共查询到20条相似文献,搜索用时 15 毫秒
1.
Attila Kristóf Zoltán Husti István Koncz Zsófia Kohajda Tamás Szél Viktor Juhász Péter Biliczki Norbert Jost István Baczkó Julius Gy Papp András Varró László Virág 《PloS one》2012,7(12)
Background
The aim of the present work was to characterize the electrophysiological effects of the non-steroidal anti-inflammatory drug diclofenac and to study the possible proarrhythmic potency of the drug in ventricular muscle.Methods
Ion currents were recorded using voltage clamp technique in canine single ventricular cells and action potentials were obtained from canine ventricular preparations using microelectrodes. The proarrhythmic potency of the drug was investigated in an anaesthetized rabbit proarrhythmia model.Results
Action potentials were slightly lengthened in ventricular muscle but were shortened in Purkinje fibers by diclofenac (20 µM). The maximum upstroke velocity was decreased in both preparations. Larger repolarization prolongation was observed when repolarization reserve was impaired by previous BaCl2 application. Diclofenac (3 mg/kg) did not prolong while dofetilide (25 µg/kg) significantly lengthened the QTc interval in anaesthetized rabbits. The addition of diclofenac following reduction of repolarization reserve by dofetilide further prolonged QTc. Diclofenac alone did not induce Torsades de Pointes ventricular tachycardia (TdP) while TdP incidence following dofetilide was 20%. However, the combination of diclofenac and dofetilide significantly increased TdP incidence (62%). In single ventricular cells diclofenac (30 µM) decreased the amplitude of rapid (IKr) and slow (IKs) delayed rectifier currents thereby attenuating repolarization reserve. L-type calcium current (ICa) was slightly diminished, but the transient outward (Ito) and inward rectifier (IK1) potassium currents were not influenced.Conclusions
Diclofenac at therapeutic concentrations and even at high dose does not prolong repolarization markedly and does not increase the risk of arrhythmia in normal heart. However, high dose diclofenac treatment may lengthen repolarization and enhance proarrhythmic risk in hearts with reduced repolarization reserve. 相似文献2.
Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots. 相似文献
3.
Hai-Lei Ding Jeffrey W. Ryder James T. Stull Kristine E. Kamm 《The Journal of biological chemistry》2009,284(23):15541-15548
Relationships among biochemical signaling processes involved in Ca2+/calmodulin (CaM)-dependent phosphorylation of smooth muscle myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) were determined. A genetically-encoded biosensor MLCK for measuring Ca2+-dependent CaM binding and activation was expressed in smooth muscles of transgenic mice. We performed real-time evaluations of the relationships among [Ca2+]i, MLCK activation, and contraction in urinary bladder smooth muscle strips neurally stimulated for 3 s. Latencies for the onset of [Ca2+]i and kinase activation were 55 ± 8 and 65 ± 6 ms, respectively. Both increased with RLC phosphorylation at 100 ms, whereas force latency was 109 ± 3 ms. [Ca2+]i, kinase activation, and RLC phosphorylation responses were maximal by 1.2 s, whereas force increased more slowly to a maximal value at 3 s. A delayed temporal response between RLC phosphorylation and force is probably due to mechanical effects associated with elastic elements in the tissue. MLCK activation partially declined at 3 s of stimulation with no change in [Ca2+]i and also declined more rapidly than [Ca2+]i during relaxation. The apparent desensitization of MLCK to Ca2+ activation appears to be due to phosphorylation in its calmodulin binding segment. Phosphorylation of two myosin light chain phosphatase regulatory proteins (MYPT1 and CPI-17) or a protein implicated in strengthening membrane adhesion complexes for force transmission (paxillin) did not change during force development. Thus, neural stimulation leads to rapid increases in [Ca2+]i, MLCK activation, and RLC phosphorylation in phasic smooth muscle, showing a tightly coupled Ca2+ signaling complex as an elementary mechanism initiating contraction.Increases in [Ca2+]i3 in smooth muscle cells lead to Ca2+/CaM-dependent MLCK activation and RLC phosphorylation. Phosphorylation of RLC increases actin-activated myosin MgATPase activity leading to myosin cross-bridge cycling with force development (1–3).The activation of smooth muscle contraction may be affected by multiple cellular processes. Previous investigations show that free Ca2+/CaM is limiting for kinase activation despite the abundance of total CaM (4–6). The extent of RLC phosphorylation is balanced by the actions of MLCK and myosin light chain phosphatase, which is composed of three distinct protein subunits (7). The myosin phosphatase targeting subunit, MYPT1, in smooth muscle binds to myosin filaments, thus targeting the 37-kDa catalytic subunit (type 1 serine/threonine phosphatase, PP1c) to phosphorylated RLC. RLC phosphorylation and muscle force may be regulated by additional signaling pathways involving phosphorylation of RLC by Ca2+-independent kinase(s) and inhibition of myosin light chain phosphatase, processes that increase the contraction response at fixed [Ca2+]i (Ca2+-sensitization) (8–14). Many studies indicate that agonist-mediated Ca2+-sensitization most often reflects decreased myosin light chain phosphatase activity involving two major pathways including MYPT1 phosphorylation by a Rho kinase pathway and phosphorylation of CPI-17 by PKC (8, 14–16). Additionally, phosphorylation of MLCK in its calmodulin-binding sequence by a Ca2+/calmodulin-dependent kinase pathway has been implicated in Ca2+ desensitization of RLC phosphorylation (17–19). How these signaling pathways intersect the responses of the primary Ca2+/CaM pathway during physiological neural stimulation is not known.There is also evidence that smooth muscle contraction requires the polymerization of submembranous cytoskeletal actin filaments to strengthen membrane adhesion complexes involved in transmitting force between actin-myosin filaments and external force-transmitting structures (20–23). In tracheal smooth muscle, paxillin at membrane adhesions undergoes tyrosine phosphorylation in response to contractile stimulation by an agonist, and this phosphorylation increases concurrently with force development in response to agonist. Expression of nonphosphorylatable paxillin mutants in tracheal muscle suppresses acetylcholine-induced tyrosine phosphorylation of paxillin, tension development, and actin polymerization without affecting RLC phosphorylation (24, 25). Thus, paxillin phosphorylation may play an important role in tension development in smooth muscle independently of RLC phosphorylation and cross-bridge cycling.Specific models relating signaling mechanisms in the smooth muscle cell to contraction dynamics are limited when cells in tissues are stimulated slowly and asynchronously by agonist diffusing into the preparation. Field stimulation leading to the rapid release of neurotransmitters from nerves embedded in the tissue avoids these problems associated with agonist diffusion (26, 27). In urinary bladder smooth muscle, phasic contractions are brought about by the parasympathetic nervous system. Upon activation, parasympathetic nerve varicosities release the two neurotransmitters, acetylcholine and ATP, that bind to muscarinic and purinergic receptors, respectively. They cause smooth muscle contraction by inducing Ca2+ transients as elementary signals in the process of nerve-smooth muscle communication (28–30). We recently reported the development of a genetically encoded, CaM-sensor for activation of MLCK. The CaM-sensor MLCK contains short smooth muscle MLCK fused to two fluorophores, enhanced cyan fluorescent protein and enhanced yellow fluorescent protein, linked by the MLCK calmodulin binding sequence (6, 14, 31). Upon dimerization, there is significant FRET from the donor enhanced cyan fluorescent protein to the acceptor enhanced yellow fluorescent protein. Ca2+/CaM binding dissociates the dimer resulting in a decrease in FRET intensity coincident with activation of kinase activity (31). Thus, CaM-sensor MLCK is capable of directly monitoring Ca2+/CaM binding and activation of the kinase in smooth muscle tissues where it is expressed specifically in smooth muscle cells of transgenic mice. We therefore combined neural stimulation with real-time measurements of [Ca2+]i, MLCK activation, and force development in smooth muscle tissue from these mice. Additionally, RLC phosphorylation was measured precisely at specific times following neural stimulation in tissues frozen by a rapid-release electronic freezing device (26, 27). Results from these studies reveal that physiological stimulation of smooth muscle cells by neurotransmitter release leads to rapid increases in [Ca2+]i, MLCK activation, and RLC phosphorylation at similar rates without the apparent activities of Ca2+-independent kinases, inhibition of myosin light chain phosphatase, or paxillin phosphorylation. Thus, the elemental processes for phasic smooth muscle contraction are represented by this tightly coupled Ca2+ signaling complex. 相似文献
4.
The distinguishing mechanical characteristics of cardiac muscleare(1) the presence of a significant and sometimes labile restingtension at functional lengths. Certain invertebrate skeletalmuscles also possess this property, but the structural basisseems to be different.(2)Force-velocity characteristics of heartmuscle are labile and constitute a mechanism for regulatingcardiac performance.(3)Data on quick-stretch and release showthat the active state in heart muscle is slow in its onset,probably preceding the development of isometric tension by onlya short time.The onset of the active state is labile also, andprobably forms the basis of the regulatory function of the force-velocityrelation. Measurements of heat show a slow rate of increaseof heat during a twitch consistent with the onset of contractility. 相似文献
5.
N. B. Capon 《BMJ (Clinical research ed.)》1957,1(5014):335-336,337
6.
Intercellular Sodium Regulates Repolarization in Cardiac Tissue with Sodium Channel Gain of Function
《Biophysical journal》2020,118(11):2829-2843
In cardiac myocytes, action potentials are initiated by an influx of sodium (Na+) ions via voltage-gated Na+ channels. Na+ channel gain of function (GOF), arising in both inherited conditions associated with mutation in the gene encoding the Na+ channel and acquired conditions associated with heart failure, ischemia, and atrial fibrillation, enhance Na+ influx, generating a late Na+ current that prolongs action potential duration (APD) and triggering proarrhythmic early afterdepolarizations (EADs). Recent studies have shown that Na+ channels are highly clustered at the myocyte intercalated disk, facilitating formation of Na+ nanodomains in the intercellular cleft between cells. Simulations from our group have recently predicted that narrowing the width of the intercellular cleft can suppress APD prolongation and EADs in the presence of Na+ channel mutations because of increased intercellular cleft Na+ ion depletion. In this study, we investigate the effects of modulating multiple extracellular spaces, specifically the intercellular cleft and bulk interstitial space, in a novel computational model and experimentally via osmotic agents albumin, dextran 70, and mannitol. We perform optical mapping and transmission electron microscopy in a drug-induced (sea anemone toxin, ATXII) Na+ channel GOF isolated heart model and modulate extracellular spaces via osmotic agents. Single-cell patch-clamp experiments confirmed that the osmotic agents individually do not enhance late Na+ current. Both experiments and simulations are consistent with the conclusion that intercellular cleft narrowing or expansion regulates APD prolongation; in contrast, modulating the bulk interstitial space has negligible effects on repolarization. Thus, we predict that intercellular cleft Na+ nanodomain formation and collapse critically regulates cardiac repolarization in the setting of Na+ channel GOF. 相似文献
7.
Chun-An Chen Meng-Yao Lu Shinn-Forng Peng Kai-Hsin Lin Hsiu-Hao Chang Yung-Li Yang Shiann-Tarng Jou Dong-Tsamn Lin Yen-Bin Liu Herng-Er Horng Hong-Chang Yang Jou-Kou Wang Mei-Hwan Wu Chau-Chung Wu 《PloS one》2014,9(1)
Background
Patients with transfusion-dependent beta-thalassemia major (TM) are at risk for myocardial iron overload and cardiac complications. Spatial repolarization heterogeneity is known to be elevated in patients with certain cardiac diseases, but little is known in TM patients. The purpose of this study was to evaluate spatial repolarization heterogeneity in patients with TM, and to investigate the relationships between spatial repolarization heterogeneity, cardiac iron load, and adverse cardiac events.Methods and Results
Fifty patients with TM and 55 control subjects received 64-channel magnetocardiography (MCG) to determine spatial repolarization heterogeneity, which was evaluated by a smoothness index of QTc (SI-QTc), a standard deviation of QTc (SD-QTc), and a QTc dispersion. Left ventricular function and myocardial T2* values were assessed by cardiac magnetic resonance. Patients with TM had significantly greater SI-QTc, SD-QTc, and QTc dispersion compared to the control subjects (all p values<0.001). Spatial repolarization heterogeneity was even more pronounced in patients with significant iron overload (T2*<20 ms, n = 20) compared to those with normal T2* (all p values<0.001). Loge cardiac T2* correlated with SI-QTc (r = −0.609, p<0.001), SD-QTc (r = −0.572, p<0.001), and QTc dispersion (r = −0.622, p<0.001), while all these indices had no relationship with measurements of the left ventricular geometry or function. At the time of study, 10 patients had either heart failure or arrhythmia. All 3 indices of repolarization heterogeneity were related to the presence of adverse cardiac events, with areas under the receiver operating characteristic curves (ranged between 0.79 and 0.86), similar to that of cardiac T2*.Conclusions
Multichannel MCG demonstrated that patients with TM had increased spatial repolarization heterogeneity, which is related to myocardial iron load and adverse cardiac events. 相似文献8.
The rate of oxygen uptake of quiescent papillary muscle of the cat heart has been determined in a flow respirometer with the use of the oxygen electrode. The apparent rate of oxygen uptake as a function of the diameter of the muscle was also determined. It was found that papillary muscles from cat hearts use oxygen at a rate of 2.84 (microliters/mg. wet weight)/hour at a temperature of 35°C. Such muscles can be adequately supplied by diffusion when their surface is uniformly exposed to an atmosphere containing 95 per cent oxygen only if their diameter is 0.64 mm. or less. Papillary muscles from kitten hearts use oxygen at a rate of 4.05 (microliters/mg. wet weight)/hour at a temperature of 35°C. Such muscles can be adequately supplied by diffusion when their surface is uniformly exposed to an atmosphere containing 95 per cent oxygen only if their diameter is 0.53 mm. or less. If the muscles are small enough to be adequately supplied with oxygen by diffusion, the rate of oxygen uptake does not increase when the muscle is stretched. 相似文献
9.
The Repolarization Phase of the Cardiac Ventricular Action Potential: A Time-Dependent System of Membrane Conductances
下载免费PDF全文

A system for the generation of the repolarization phase of the ventricular action potential is described. The system is based on time-dependent changes in membrane conductance to sodium and potassium ions. However, the changes in conductance during an action potential retain a degree of voltage dependence through the initial conditions which depend on previous depolarizations of the membrane. The equations describing the system were solved with an analog computer and various action potential forms are reproduced. The effects of hyperpolarizing and depolarizing current applied during an action potential are investigated. The changes in shape of an action potential after a change in the rate of stimulation show partial agreement with previous experimental findings. The applicability of time-dependent and voltage-dependent systems for the generation of the repolarization phase of the ventricular action potential is discussed. 相似文献
10.
11.
Heidi Hintsala Tuomas V. Kentt? Mikko Tulppo Antti Kiviniemi Heikki V. Huikuri Matti M?ntysaari Sirkka Kein?nen-Kiukaannemi Risto Bloigu Karl-Heinz Herzig Riitta Antikainen Hannu Rintam?ki Jouni J. K. Jaakkola Tiina M. Ik?heimo 《PloS one》2014,9(7)
Objectives
The aim of our study was to assess the effect of short-term cold exposure, typical in subarctic climate, on cardiac electrical function among untreated middle-aged hypertensive men.Methods
We conducted a population-based recruitment of 51 hypertensive men and a control group of 32 men without hypertension (age 55–65 years) who underwent whole-body cold exposure (15 min exposure to temperature −10°C, wind 3 m/s, winter clothes). Conduction times and amplitudes, vectorcardiography, arrhythmias, and heart rate variability (autonomic nervous function) were assessed.Results
Short-term cold exposure increased T-peak to T-end interval from 67 to 72 ms (p<0.001) and 71 to 75 ms (p<0.001) and T-wave amplitude from 0.12 to 0.14 mV (p<0.001) and from 0.17 to 0.21 mV (p<0.001), while QTc interval was shortened from 408 to 398 ms (p<0.001) and from 410 to 401 ms (p<0.001) among hypertensive men and controls, respectively. Cold exposure increased both low (from 390 to 630 ms2 (p<0.001) and 380 to 700 ms2 (p<0.001), respectively) and high frequency heart rate variability (from 90 to 190 ms2 (p<0.001) and 150 to 300 ms2 (p<0.001), respectively), while low-to-high frequency-ratio was reduced. In addition, the frequency of ventricular ectopic beats increased slightly during cold exposure. The cold induced changes were similar between untreated hypertensive men and controls.Conclusions
Short-term cold exposure with moderate facial and mild whole body cooling resulted in prolongation of T-peak to T-end interval and higher T-wave amplitude while QTc interval was shortened. These changes of ventricular repolarization may have resulted from altered cardiac autonomic regulation and were unaffected by untreated hypertension.Trial Registration
ClinicalTrials.gov NCT02007031相似文献12.
Jose Renato Pinto Aldrin V. Gomes Michelle A. Jones Jingsheng Liang Susan Nguyen Todd Miller Michelle S. Parvatiyar James D. Potter 《The Journal of biological chemistry》2012,287(44):37362-37370
Human slow skeletal troponin T (HSSTnT) shares a high degree of homology with cardiac TnT (CTnT). Although the presence of HSSTnT has not been confirmed in the heart at the protein level, detectable levels of HSSTnT mRNA have been found. Whether HSSTnT isoforms are expressed transiently remains unknown. Because transient re-expression of HSSTnT may be a potential mechanism of regulating function, we explored the effect of HSSTnT on the regulation of cardiac muscle. At least three HSSTnT isoforms have been found to exist in slow skeletal muscle: HSSTnT1 (+exons 5 and 12), HSSTnT2 (+exon 5, −exon 12), and HSSTnT3 (−exons 5 and 12). Another isoform, HSSTnT hypothetical (Hyp) (−exon 5, +exon 12), has only been found at the mRNA level. Compared with HCTnT3 (adult isoform), Tn complexes containing HSSTnT1, -2, and -3 did not alter the actomyosin ATPase activation and inhibition in the presence and absence of Ca2+, respectively. HSSTnTHyp was not evaluated as it did not form a Tn complex under a variety of conditions. Porcine papillary skinned fibers displaced with HSSTnT1, -2, or -3 and reconstituted with human cardiac troponin I and troponin C (HCTnI·TnC) complex showed a decrease in the Ca2+ sensitivity of force development and an increase in maximal recovered force (HSSTnT1 and -3) compared with HCTnT3. In contrast, HSSTnTHyp showed an increase in the Ca2+ sensitivity of force development. This suggests that re- or overexpression of specific SSTnT isoforms might have therapeutic potential in the failing heart because they increase the maximal force of contraction. In addition, circular dichroism and proteolytic digestion experiments revealed structural differences between HSSTnT isoforms and HCTnT3 and that HSSTnT1 is more susceptible to calpain and trypsin proteolysis than the other HSSTnTs. Overall, HSSTnT isoforms despite being homologues of CTnT may display distinct functional properties in muscle regulation. 相似文献
13.
During contractures of the turtle ventricle rapid changes in length induce sinusoidal oscillations under isotonic conditions. They are due to delayed responses to stretching and release, which can be demonstrated also under isometric conditions. Oscillations of two distinct frequencies are produced under different conditions and are distinguished as high- and low-frequency oscillations. In depolarized muscles the frequency is such that the duration of one cycle is about the same as that of a normal twitch, while in high-Ca solutions the duration can be the same as in high-K solutions or about six times lower. As reported previously, twitches are followed by weak mechanical and electrical oscillations. Their frequency agrees with the high-frequency oscillations. The same effects can also be induced by stretching and release. It is suggested that the phenomena observed are due to feedback mechanisms which originate in the contractile mechanism. The high-frequency oscillations are similar to those observed previously in other muscles, particularly insect fibrillar muscle, and are not due to changes in Ca concentration. The other mechanisms involve the membrane and possibly the intracellular Ca stores. 相似文献
14.
Contractures develop in sheep atrial trabeculae if Tyrode's solution is rapidly replaced by a solution containing elevated potassium, reduced sodium, or both. Two phases of the contracture can be identified on the basis of differences in physiological behavior: a rapid and transient phase that predominates during the first few seconds of the contracture, and a slowly developed phase that is responsible for the steady level of tension reached later in the contracture. The transient phase is particularly prominent if the muscle is stimulated rapidly before the contracture, and reduced or absent if the muscle is not stimulated or if calcium is not present before the contracture. Recovery of the transient phase after a contracture parallels the recovery of twitches. This transient phase appears to reflect the depolarization-induced release of activator (calcium) from an internal store, possibly the same store that is involved in the normal contraction. The slowly developed tension is dependent on the contracture solution used, and is decreased if the calcium concentration is reduced or if the sodium concentration is increased. It does not depend on conditions before the contracture and does not require time to recover. This phase of the contracture may be due to entry of calcium from the extracellular solution. 相似文献
15.
Marie-Louise Bang Yusu Gu Nancy D. Dalton Kirk L. Peterson Kenneth R. Chien Ju Chen 《PloS one》2014,9(4)
Ankrd1/CARP, Ankrd2/Arpp, and Ankrd23/DARP belong to a family of stress inducible ankyrin repeat proteins expressed in striated muscle (MARPs). The MARPs are homologous in structure and localized in the nucleus where they negatively regulate gene expression as well as in the sarcomeric I-band, where they are thought to be involved in mechanosensing. Together with their strong induction during cardiac disease and the identification of causative Ankrd1 gene mutations in cardiomyopathy patients, this suggests their important roles in cardiac development, function, and disease. To determine the functional role of MARPs in vivo, we studied knockout (KO) mice of each of the three family members. Single KO mice were viable and had no apparent cardiac phenotype. We therefore hypothesized that the three highly homologous MARP proteins may have redundant functions in the heart and studied double and triple MARP KO mice. Unexpectedly, MARP triple KO mice were viable and had normal cardiac function both at basal levels and in response to mechanical pressure overload induced by transverse aortic constriction as assessed by echocardiography and hemodynamic studies. Thus, CARP, Ankrd2, and DARP are not essential for normal cardiac development and function at basal conditions and in response to mechanical pressure overload. 相似文献
16.
17.
An approximate differential equation is developed describing the potential in the gap (intercalated disc) between two closely abutting, coaxial cylindrical cardiac muscle cells. This permits approximate calculation of the degree of current spread from an active to an inactive cell. The equation has a closed solution in terms of the zero-order Bessel function I0(x). This result is different from one given by Woodbury and Crill (1961). The source of the original mistake is given and the magnitude of the error estimated. The new solution is compared with the exact, series solution to this problem given by Heppner and Plonsey (1970) in the preceding paper. It is shown analytically that our approximate solution differs negligibly from the series solution for the parameter values chosen. The closed solution not only considerably simplifies calculations but yields additional insights into the nature of the coupling resistances R and r used by Heppner and Plonsey in their detailed analysis of the cell-to-cell transmission process. 相似文献
18.
Katarzyna Kazmierczak Michelle Jones Olga M. Hernandez Danuta Szczesna-Cordary 《Journal of molecular biology》2009,387(3):706-103
To study the regulation of cardiac muscle contraction by the myosin essential light chain (ELC) and the physiological significance of its N-terminal extension, we generated transgenic (Tg) mice by partially replacing the endogenous mouse ventricular ELC with either the human ventricular ELC wild type (Tg-WT) or its 43-amino-acid N-terminal truncation mutant (Tg-Δ43) in the murine hearts. The mutant protein is similar in sequence to the short ELC variant present in skeletal muscle, and the ELC protein distribution in Tg-Δ43 ventricles resembles that of fast skeletal muscle. Cardiac muscle preparations from Tg-Δ43 mice demonstrate reduced force per cross-sectional area of muscle, which is likely caused by a reduced number of force-generating myosin cross-bridges and/or by decreased force per cross-bridge. As the mice grow older, the contractile force per cross-sectional area further decreases in Tg-Δ43 mice and the mutant hearts develop a phenotype of nonpathologic hypertrophy while still maintaining normal cardiac performance. The myocardium of older Tg-Δ43 mice also exhibits reduced myosin content. Our results suggest that the role of the N-terminal ELC extension is to maintain the integrity of myosin and to modulate force generation by decreasing myosin neck region compliance and promoting strong cross-bridge formation and/or by enhancing myosin attachment to actin. 相似文献
19.
Cardiac muscle cells from newt embryos were cultured at relatively low cell density. Within 10 days in culture, 2 cell types (spindle and flat type) were distinguished both among beating and non-beating cells. Mitosis in single beating cells was frequently observed both in spindle and flat cells. Some cells maintained almost constant contractile activities throughout the mitotic stages, while the others transiently stopped beating during mitosis, which accords well to the case in chick embryos (1). Ultra-thin section shows the presence of myofibril's structure in a dividing cell, as shown in newborn rats (2, 3, 4), chick embryos (1, 5, 6, 7) and adult newts (8, 9). As a consequence of mitosis, 3 types (spindle, flat and mixed type) of beating colonies developed after 34 weeks in culture. Cell proliferation was accompanied with pulsation and could be directly pursued till the 4th division, suggesting that differentiated myocardiac cells with myofibrils proliferate by their mitoses in vivo , maintaining rhythmic contraction. 相似文献