首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The complete purification of renin raises difficult problems due to its extremely low concentration in kidney (less than 1/50,000 of total proteins). The complete purification of hog kidney renin has been realized on a large scale, starting from 300 kg of fresh hog kidneys. 14.6 mg of pure renin were obtained with an overall yield of 4%. The purification procedure involved 14 steps. The enzyme was extracted at pH 3.5. Subsequent purification steps were performed in the presence of protease inhibitors to decrease renin proteolysis. These steps included an ammonium sulfate precipitation and a batch-chromatography on DEAE-cellulose. The major purification step was an affinity chromatography on Sepharose-hexamethylene-diaminopepstatin. The enzyme obtained was further purified by molecular sieving gel filtration and isoelectric focusing.  相似文献   

2.
NADPH-specific indole-3-acetaldehyde (IAAId) reductase from cucumber ( Cucumis sativus L. 相似文献   

3.
The heating of protein preparations of mesophilic organism (e.g., E. coli) produces the obliteration of all soluble multimeric proteins from this organism. In this way, if a multimeric enzyme from a thermophilic microorganism is expressed in these mesophilic hosts, the only large protein remaining soluble in the preparation after heating is the thermophilic enzyme. These large proteins may be then selectively adsorbed on lowly activated anionic exchangers, enabling their full purification in just these two simple steps. This strategy has been applied to the purification of an alpha-galactosidase and a beta-galactosidase from Thermus sp. strain T2, both expressed in E. coli, achieving the almost full purification of both enzymes in only these two simple steps. This very simple strategy seems to be of general applicability to the purification of any thermophilic multimeric enzyme expressed in a mesophilic host.  相似文献   

4.
1. GAMMA-Glutamylcyclotransferase was purified 10000-fold from human erythrocytes. 2. The purification steps involved fractionation with (NH4)(2)SO(4) and chromatography on Sephadex G-75, DEAE-cellulose and hydroxyapatite. The purified enzyme was found to be homogeneous on density-gradient polyacrylamide-gel electrophoresis. 3. The maximum reaction rate was observed at pH9.0 and the apparent Km value for gamma-glutamyl-L-alanine was 2.2mM. 4. The molecular weight (25250) of the purified enzyme agreed well with the value (25500) in fresh haemolysates, indicating no apparent structural modification of the enzyme during purification. However, rapid processing of the blood through the initial (NH4)(2)SO(4) and Sephadex-chromatography steps was required to prevent formation of a high-molecular-weight aggregate with substantially lower specific activity. 5. gamma-Glutamylcyclotransferase catalyses the formation of 5-oxoproline from gamma-glutamyl dipeptides. The role of this enzyme in erythrocytes is of particular interest, because gamma-glutamyl-L-cysteine serves as a substrate for both gamma-glutamylcyclotransferase and glutathione synthetase. Thus the cyclotransferase could modulate glutathione synthesis.  相似文献   

5.
Thiosulfate dehydrogenase was purified from Acidithiobacillus ferrooxidans using three purification steps. The purification procedure involved ammonium sulfate fractionation, ion-exchange chromatography, and gel permeation chromatography. Specific activity of the purified enzyme (after IEC) was 3.26 nkat/mg, and yield of the enzyme was 78%. The purity of the enzyme was checked by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme is a tetramer composed of four probably identical subunits of relative molecular weight 45,000. The pH optimum of the enzyme reaction in the direction of substrate oxidation was found to be 3.0. The isoelectric point of the enzyme was 8.3. Enzyme activity was found to be particularly sensitive to the histidine-selective reagent diethylpyrocarbonate. Reagents selective for arginine, cysteine, and tryptophane had no effect on enzyme activity.  相似文献   

6.
The preparation of quantities of poly(ADP-ribose) glycohydrolase sufficient for detailed structural and enzymatic characterizations has been difficult due to the very low tissue content of the enzyme and its lability in late stages of purification. To date, the only purification of this enzyme to apparent homogeneity has involved a procedure requiring 6 column chromatographic steps. Described here is the preparation of an affinity matrix which consists of ADP-ribose polymers bound to dihydroxyboronyl sepharose. An application is described for the purification of poly(ADP-ribose) glycohydrolase from calf thymus in which a single rapid affinity step was used to replace 3 column chromatographic steps yielding enzyme of greater than 90% purity with a 3 fold increase in yield. This matrix should also prove useful for other studies of ADP-ribose polymer metabolism and related clinical conditions.  相似文献   

7.
Summary Seeds, flowers and leaves of Onopordum turcicum were found to contain proteolytic enzymes able to coagulate milk. Extraction, concentration and identification of the operational parameters affecting the activity of the enzyme complex were followed by partial purification steps involving gel-filtration and ion-exchange chromatography. Milk clotting activity of the enzyme complex was tested in several steps of its purification and an increase of almost 200 fold was obtained. Molecular weight of the proteolytic enzyme fraction having the maximum activity was determined to be about 19000–24000. Isoelectric point (pI) of the enzyme complex with maximum activity was estimated to be in the range 3.3–3.7.  相似文献   

8.
Using specific antibodies against calf thymus DNA ligases I and II (EC 6.5.1.1), we have investigated the polypeptide structures of DNA ligases I and II present in the impure enzyme preparations, and estimated the polypeptides of DNA ligases I and II present in vivo. Immunoblot analysis of DNA ligase I after sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a 130-kDa polypeptide as a major one in the enzyme preparations from calf thymus throughout the purification. In addition to the 130-kDa polypeptide, a 200-kDa polypeptide was detected in the enzyme preparations at the earlier steps of the purification, and a 90-kDa polypeptide was observed as a minor one in the enzyme preparations at the later steps of the purification. The polypeptides with molecular weight of 130 000 and 90 000 were detected by SDS-polyacrylamide gel electrophoresis of DNA ligase I-[3H]AMP complex. These results suggest that a 200-kDa polypeptide of DNA ligase I present in vivo is degraded to a 130-kDa polypeptide and then to a 90-kDa polypeptide during the isolation and purification procedures. On the other hand, the monospecific antibody against calf thymus DNA ligase II cross-reacted with only a 68 kDa polypeptide in the enzyme preparations throughout the purification, suggesting that the 68-kDa polypeptide is a single form of calf thymus DNA ligase II present in vivo as well as in vitro.  相似文献   

9.
Rapid and convenient purification procedures based upon heparin-agarose chromatography for C1-tetrahydrofolate synthase from Saccharomyces cerevisiae and 10-formyltetrahydrofolate synthetase from Clostridium acidi-urici have been developed. The purification of the yeast enzyme involves three chromatographic steps that can be done rapidly, with no intervening dialyses, and results in high yield. The first step alone, heparin-agarose chromatography, is sufficient to purify the enzyme from yeast bearing a cloned copy of the ADE3 gene that overexpresses the protein. The other steps in the purification from wild-type yeast are matrex gel red A and phenyl-Sepharose chromatography. The purification of the clostridial enzyme involves protamine sulfate fractionation and heparin-agarose chromatography. Heparin-agarose also binds two other enzymes that use tetrahydrofolate, 5,10-methenyltetrahydrofolate cyclohydrolase and 5,10-methylenetetrahydrofolate dehydrogenase. Thus, heparin-agarose should prove useful in purification of a variety of enzymes that utilize tetrahydrofolate or its derivatives as a cofactor.  相似文献   

10.
The very high affinity for GTP of glutamate dehydrogenase was used to purify this enzyme by affinity chromatography. After periodic acid oxidation, GTP was covalently bound to an activated Sepharose. When crude mitochondrial extracts were applied on a column of this GTP-Sepharose, glutamate dehydrogenase was retained with very few other proteins. Glutamate dehydrogenase from rat liver was eluted with a KCl gradient with only one contaminating protein. From a pig heart mitochondrial extract the enzyme was purified 300-fold in one step. A chromatography on hydroxyapatite was sufficient to achieve the purification. This very simple technique avoids the long and troublesome crystallization steps generally involved in glutamate dehydrogenase purification.  相似文献   

11.
Adenylate kinase prepared from a temperature-sensitive adk mutant of Escherichia coli was thermolabile at 40 degrees C while the wild type enzyme was stable. The degree of thermolability of the mutant enzyme was concentration-dependent in that a much greater thermolability was observed in the concentrated crude homogenate than in a 50-fold dilution of the crude homogenate. This concentration dependence was lost after extensive purification of the mutant adenylate kinase, although the enzyme was still thermolabile. A protein was identified that co-purified with the wild type and mutant enzyme through several purification steps and that altered the degree of thermolability of the mutant adenylate kinase. A homogeneous preparation of the adenylate kinase-associated protein gave a single band on a sodium dodecyl sulfate-polyacrylamide gel with Mr = 34,000. The interaction of this protein with adenylate kinase explains why the thermolability of the mutant adenylate kinase changed during purification and the dependence of the thermolability on concentration. The adenylate kinase-associated protein may be important in regulating the activity of adenylate kinase and subsequently affecting the rate of cell growth.  相似文献   

12.
Abstract

Thiosulfate dehydrogenase was purified from Acidithiobacillus ferrooxidans using three purification steps. The purification procedure involved ammonium sulfate fractionation, ion‐exchange chromatography, and gel permeation chromatography. Specific activity of the purified enzyme (after IEC) was 3.26 nkat/mg, and yield of the enzyme was 78%. The purity of the enzyme was checked by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme is a tetramer composed of four probably identical subunits of relative molecular weight 45,000. The pH optimum of the enzyme reaction in the direction of substrate oxidation was found to be 3.0. The isoelectric point of the enzyme was 8.3. Enzyme activity was found to be particularly sensitive to the histidine‐selective reagent diethylpyrocarbonate. Reagents selective for arginine, cysteine, and tryptophane had no effect on enzyme activity.  相似文献   

13.
A procedure for the purification of rabbit liver phosphorylase phosphatase is described. The specific activity of the preparation is 2,100 units/mg of protein, representing a 25,000-fold purification. During the initial steps of the purification a large activation of enzyme activity was observed. The molecular weight of the purified enzyme was estimated by Sephadex G-75 chromatography to be 35,000, and by sucrose density ultracentrifugation to be 34,000 (2.9 S). On Na dodecyl-SO4 polyacrylamide disc gel electrophoresis a single component with a molecular weight of 34,000 was observed. The pH optimum is 6.9 to 7.4, and the Km for rabbit muscle phosphorylase alpha is 2 muM. The same procedure is also applicable to the extensive purification of phosphorylase phosphatase from rabbit muscle.  相似文献   

14.
Rat liver malic enzyme (EC 1.1.1.40) was purified from livers of rats fasted and refed a high sucrose diet containing 1% desiccated thyroid powder. The purification was accomplished by a six-step procedure. The specific activity of the purified enzyme was increased 181-fold above that of the initial high speed supernatant of liver extracts. Slight additional purification of malic enzyme was achieved with preparative disc electrophoresis. The specific activities of the purified rat liver malic enzyme from the least two steps were between 28.0 and 30.5 units per mg of protein. Homogeneity of the purified enzyme was determined by disc and starch gel electrophoresis as well as sedimentation velocity and sedimentation equilibrium studies. The molecular weight and S20, w values of rat liver malic enzyme are 268,000 and 10.2, respectively. Amino acid analysis based on milligram of protein hydrolyzed yielded higher amounts of leucine and glutamic acid but lower quantities of alanine and voline per subunit than the corresponding Escherichia coli enzyme...  相似文献   

15.
中国根霉12~#纤溶酶活力单位的测定   总被引:9,自引:0,他引:9  
主要阐述了根霉纤溶酶活性 (效价 )的测定方法 ,采用血纤维蛋白平板法 ,在以尿激酶为参照标准的情况下 ,给出了根霉纤溶酶提纯各步骤的活性情况  相似文献   

16.
Glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate: NADP+ oxidoreductase, EC 1.1.1.49; G6PD) was purified from sheep erythrocytes, using a simple and rapid method. The purification consisted of three steps; preparation of haemolysate, ammonium sulphate fractionation and 2', 5'-ADP Sepharose 4B affinity chromatography. The enzyme was obtained with a yield of 37.1% and had a specific activity of 4.64 U/mg proteins. Optimal pH, stable pH, molecular weight, and KM and Vmax values for NADP+ and glucose 6-phosphate (G6-P) substrates were also determined for the enzyme. The overall purification was about 1,189-fold. A temperature of +4 degrees C was maintained during the purification process. In order to control the purification of the enzyme SDS polyacrylamide gel electrophoresis (SDS-PAGE) was done in 4% and 10% acrylamide concentration for stacking and running gel, respectively. SDS-PAGE showed a single band for enzyme. Enzymatic activity was spectrophotometrically measured according to Beutler's method at 340 nm. In addition, in vitro effects of gentamicin sulphate, penicillin G potassium, amicasin on sheep red blood cell G6PD enzyme activity were investigated. These antibiotics showed inhibitory effects on enzyme activity. I50 values were determined from Activity%-[Drug] graphs and Ki values and the type of inhibition (noncompetitive) were determined by means of Lineweaver-Burk graphs.  相似文献   

17.
gamma-Glutamyl transpeptidase, present in various mammalian tissues, transfers the gamma-glutamyl moiety of glutathione to a variety of acceptor amino acids and peptides. This enzyme has been purified from human kidney cortex about 740-fold to a specific activity of 200 units/mg of protein. The purification steps involved incubation of the homogenate at 37 degrees followed by centrifugation and extraction of the sediment with 0.1 M Tris-HCl buffer, pH 8.0, containing 1% sodium deoxycholate; batchwise absorption on DEAE-cellulose; DEAE-cellulose (DE52) column chromatography; Sephadex G-200 gel filtration; and affinity chromatography using concanavalin A insolubilized on beaded Agarose. Detergents were used throughout the purification of the enzyme. The purified enzyme separated into three protein bands, all of which had enzyme activity, on polyacrylamide disc electrophoresis in the presence of Triton X-100. The enzyme has an apparent molecular weight of about 90,000 as shown by Sephadex G-200 gel filtration, and appears to be a tetramer with subunits of molecular weights of about 21,000. The Km for gamma-glutamyl transpeptidase using the artificial substrate, gamma-glutamyl-p-nitroanilide, with glycylglycine as the acceptor amino acid was found to be about 0.8 mM. The optimum pH for the enzyme activity is 8.2 and the isoelectric point is 4.5. Both GSH and GSSG competitively inhibited the activity of gamma-glutamyl transpeptidase when gamma-glutamyl-p-nitroanilide was used as the substrate. Treatment of the purified enzyme with papain has no effect on the enzyme activity or mobility on polyacrylamide disc electrophoresis. The purified gamma-glutamyl transpeptidase had no phosphate-independent glutaminase activity. The ratio of gamma-glutamyl transpeptidase to phosphate-independent glutaminase changed significantly through the initial steps of gamma-glutamyl transpeptidase purification. These studies indicate that the transpeptidase and phosphate-independent glutaminase activities are not exhibited by the same protein in human kidney.  相似文献   

18.
Invertase (β-d-fructofuronoside fructohydrolase) is an industrially important enzyme useful for the hydrolysis of sucrose. The potential of aqueous two phase extraction for the isolation and purification of invertase from crude baker's yeast is explored. Influence of the process parameters such as type of phase forming salts, PEG molecular weight, concentration of salt and polymer, tie line length and volume ratio on partitioning of invertase was studied. PEG 3350/magnesium sulphate system was found most suitable for the extraction which has resulted in favorable pH (5 ± 0.2) for the enzyme extraction. Polymer and salt concentration were found to significantly affect the degree of purification and enzyme recovery of invertase. The purity of ∼8.81 fold was obtained compared to crude extract with recovery of 77% at the standardized process conditions. Overall results demonstrated the feasibility of aqueous two phase extraction for the isolation and purification of invertase without the need of multiple steps.  相似文献   

19.
A method is described for the purification of the alpha-mannosidase from Canavalia ensiformis. By three consecutive steps, a more than 500-fold purification is achieved and the pure enzyme obtained in 75% yield. One of these steps utilizes the specific interaction of the alpha-mannosidase with concanavalin A, the lectin from the same plant. This interaction is dependent on pH and ionic strength but does not involve the sugar binding site of the lectin. The interaction between both proteins may be important also in vivo.  相似文献   

20.
Abstract— The purification of choline acetyltransferase (ChAc) has been hampered by the increasing instability of the enzyme in the course of purification. By working with a high concentration of protein and by adding glycerol to the enzyme, the stability was increased. The purification was performed by centrifuging twice, at low and high salt concentrations, precipitation by ammonium sulphate and chromatography on carboxymethyl–Sephadex, hydroxylapatite and Sephadex G 100. The final steps were performed by using chromatography on an immunoabsorbent; this consists of agarose-coupled gammaglobulins of antisera devoid of any activity against ChAc itself and directed against other proteins still present in the purest ChAc preparation achieved by conventional biochemical techniques. The purest rat brain ChAc preparation had a specific activity of 20 μmol/min/mg of protein after a 30,000-fold purification. The enzyme was not homogeneous in polyacrylamide gel electrophoresis performed either at pH 4.5 or with sodium dodecyl sulphate. Pure ChAc from rat brain would have a specific activity of approximately 100 μmol/min/mg of protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号