-alanyl-L-alanyl-L-prolyl-L-methionine p-nitroanilide, has been employed to study the effect of oxidation of methionine on the rate of hydrolysis of this substrate by human elastases. The methionine sulfoxide derivative obtained by mild oxidation of this substrate is hydrolyzed by pancreatic elastase 2 and leukocyte elastase at rates that are 5% and 0.3% of the rates measured for hydrolysis of the parent compound by the respective enzymes. These results suggest that oxidation of the active site methionine residue of human α1-protease inhibitor may decrease the rate of reaction of pancreatic or leukocyte elastase with this inhibitor. 相似文献
17.
Previous folding studies of alpha-1-proteinase inhibitor (alpha1-PI), which regulates the activity of the serine protease human neutrophil elastase, show an intermediate state at approximately 1.5 M guanidine-HCl (Gu). For the normal form of alpha1-PI, we demonstrate the reversible formation of the same stable distribution of monomeric and polymeric intermediates after approximately 1 h in 1.5 M Gu at approximately 23 degrees C from fully folded or fully unfolded alpha1-PI at similar final total concentrations and show that the stable distribution of monomeric and polymeric intermediates conforms with the law of mass action. We attribute these observations to an apparent equilibrium among intermediates. Our CD data are compatible with the intermediates having slightly relaxed structures relative to that of fully folded alpha1-PI and, thus, with the polymeric intermediates having a loop-sheet structure. Furthermore, we observe that the rates of folding (fast and slow terms) from the intermediate state are the same as those from the fully unfolded state, thereby supporting the contention that this intermediate state is on the folding pathway. We attribute the tendency of the Z mutant protein to polymerize/aggregate to an increased rate of the monomeric intermediate to form the apparent equilibrium distribution of intermediate species relative to its rate of folding to give intact alpha1-PI. 相似文献
18.
19.
Triggered polymorphonuclear leucocytes (PMNL) can decrease the elastase inhibitory capacity of serum by inactivating the main inhibitor of elastase alpha-1-proteinase inhibitor (alpha-1-PI). Maximal inactivation occurs with stimuli that release myeloperoxidase from PMNL along with hydrogen peroxide. Specific protection of alpha-1-PI function is obtained with antioxidants that interfere with this system. PMNL that are activated with phorbol myristate acetate release hydrogen peroxide but not myeloperoxidase, and only inactivate alpha-1-PI in the presence of exogenously-added PMNL-derived supernatants which contain this enzyme. Cell-free inactivation requires both active enzyme and hydrogen peroxide, and is greatest at pH 6.2, the pH optimum for myeloperoxidase-catalysed inactivation of alpha-1-PI. This data supports the notion that leucocyte myeloperoxidase may act to suppress the antiprotease screen afforded by alpha-1-PI by generating hypochlorous acid in the presence of chloride and respiratory burst-derived hydrogen peroxide, and in the microenvironment of lowered pH associated with degranulation. Pulmonary emphysema seems to be associated with an imbalance between elastase and its inhibitors at the lung surface. PMNL are likely to play an important role in the pathogenesis of emphysema since they contain both elastase, which can solubilize connective tissue elastin, and the constituents of an oxidative system which can inactivate the most important antielastase, alpha-1-PI. 相似文献
20.
A naturally occurring competitive inhibitor of pig kidney renin has been identified in human plasma. The inhibitor was shown to be alpha-1 anti-trypsin and the effect in vitro on the renin activity was examined. The slope in the Hill plot is compatible with the assumption of one-site competitive inhibition. Other proteinase inhibitors, such as alpha-2-macroglobulin and C1 inactivator, however, have no inhibitory effect on the renin-angiotensinogen reaction. 相似文献