首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A new and sensitive method to measure UDP-glucuronic acid extracted from as little as 25 mg wet weight tissue has been developed. This procedure employs high-pressure liquid chromatography and liquid scintillation spectrophotometry to measure p-[14C]nitrophenylglucuronide generated enzymatically from p-[14C]nitrophenol and UDP-glucuronic acid. The reaction was catalyzed by UDP-glucuronyltransferase obtained from rat liver microsomes. The tissue levels of UDP-glucuronic acid assayed were 2 to 20 μmol/100 g wet wt, which are well below the levels detectable by the widely used spectrophotometric method.  相似文献   

2.
1. A method for the isolation from animal tissues of UDP-glucuronic acid by one-dimensional paper chromatography is described and its concentrations in some tissues of several species of vertebrates are reported; the incorporation of [32P]-phosphate into UDP-glucuronic acid in vivo was also investigated. 2. The concentration of UDP-glucuronic acid was higher in the liver of rats, rabbits and guinea pigs than in the same tissue of some species of birds, amphibia and fishes; also, the concentration of UDP-glucuronic acid in rat liver, kidney and small intestine was several times lower than that of the same tissues of guinea pigs. 3. The rate of [32P]-phosphate incorporation into UDP-glucuronic acid was very high in rat liver and kidney and almost reached equilibrium with the radioactivity of UDP-glucose 30min after the administration of the [32P]phosphate.  相似文献   

3.
尿苷二磷酸(uridine diphosphate,UDP)-葡萄糖醛酸是细胞内重要的糖基供体,参与多种代谢途径,也是体外进行糖基化反应的重要糖基供体,但其价格昂贵、工艺复杂,限制了其大量使用,无法满足生产需求。基于此,利用双酶偶联法氧化UDP-葡萄糖生成UDP-葡萄糖醛酸,并研究反应产物的合成情况。以UDP-葡萄糖为底物、烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)为辅因子,利用化脓性链球菌Streptococcus pyogenes源的尿苷二磷酸葡萄糖脱氢酶(UDP-glucose dehydrogenase,UGD)、猪源的乳酸脱氢酶(lactate dehydrogenase,LDH),双酶偶联催化合成UDP-葡萄糖醛酸,并通过高效液相色谱、质谱及核磁共振氢谱对反应产物进行检测,确定产物的结构及产物的生成量。结果表明,利用双酶偶联法氧化UDP-葡萄糖所得到的产物为UDP-葡萄糖醛酸。在UGD的作用下,氧化UDP-葡萄糖生成UDP-葡萄糖醛酸,同时辅因子NAD+在LDH的作用下实现循环再生,减少高能产物辅酶还原型烟酰胺腺嘌呤二核苷酸(reduced nicotinamide adenine dinucleotide,NADH)对反应的反馈抑制作用,产物的生成率约为60.17%。研究提高了产物UDP-葡萄糖醛酸产物生成量,为后续工业化制备提供了新思路。  相似文献   

4.
An assay for UDP-glucuronic acid [J. Singh, L. R. Schwarz, and F. J. Wiebel, Biochem. J. 189, 369–372 (1980)] has been utilized for determining UDP-glucose dehydrogenase activity. The assay for UDP-glucuronic acid, a product of UDP-glucose dehydrogenase, is based on the fluorometric determination of -glucuronosyl benzo(a)pyrene. This compound is formed from UDP-glucuronic acid and 3-hydroxybenzo(a)pyrene in a reaction catalyzed by the glycuronosyl transferase of guinea pig microsomes. Unreacted 3-hydroxybenzo(a)pyrene is removed by extraction with chloroform-methanol, and the amount of gluconosylbenzo(a)pyrene formed is determined fluorometrically. Because this assay for UDP-glucose dehydrogenase is about 500 times more sensitive than spectrophotometric assays, it can be used to measure the amount of enzyme extractable from milligram quantities of connective tissue. Some kinetic properties of UDP-glucose dehydrogenase extracted from rabbit tissue have been determined. No evidence of different forms of the enzyme in rabbit liver, cartilage, or corneal stroma was found.  相似文献   

5.
Changes in the activities of enzymes involved in UDP-sugar formation [UDP-glucose pyrophosphorylase (EC 2.7.7.9), sucrose synthase (EC 2.4.1.13) and UDP-glucuronic acid pyrophosphorylase (EC 2.7.7.44)], and interconversion [UDP-glucuse 4-epimerase (EC 5.1.3.2), UDP-glucose dehydrogenase (EC 1.1.1.22), UDP-glucuronic acid decarboxylase (EC 4.1.1.35) and UDP-xylose 4-epimerase (EC 5.1.3.5)] were investigated during the cell cycle in a synchronous culture of Catharanthus roseus (L.) G. Don. The specific activities of UDP-glucose pyrophosphorylase and UDP-glucose 4-epimerase increased in the G2 phase before the first cell division, and those of sucrose synthase, UDP-glucose dehydrogenase and UDP-glucuronic acid pyrophosphorylase increased in the G1 phase after the first cell division. However, during the cell cycle, UDP-glucuronic acid decarboxylase and UDP-xylose 4-epimerase did not change significantly in their specific activities. Changes in enzyme activities are discussed in relation to those reported previously for cell wall composition (S. Amino et al. 1984. Physiologia Plantarum 60: 326–332).  相似文献   

6.
1. It was confirmed that bilirubin glucuronyltransferase can be obtained in solubilized form from rat liver microsomes. 2. Michaelis-Menten kinetics were not followed by the enzyme with bilirubin as substrate when the bilirubin/albumin ratio was varied. High concentrations of bilirubin were inhibitory. 3. The K(m) for UDP-glucuronic acid at the optimum bilirubin concentration was 0.46mm. 4. Low concentrations of Ca(2+) were inhibitory in the absence of Mg(2+) but stimulatory in its presence; the converse applied for EDTA. 5. UDP-N-acetylglucosamine and UDP-glucose enhanced conjugation by untreated, but not by solubilized microsomes. 6. The apparent 9.5-fold increase in activity after solubilization was probably due to the absence of UDP-glucuronic acid pyrophosphatase activity in the solubilized preparation. 7. The activation of solubilized enzyme activity by ATP was considered to be a result of chelation of inhibitory metal ions. 8. The solubilized enzyme activity was inhibited by UMP and UDP. The effect of UMP was not competitive with respect to UDP-glucuronic acid. 9. A number of steroids inhibited the solubilized enzyme activity. The competitive effects of stilboestrol, oestrone sulphate and 3beta-hydroxyandrost-5-en-17-one, with respect to UDP-glucuronic acid, may be explained on an allosteric basis.  相似文献   

7.
The rate at which a specific, purified form of microsomal UDP-glucuronyltransferase (designated as the GT2P type of this enzyme) catalyzes the hydrolysis of UDP-glucuronic acid was measured with pure, delipidated enzyme and enzyme reconstituted with different lysophosphatidylcholines. This activity of the GT2P type of UDP-glucuronyltransferase is referred to as alpha-glucuronidase activity. For delipidated enzyme, the rate of hydrolysis of UDP-glucuronic acid catalyzed by GT2P extrapolated to infinite concentrations of UDP-glucuronic acid was 1 X 10(-9) mol/min/mg of protein. This compares with a rate of glucuronidation of p-nitrophenol of 96 X 10(-9) mol/min/mg of enzyme, for delipidated enzyme. Addition of oleoyl- or myristoyllysophosphatidylcholine to GT2P did not affect the alpha-glucuronidase activity significantly. This activity was stimulated, however, in the presence of compounds that bind at the aglycone site but that do not undergo glucuronidation. alpha-Glucuronidase activity extrapolated to infinite concentration of UDP-glucuronic acid was 4.0 X 10(-9) mol/min/mg for delipidated enzyme assayed in the presence of less than saturating concentrations of p-nitrophenyl phenyl ether. Moreover, when the aglycone site of GT2P was occupied by ethers, the alpha-glucuronidase activity of this enzyme was enhanced by addition of phospholipids to delipidated enzyme. The extent of activation of the alpha-glucuronidase activity of GT2P, when the aglycone site was occupied, depended on the acyl chain of the lipid added to delipidated enzyme. These data indicate that the GT2P form of UDP-glucuronyltransferase catalyzes the hydrolysis of UDP-glucuronic acid at a significant rate and that lysophosphatidylcholines can influence this rate.  相似文献   

8.
A simple microassay for the determination of UDP-glucuronic acid was developed on the basis of the formation of benzo[a]pyrene 3-glucuronide catalysed by UDP-glucuronyltransferase of guinea-pig liver. As little as 1-5 pmol of UDP-glucuronic acid was detectable in extracts of heat-denatured probes of liver or cultured cells equivalent to 10-50 micrograms of cellular protein.  相似文献   

9.
Uridine diphosphate (UDP)-glucose dehydrogenase, the enzyme that converts UDP-glucose to UDP-glucuronic acid, was derepressed in a mucoid (capR9) strain of Escherichia coli K-12 and repressed in a nonmucoid (capR(+)) strain. A nonmucoid mutant (strain MC 152; capR9 non-2) derived from the mucoid strain accumulated large quantities of nucleotides. Among these nucleotides, UDP-glucuronic acid was identified as well as guanosine triphosphate and an adenosine diphosphate-sugar. UDP-glucose dehydrogenase was still derepressed in strain MC 152. When the nonmucoid mutant was transduced to the wild-type state for this regulator gene (capR(+)), the transductant was found to accumulate less total nucleotides, and the accumulation of UDP-glucuronic acid was abolished. UDP-glucose dehydrogenase was repressed in the capR(+)non-2 strain but not to the same extent that it was in the capR(+) strain.  相似文献   

10.
Moyrand F  Janbon G 《Eukaryotic cell》2004,3(6):1601-1608
We report the identification and disruption of the Cryptococcus neoformans var. grubii UGD1 gene encoding the UDP-glucose dehydrogenase, which catalyzes the conversion of UDP-glucose into UDP-glucuronic acid. Deletion of UGD1 led to modifications in the cell wall, as revealed by changes in the sensitivity of ugd1Delta cells to sodium dodecyl sulfate, NaCl, and sorbitol. Moreover, two of the yeast's major virulence factors-capsule biosynthesis and the ability to grow at 37 degrees C-were impaired in ugd1Delta strains. These results suggest that the UDP-dehydrogenase represents the major, and maybe only, biosynthetic pathway for UDP-glucuronic acid in C. neoformans. Consequently, deletion of UGD1 blocked not only the synthesis of UDP-glucuronic acid but also that of UDP-xylose. To differentiate the phenotype(s) associated with the UDP-glucuronic acid defect alone from those linked to the UDP-xylose defect, ugd1Delta mutants were phenotypically compared to strains from which the gene encoding UDP-xylose synthase (i.e., that required for synthesis of UDP-xylose) had been deleted. Finally, studies of strains from which one of the four CAP genes (CAP10, CAP59, CAP60, or CAP64) had been deleted revealed common cell wall phenotypes associated with the acapsular state.  相似文献   

11.
UDP-glucuronic acid decarboxylase catalyses the reaction responsible for the formation of UDP-xylose and commits assimilate for the biosynthesis of cell wall polysaccharides and glycosylation of proteins. Xylose-rich polymers such as xylans are a feature of dicot secondary walls. Thus a cell culture system of tobacco transformed with the ipt gene from Agrobacterium tumefaciens for cytokinin production and which when manipulated with auxin and sucrose leads to induction of xylogenesis, has been used as a source for purification of the enzyme. UDP-glucuronic acid decarboxylase was purified by ion-exchange, gel filtration and affinity chromatography on Reactive Brown-Agarose. The native enzyme had an apparent M(r) of 220,000 which yielded a single subunit of 87,000 when analysed on SDS-PAGE using silver staining. This appears to be a novel form of the enzyme since a gene family encoding polypeptides around M(r) 40,000 with homology to the fungal enzyme also exists in plants. Using an antibody raised to the native 87 kDa form of the enzyme, this decarboxylase was localised mainly to to cambium and differentiating vascular tissue in tobacco stem, consistent with a role in the provision of UDP-xylose for the synthesis of secondary wall xylan. Further analysis using immunogold electron microscopy localised the 87 kDa UDP-glucuronic acid decarboxylase to the cytosol of developing vascular tissue.  相似文献   

12.
The effect of choline deficiency on the kinetic properties of the microsomal enzyme UDP-glucuronyltransferase (EC2.4.1.17) was investigated in rats. Animals fed choline-deficient diets, as compared with animals fed a choline-replete diet or standard laboratory chow, showed almost a three-fold increase in enzyme activity when the enzyme was assayed at physiological concentrations of UDP-glucuronic acid (0.25 mM). The increase in activity appeared to be due to an enhanced affinity of the enzyme for UDP-glucuronic acid rather than to an increase in the amount of enzyme. These data indicate that the kinetic properties of tightly bound membrane enzymes are altered by a dietary change that is known to cause liver disease in the rat.  相似文献   

13.
UDP-glucose dehydrogenase (UGDH) catalyzes oxidation of UDP-glucose to yield UDP-glucuronic acid, a precursor of hyaluronic acid (HA) and other glycosaminoglycans (GAGs) in extracellular matrix. Although association of extracellular matrix with cell proliferation and migration has been well documented, the importance of UGDH in these behaviors is not clear. Using UGDH-specific small interference RNA to treat HCT-8 colorectal carcinoma cells, a decrease in both mRNA and protein levels of UGDH, as well as the cellular UDP-glucuronic acid and GAG production was observed. Treatment of HCT-8 cells with either UGDH-specific siRNA or HA synthesis inhibitor 4-methylumbelliferone effectively delayed cell aggregation into multicellular spheroids and impaired cell motility in both three-dimensional collagen gel and transwell migration assays. The reduction in cell aggregation and migration rates could be restored by addition of exogenous HA. These results indicate that UGDH can regulate cell motility through the production of GAG. The enzyme may be a potential target for therapeutic intervention of colorectal cancers.  相似文献   

14.
Administration of trans-stilbene oxide, and new type of inducer of drug-metabolizing enzymes, to rats was found to increase hepatic microsomal UDP-glucuronyl transferase activity with both p-nitrophenol and chloramphenicol as substrate. In Triton X-100 activated microsomes the increase with p-nitrophenol as substrate was to approx. 250% of the control value, while the corresponding value for chloramphenicol was about 600%. These observations indicate that trans-stilbene oxide causes a mixed type 'induction' of UDP-glucuronyl transferase(s), i.e., changes in activity which resemble both those seen after induction with phenobarbital and after treatment with 3-methylcholanthrene. We have also shown that the activity of UDP-glucose dehydrogenase, the enzyme which produces UDP-glucuronic acid, is increased to about 300% of the control after administration of trans-stilbene oxide. The time course of this increase and of the return to control activity after cessation of treatment, the dose-response of this increase and the structural features of the trans-stilbene oxide molecule which are essential for the increase have all been examined. The other two enzymes involved in the conversion of glucose 6-phosphate to UDP-glucuronic acid, namely, phosphoglucomutase and UDP-glucose pyrophosphorylase, were found to be only slightly affected (a 30-60% increase) by treatment with trans-stilbene oxide. After induction with trans-stilbene oxide the hepatic level of UDP-glucuronic acid was unchanged.  相似文献   

15.
Kurosawa Y  Takahara H  Shiraiwa M 《Planta》2002,215(4):620-629
We detected UDP-glucuronic acid:soyasapogenol glucuronosyltransferase (UGASGT) activity in the microsomal fraction from germinating soybean (Glycine max [L.] Merr.) seed. A microsomal fraction was isolated from germinating soybean seed and treated with various detergents to solubilize the enzyme. UGASGT activity was monitored throughout purification using UDP-[U-(14)C]glucuronic acid and soyasapogenol B as substrates. Purification of UGASGT was achieved by HiTrap Q, Superdex 200, and HiTrap Blue chromatography procedures. This resulted in >205-fold enrichment relative to the starting homogenate. UGASGT was found to require divalent cations for activity. Studies on the substrate specificity of UGASGT demonstrated that the specificity for the sugar residue transferred was very high, as activity was scarcely found when UDP-glucuronic acid was replaced by other UDP sugars: UDP-glucose and UDP-galactose. Soyasapogenols, which are the aglycons of soybean saponin, are usable acceptors, but glycyrrhetinic acid, sophoradiol, beta-amyrin, and flavonoids are not. These findings suggest that this UGASGT was a specific enzyme for UDP-glucuronic acid as a donor and soyasapogenols as acceptors, and that it was related to the biosynthesis of the sugar chain in soybean saponin. This study provides a basis for the molecular characterization of a key enzyme in saponin biosynthesis in soybean. The isolation of the gene may enable its use in the elucidation of the biosynthesis and physiological role of saponins in soybean.  相似文献   

16.
The human beta1,3-glucuronosyltransferase I (GlcAT-I) plays a key role in proteoglycan biosynthesis by catalyzing the transfer of glucuronic acid onto the trisaccharide-protein linkage structure Galbeta1,3Galbeta1,4Xylbeta-O-Ser, a prerequisite step for polymerization of glycosaminoglycan chains. In this study, we identified His(308) and Arg(277) residues as essential determinants for the donor substrate (UDP-glucuronic acid) selectivity of the human GlcAT-I. Analysis of the UDP-glucuronic acid-binding site by computational modeling in conjunction with site-directed mutagenesis indicated that both residues interact with glucuronic acid. Substitution of His(308) by arginine induced major changes in the donor substrate specificity of GlcAT-I. Interestingly, the H308R mutant was able to efficiently utilize nucleotide sugars UDP-glucose, UDP-mannose, and UDP-N-acetylglucosamine, which are not naturally accepted by the wild-type enzyme, as co-substrate in the transfer reaction. To gain insight into the role of Arg(277), site-directed mutagenesis in combination with chemical modification was carried out. Substitution of Arg(277) with alanine abrogated the activity of GlcAT-I. Furthermore, the arginine-directed reagent 2,3-butanedione irreversibly inhibited GlcAT-I, which was effectively protected against inactivation by UDP-glucuronic acid but not by UDP-glucose. It is noteworthy that the activity of the H308R mutant toward UDP-glucose was unaffected by the arginine-directed reagent. Our results are consistent with crucial interactions between the His(308) and Arg(277) residues and the glucuronic acid moiety that governs the specificity of GlcAT-I toward the nucleotide sugar donor substrate.  相似文献   

17.
5-Hydroxytryptamine UDP-glucuronyltransferase was highly purified from untreated rat liver microsomes. The specific activity towards 5-hydroxytryptamine was increased 178-fold over the starting solubilized microsomes with a final yield of 3%. The final preparation contained two major and one minor Coomassie brilliant blue staining polypeptide bands visible after SDS-polyacrylamide gel electrophoresis. One of the major bands was identified as 3-methylcholanthrene-inducible UDP-glucuronyltransferase, so the other (molecular weight of 55,500) appeared to be 5-hydroxytryptamine UDP-glucuronyltransferase. Concanavalin A reacted with the 55,500-dalton polypeptide. Phospholipid was indispensable for the enzyme activity. The enzyme activity in the final preparation was activated by divalent cations. Simple Michaelis-Menten kinetics were followed with respect to 5-hydroxytryptamine, but deviations from this kinetics were observed with respect to UDP-glucuronic acid and Mg2+. As regards Mg2+ stimulation, further experiments indicated that the added Mg2+ was non-competitive with 5-hydroxytryptamine, but at low concentrations of Mg2+ it was competitive with UDP-glucuronic acid and at high concentrations of Mg2+ it was non-competitive with UDP-glucuronic acid. The final preparation showed high substrate specificity towards 5-hydroxytryptamine among endogenous substrates tested. From these results, it was concluded that the enzyme described here is a new form of UDP-glucuronyltransferase isozyme, and its activity showed a peculiar dependence on Mg2+.  相似文献   

18.
UDP-glucose dehydrogenase (UGDH) catalyzes two oxidations of UDP-glucose to yield UDP-glucuronic acid. Pathological over-production of extracellular matrix components may be linked to the availability of UDP-glucuronic acid, therefore UGDH is a potential therapeutic target. RNA interference (RNAi) has been adapted to knock down the expression of human UGDH. A UGDH siRNA plasmid was constructed using a pRNA-U6.1/Neo vector and transfected into breast cancer cells, ZR-75-1, with an efficiency of up to 50%. Western blot analysis showed that the UGDH expression was efficiently knocked down at protein levels by RNAi in ZR-75-1 cells.  相似文献   

19.
Bilirubin glucuronyltransferase. Specific assay and kinetic studies   总被引:5,自引:5,他引:0       下载免费PDF全文
1. Bilirubin glucuronide was synthesized in vitro in a system containing a rat liver microsomal fraction, UDP-glucuronic acid, Mg(2+) and bilirubin. The enzymic synthesis was accomplished without the addition of a bilirubin carrier. 2. Azobilirubin and azobilirubin glucuronide were separated by t.l.c. and paper chromatography and the measurement of the conjugate provided a specific assay for bilirubin UDP-glucuronyltransferase (EC 2.4.1.17). 3. This diazo compound was labelled when [U-(14)C]UDP-glucuronic acid was employed in the transglucuronidation reaction. 4. Identity of the glucuronide nature of the product was further confirmed by hydrolysis with beta-glucuronidase prepared from limpets and Helix pomatia. In each instance azobilirubin and glucuronic acid were liberated. 5. There was a close correlation between the bilirubin glucuronyl-transferase activity as measured by two procedures, colorimetric and radioisotopic. The specific activities so measured were 19nmol of bilirubin ;equivalents' conjugated/h per mg of protein and 16.9-18.4nmol of UDP-glucuronic acid incorporated/h per mg of protein, respectively. On this basis, it was concluded that the major product formed in vitro was bilirubin monoglucuronide; this represents about 77% of the total products formed. 6. The K(m) values for bilirubin and UDP-glucuronic acid at pH8.2 are 3.3x10(-4)m and 1.67x10(-3)m, respectively. 7. The addition of Mg(2+) at a final concentration of 5mm to the reaction mixture increased the rate of conjugation by 5.6-fold in the microsomal preparation that had been subjected to overnight dialysis against 10mm-EDTA (disodium salt). 8. Diethyl-nitrosamine at a final concentration of 1-20mm has no effect on the glucuronidation of bilirubin in vitro.  相似文献   

20.
Postnatal developmental changes in hapatic microsomal UDP-glucuronyltransferase were studied in the rat. The previously reported postnatal decline in the capacity of microsomal fractions to glucuronidate p-nitrophenol was found to be observable in unperturbed preparations only at non-saturating concentrations of the substrate UDP-glucuronic acid. At saturating concentrations of UDP-glucuronic acid, activity is identical in newborns and adults. Kinetic analysis revealed that the enzyme from liver of newborns has a much higher affinity for UDP-glucuronic acid than does the enzyme in adults, but the same activity at Vmax. On the other hand, the enzyme from adult liver microsomal fractions can be activated by the physiological allosteric effector UDP-N-acetylglucosamine, whereas the enzyme from newborns is largely unaffected by it. Thus it appears that the number of enzyme active sites is not changing; rather, the enzyme is maturing to a more highly regulable form. There were also differences between the enzymes in newborns and adults in their response to perturbation of the membrane-lipid environment by detergent and phospholipase A. Possible interpretations of these differences are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号